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Abstract

Accurate and efficient sensitivity analysis is fundamental for the convergence of gradient-based optimization
techniques. Analytical sensitivity methods are preferred over numerical ones for their accuracy and higher com-
putational efficiency. Although analytical sensitivity methods have been developed for different static structural
and purely aerodynamic problems, no methods exist for flutter shape eigensensitivities. This work presents the
development of semi-analytical methods for calculating the sensitivity of flutter eigenvalues to variations in the
structural and aerodynamic shape simultaneously. A discrete analytical differentiation of the flutter governing
equations has been performed. Existing discrete analytical methods are developed for eigenvalue problems
formulated in the node set. A novel methodology is introduced to handle flutter equations written in modal
coordinates. The technique requires the differentiation of the structural and aerodynamic matrices and the real
eigenvectors matrix. The derivative of the structural mass, stiffness, and damping matrices has been calcu-
lated analytically with an element-agnostic approach. On the other hand, aerodynamic matrices have been
differentiated using finite differences, leading to a semi-analytical sensitivity method. The proposed methodol-
ogy yields promising results, demonstrating the analytical differentiability of flutter eigenvalues and paving the
way to a more accurate aeroelastic tailored design.

Keywords: Analytical sensitivity methods, Discrete analytical differentiation, Shape optimization, Flutter
eigensensitivities, Aeroelasticity

1. Introduction
In the realm of modern aircraft design, addressing a proper structural and aerodynamic shape is
crucial for ensuring strength, control, and performance aspects. To fully comprehend the implications
of these factors, reliable and accurate aeroelastic sensitivity analysis is necessary. Among the various
aeroelastic characteristics, flutter sensitivities pose greater complexity and difficulty [1]. Moreover, the
shape sensitivities of flutter characteristics present even greater challenges. This is primarily due to
the nonlinear relationship between the mass and stiffness matrices of the aeroelastic system and
the shape design variables, in contrast to the linear relationship with sizing-type design variables [2].
Consequently, the finite difference method is inadequate for accurately solving shape sensitivities.

1.1 Aeroelastic shape optimization
Few works exist on analytical methods for aeroelastic shape sensitivity. The bibliography on the topic
can be subdivided into two main categories:

• Fully analytical sensitivity methods for simplified models, such as analytical beams or springs
as structural components, and bidimensional sections as aerodynamics. While they are sci-
entifically significant and demonstrate the possibility of analytically differentiating aeroelastic
problems, they do not find practical applications for real aeroelastic shape optimization prob-
lems.
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• Detailed three-dimensional (3D) finite element models with quasi-steady aerodynamics based
on Computational Fluid Dynamics (CFD) calculations solving Euler equations at each stage.
Even if the structure is more accurate and detailed, this kind of model does not find practical
applications in aircraft design since the structure is not yet designed and only an overall estima-
tion of the stiffness is available. Often, finding the overall structural characteristics is the scope
of the optimization itself. The same goes for aerodynamics which is based on CFD simulations
of 3D geometries. The detailed aerodynamic geometry of an aircraft prototype is not available
in the design phase as the scope of the aeroelastic shape optimization tools is finding the main
geometric characteristics of the surfaces (length, chord, aspect ratio, sweep angle). Finally, op-
timizing this kind of model is computationally challenging, especially considering that multiple
optimizations are necessary during the aircraft design phase.

Additionally, both methodologies are developed in the time domain while common aeroelastic solu-
tions are in the frequency domain. The present work perfectly fits in this framework providing a shape
sensitivity method in the frequency domain and consistent with the aeroelastic models actually used
for aeroelastic shape optimizations. Flutter eigenvalue sensitivity allows to find significant information
for the optimization, such as damping or flutter speed sensitivities. Instead, sensitivities in the time
domain are not practically significant. During the design phase of a new aircraft, stick-beam struc-
tural models and Doublet Lattice Method (DLM) aerodynamics are commonly employed models [3].
However, no analytical sensitivity methods are available for this kind of model. Furthermore, one of
the widely used software for flutter analysis and optimization (MSC/Simcenter NASTRAN) only per-
mits structural parameters to be considered as design variables [4], not allowing a proper aeroelastic
optimization. If the sensitivity for structural parameters is limited, the optimization of shape design
parameters is not possible at all. Consequently, this work addresses this gap by introducing an ac-
curate and efficient sensitivity method for aeroelastic sensitivity analysis. Additionally, it enables the
optimization of both structural and aerodynamic shape parameters, thereby facilitating proper aeroe-
lastic shape optimization.
In the following, a comprehensive overview of the existing research conducted in the field of analytical
aeroelastic shape optimization is provided.
Kulkarni et al. [5] employed the multiphysics capabilities of Stanford University Unstructured (SU2)
[6] software to obtain an analytical aeroelastic sensitivity. A bidimensional NACA 0012 airfoil has
been employed for the aerodynamic part, whose shape has been considered as a design variable.
The airfoil has been connected to a string (beam) to simulate the structural part. Quasi-steady CFD
aerodynamics has been employed. Two previous works [7, 8] obtained similar results with a simplified
section aerodynamics theory. These works aimed to apply Continuum Sensitivity Analysis (CSA) to
(nonlinear) gust response problems. Canfield and Sandler [9] recently applied the CSA method to
the transient gust response of a two-dimensional airfoil in a compressible flow, flexibly attached to a
rigid body mass. They developed for the first time the method in an arbitrary Lagrangian-Eulerian
reference frame. The aerodynamics has been modelled using Euler equations.
Maute et al. [10] considered the problem of optimizing steady-state conditions of an aeroelastic sys-
tem, by varying both aerodynamic and structural parameters such as the shape of the dry or wet
surface, and the orientation of the composite fibres. A detailed 3D finite element model for the struc-
ture and a 3D Euler finite volume method for the fluid were employed. Subsequently, fast parallel
staggered algorithms for evaluating the aeroelastic responses and computing the analytically derived
gradients of the optimization criteria were employed [11]. A subsequent work [12] also considers non-
linearity in the aeroelastic solution, employing nonlinear Euler equations for aerodynamics. Blair et
al. [13] optimized and designed a joined-wing aircraft configuration. They employed CFD simulations
for aerodynamics and optimized stiffness and mass structural parameters instead of shape ones. In
the Yang study [1], the equivalent plate model and piston theory are used to construct the aeroelastic
model, and Lancaster’s adjoint method is used to compute eigenvalue sensitivities and flutter shape
sensitivities. However, this method employs a simplified aerodynamics of a plate geometry in the
supersonic field (M� 1). Again, this method is not suitable for DLM aerodynamic theory.
A couple of works employ an aerodynamic theory more similar to the one effectively used in common
aeroelastic optimization models, but still in the time domain. Stewart et al. optimized the shape

2



SEMI-ANALYTICAL SENSITIVITY METHODS FOR AEROELASTIC SHAPE OPTIMIZATION

of a plate-like flapping wing [14]. The aeroelastic system is made by coupling an unsteady vortex
lattice aerodynamics model with a plate finite element model. The aim is to optimize a flapping
wing to maximize the thrust coefficient for micro air vehicle applications. Thus, the test case is not
consistent with a fixed-wing aircraft. Walker et al. [15] did similar work for aeroelastic optimization
of a flapping membrane wing for maximum thrust and propulsive efficiency. The aerodynamic forces
were calculated using an analytical unsteady deformable thin airfoil theory.

1.2 Sensitivity methods
Accurate sensitivity analysis plays a fundamental role in achieving convergence for gradient-based
optimization techniques. Various methods exist for evaluating sensitivities, including numerical meth-
ods (such as finite difference and complex step), analytical methods (including discrete analytical and
continuum), hybrid methods (semi-analytical), and automatic differentiation methods. Among these,
analytical methods are preferred due to their higher accuracy and lower computational time com-
pared to numerical approaches. Analytical methods eliminate the need for convergence studies to
determine an appropriate step size for numerical differentiation, as required by the Finite Difference
Method (FDM), which is prone to truncation errors at large step sizes and roundoff errors at small
ones [16, 17, 18]. Moreover, analytical methods do not rely on complex number operations such as
the complex step method [19], making them more compatible with common commercial software that
does not support complex numbers as shape parameters. Additionally, analytical methods do not
require access to the analysis source code, a necessity for Automatic Differentiation (AD) [20, 21],
allowing them to be implemented with black-box software. Discrete analytical methods are challeng-
ing to apply due to their reliance on mesh sensitivities [22]. However, recent developments made
by the authors [23] have introduced an element-agnostic approach for calculating derivatives of stiff-
ness, and mass matrices using primary analysis matrices and connectivity information. In this work,
the same approach has been developed to differentiate damping matrices. The DLM is commonly
employed to compute aerodynamic matrices, but their derivation through analytical means is not fea-
sible, necessitating the use of FDM. Consequently, the developed method can be categorized as
semi-analytical. It is worth noting that semi-analytical methods are known to be less accurate when
dealing with shape sensitivity problems [24]. However, this characteristic has been assessed when
structural matrices are numerically differentiated, while DLM aerodynamic matrices are here derived.

1.3 Semi-analytical differentiation
This work involves the discrete analytical differentiation of the flutter governing equations. Discrete
analytical sensitivity methods have been formulated for complex eigenvalues in the case of non-
viscously [25] and viscously damped [26] systems, asymmetric viscously damped systems [27], and
to generally complex system matrices [28]. However, these methods were primarily developed for
parameter design variables rather than shape design ones. Additionally, they were formulated for
generic complex eigenvalue problems, whereas flutter equations are formulated in modal coordi-
nates. To address these limitations, a novel methodology has been developed to handle flutter
equations expressed in modal coordinates. This methodology requires the differentiation of the
structural and aerodynamic matrices as well as real eigenvectors’ derivatives. The differentiation
of stiffness, mass, structural, and modal damping matrices is analytical and employs general and
element-agnostic approaches that do not rely on specific knowledge of the structural parameters.
Instead of explicitly calculating the differentiated matrices, existing primary analysis matrices and
results are smartly employed to compute the matrix derivatives. Furthermore, the derivative of the
primary modal analysis eigenvector matrix has been obtained using Nelson’s sensitivity method [29],
which is still discrete analytical. On the other hand, the differentiation of DLM aerodynamic matrices
has been performed employing the finite difference method.
In the subsequent sections, a comprehensive description and mathematical treatment of the de-
veloped methodologies are provided. The Semi-Analytical Aeroelastic Sensitivity (SAAS) method
is presented, which has been rigorously derived for both K- and PK-methods, widely employed in
flutter analysis. The methodology has been assessed across various scenarios involving different
stiffnesses, airspeeds, reduced frequencies, and types and amounts of structural damping.
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2. Methodology
This chapter introduces the general discrete analytical formulation to calculate complex eigenvalue
derivatives. The theory is then particularized for an aeroelastic shape design problem. A rigorous
nonintrusive and element-agnostic methodology has been developed. The method requires primary
analysis results such as eigenvalues and eigenvectors and the derivative of structural and aerody-
namic matrices. Primary analysis matrices and results are used to calculate the required derivatives,
resulting in an element-agnostic and computationally efficient approach.

2.1 K-method flutter equations
Several methods exist in the literature to solve flutter equations. In this section, the K-method is
considered because of its easier demonstration, not requiring iterative eigenvalue calculations or
aerodynamic matrices interpolations. Nevertheless, the sensitivity results can be useful to calculate
flutter speed sensitivity in the same way. The philosophy behind the K-method is to inject the system
with artificial damping (in the form of a structural damping term g) to push the system to the flutter
point. The basic equation for modal flutter analysis by the K-method is [30]:[

−[Mhh]ω
2 + i[Bhh]ω +(1+ ig)[Khh]−

(
1
2

ρV 2
)
[Qhh(M,k)]

]
{uh}= 0, (1)

where:

• [Mhh] = modal mass matrix;

• [Bhh] = modal damping matrix;

• [Khh] = modal stiffness matrix, may be complex if actual structural damping gs is employed, may
be singular if rigid body modes are present;

• M = Mach number;

• k = ω c̄
2V = reduced frequency;

• c̄ = reference length;

• [Qhh(M,k)] = aerodynamic force matrix, which is a function of parameters M and k;

• ω = 2π f = circular frequency;

• g = artificial structural damping;

• ρ = fluid density;

• V = velocity;

• {uh}= modal amplitude vector.

The parameters k, V , and ω are not independent from each other. For the K-method of solution, the
aerodynamic term is converted to an equivalent aerodynamic mass:[

−

[
[Mhh]+

ρ

2

(
c̄

2k

)2

[Qhh(M,k)]

]
ω2

1+ ig
+[Bhh]

iω√
1+ ig

+[Khh]

]
{uh}= 0. (2)

The term involving [Bhh] in Eq. 2 has been multiplied by
√

1+ ig for mathematical convenience. Eq. 2
is solved as an eigenvalue problem for a series of values for parameters M, k, and ρ. The complex
eigenvalue is ω2/(1+ ig) , which can be interpreted as real values of ω and g. The velocity, V , is
recovered from V = ω c̄/2k. Flutter occurs for values of M, k and ρ for which g = 0. A different version
of the equation is used within NASTRAN software. The equation is written as:[[(

2k
c̄

)2

[Mhh]+
ρ

2
[Qhh(M,k)]

](
−V 2

1+ ig

)
+

(
2k
c̄

)
[Bhh]

iV√
1+ ig

+[Khh]

]
{uh}= 0. (3)
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The new eigenvalue is therefore:

p2 =
−V 2

1+ ig
(4)

Eq. 4 may be written as:

p2 =V 2 (1− ig)
1+g2 = a+ ib, (5)

so that:
g =−b/a, (6)

and

V =

√
−(a2 +b2)

a
. (7)

The natural frequency can be also calculated since the reduced frequency is known:

f =
kV
π c̄

. (8)

2.2 Differentiation of K-method equations
A generic complex eigenvalue problem is defined by the following equation:(

[M]p2 +[B]p+[K]
)
{φ}= 0 (9)

The stiffness matrix [K] may be complex if the proper structural damping (gs) is included in the model:
[K] = (1+ igs)[Kstruct ]. Suppose that the system matrices in Eq. 9 are functions of a parameter b: in
the current case a shape design variable. The derivatives of complex eigenvalues were obtained by
Adhikari [31]. The following expression for the derivative of the j-th eigenvalue with respect to the
design parameter b is obtained:

∂ p j

∂b
=−
{φ}T

(
p2

j [M
′]+ p j [B′]+ [K′]

)
{φ}

{φ}T (2p j[M]+ [B]){φ}
, (10)

where the (•)′ symbol indicates the derivative with respect to b. Such an equation has been here
extended to the aeroelastic model defined in modal coordinates (Eq. 3). However, the structural
matrices can be analytically derived in the grid coordinated and not in the modal ones. Thus, the
derivation of the modal stiffness ([Khh] = [ΦR]

T [K] [ΦR]) or mass ([Mhh] = [ΦR]
T [M] [ΦR]) matrices also

involves the derivative of the real eigenvector matrix [ΦR]:

[K′hh] =
[
Φ
′
R
]T

[K] [ΦR]+ [ΦR]
T [K′] [ΦR]+ [ΦR]

T [K]
[
Φ
′
R
]
, (11)

[M′hh] =
[
Φ
′
R
]T

[M] [ΦR]+ [ΦR]
T [M′] [ΦR]+ [ΦR]

T [M]
[
Φ
′
R
]
. (12)

The real eigenvectors derivative ([Φ′R]) can be calculated using Nelson’s algorithm [29], described
in detail in the following paragraphs. Such a method employs mass-normalized eigenvectors. As a
consequence, the modal mass matrix is always the identity one ([Mhh] = [I]) and does not depend on
the design variable. Its derivative is therefore null:

[M′hh] = [0]. (13)

Particularizing Eq. 10 for the K-method aeroelastic equation (Eq. 3) and substituting Eqs 11 and 13,
the following general formula is obtained:

∂ p j

∂b
=−

{
uh, j
}T

(
p2

j
ρ

2 [Q
′
hh]+ p j

(2k
c̄

)[
B′hh

]
+[Φ′R]

T [K] [ΦR]+

[ΦR]
T [K′] [ΦR]+ [ΦR]

T [K] [Φ′R]

){
uh, j
}

{
uh, j
}T
(

2p j

((2k
c̄

)2
[Mhh]+

ρ

2 [Qhh]
)
+
(2k

c̄

)
[Bhh]

){
uh, j
} . (14)

Such an equation is of easy application and is far more convenient compared to the FDM, which
involves several aeroelastic analyses to assess the step size. In particular, the developed SAAS
method involves the following quantities:
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• Primary analysis matrices, eigenvalues, and eigenvectors which are already calculated (p j,{
uh, j
}

, [K], [ΦR], [Mhh], [Bhh], [Qhh]).

• Known data and parameters (ρ, k, c̄).

• Analytically and element-agnostically derived matrices ([K′], [B′hh]).

• Real eigenvector matrix derivative calculated with a discrete analytical (Nelson’s) method ([Φ′R]).

• Aerodynamic matrix differentiated with FDM ([Q′hh]).

2.3 PK-method flutter equations
The fundamental equation for modal flutter analysis by the PK-method is [30]:[

[Mhh]p2 +

(
[Bhh]−

1
4

ρ c̄V [Qℑ

hh]/k
)

p+
(
[Khh]−

1
2

ρV 2[Qℜ

hh]

)]
{uh}= 0, (15)

where the new terms compared to the K-method are:

• [Qℑ

hh] = modal aerodynamic damping matrix, a function of Mach number, M, and reduced fre-
quency, k;

• [Qℜ

hh] = modal aerodynamic stiffness matrix, a function of Mach number, M, and reduced fre-
quency, k;

• p = ω(γ± i) eigenvalue;

• γ = transient decay rate coefficient (The structural damping coefficient is g = 2γ).

The Eq. 15 is written so that the matrix terms are all real: [Qℜ

hh] and [Qℑ

hh] are the real and imag-
inary parts of [Qhh(M,k)], respectively. The circular frequency and the reduced frequency are not
independent of each other since k = ω c̄/2V , and furthermore, that:

k = c̄/2V ·ℑ(p). (16)

Because of that, the eigenvalue problem is not closed, and it needs to be solved iteratively. This
characteristic will make the eigenvalue derivative calculation iterative in the same way.

2.4 Differentiation of PK-method equations
The PK-method eigenvalue problem can be written in a general complex eigenvalue formulation (Eq.
9), and the Eq. 10 for the derivative of complex eigenvalues sensitivity applied. The relations 11 and
13, already found for the modal stiffness and mass matrix derivatives, can be still employed. However,
the aerodynamic damping matrix depends on the reduced frequency, which in turn depends on the
imaginary part of the eigenvalue through Eq. 16. As a consequence, the derivative of the term[
Qℑ

hh

]
/k cannot be calculated since it depends on k′, which in turn depends on p′. As in the case

of the primary analysis, an iterative calculation is needed. A preliminary eigenvalue estimation can
be obtained by assuming that the reduced frequency (k) is constant with the shape variable. The
following equation for the PK-method eigenvalue calculation is thus obtained:

∂ p j

∂b
=−

{
uh, j
}T


p j

([
B′hh

]
− 1

4 ρ c̄V

[
(Qℑ

hh)
′]

k

)
+

[Φ′R]
T [K] [ΦR]+ [ΦR]

T [K′] [ΦR] [ΦR]
T [K] [Φ′R]−

1
2 ρV 2

[(
Qℜ

hh

)′]
{uh, j

}
{

uh, j
}T
(

2p j[Mhh]+ [Bhh]− 1
4 ρ c̄V [Qℑ

hh]
k

){
uh, j
} . (17)

Despite the previous formula being incorrect, a enough good estimation of the eigenvalue derivative
is obtained. In particular, the damping term mainly affects the real part of the eigenvalue. As a
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consequence, a very good estimation of ∂ℑ(p j)
∂b is obtained which can be used to compute the reduced

frequency derivative with respect to the shape:

k′ =
c̄

2V
∂ℑ(p j)

∂b
. (18)

The estimation of k′ allows the ’correct’ computation of the derivative of the term
[
Qℑ

hh

]
/k:

∂

∂b


[
Qℑ

hh

]
k

=

[(
Qℑ

hh

)′]
k−
[
Qℑ

hh

]
k′

k2 (19)

The new estimation of the eigenvalue derivative can be calculated by means of Eq. 20.

∂ p j

∂b
=−

{
uh, j
}T

 p j

([
B′hh

]
− 1

4 ρ c̄V ∂

∂b

(
[Qℑ

hh]
k

))
+

[Φ′R]
T [K] [ΦR]+ [ΦR]

T [K′] [ΦR]+ [ΦR]
T [K] [Φ′R]−

1
2 ρV 2

[(
Qℜ

hh

)′]
{uh, j

}
{

uh, j
}T
(

2p j[Mhh]+ [Bhh]− 1
4 ρ c̄V [Qℑ

hh]
k

){
uh, j
} (20)

The new value of ∂ p j
∂b allows a new estimation of the reduced frequency derivative (k′). The process

can be iterated until two subsequent values of ∂ p j
∂b are sufficiently close, based on the tolerance the

user chooses. Typically, few iterations are needed due to the small influence of the shape parameter
on the k′ value.

2.5 Derivative of structural matrices
The calculation of the derivatives of the stiffness, damping, and mass matrices with respect to shape
variables is here discussed. The focus is on finding the eigenvalue derivatives with respect to the
length of the beam Lb. Even when dealing with shape design variables, the derivative of the stiffness
and mass matrices’ elements is still with respect to a parameter: the length of the element. However,
the derivative with respect to the whole beam length is needed instead of the beam element one. The
derivative of a generic stiffness or mass matrix element Amn with respect to the length of the beam
can be written in terms of the length of the element (Le) by using the chain rule:

∂Amn

∂Lb
=

∂Amn

∂Le

∂Le

∂Lb
. (21)

The derivative ∂Le
∂Lb

represents the elongation of the single beam element with respect to the elongation
of the whole beam. It is easy to calculate using the design velocity V formulation. Considering
a generic finite element of a one-dimensional mesh connecting two nodes at x = a and x = b, the
derivative is equal to:

∂Le

∂Lb
=

Vx|x=b− Vx|x=a
Vx|x=Lb

− Vx|x=0
. (22)

The focus can now be shifted to the derivative ∂Amn
∂Le

. All the terms of the stiffness matrix of a generic
beam element contain terms proportional to 1

Lα
e
, with α real parameter (i.e. EA

Le
, 6EI

L2
e

and 12EI
L3

e
). Also,

the contribution of the mass matrix coming from the distributed mass depends on the element length.
The derivative of this kind of function is elementary. In addition, the derivatives are calculated utilizing
the primary analysis stiffness and mass matrix and the mesh connectivity, without explicitly building
the derivative of the matrices. The methodology to differentiate the structural matrices has been
already applied and validated by the authors for different eigenvalue sensitivity problems [23].
If structural damping is employed, no further derivations are necessary for the damping matrix. The
derivative of the damping terms only requires the derivative of the stiffness matrix. However, if modal
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damping is used in the model, the derivative of the modal damping matrix [Bhh] is needed. Its terms
depend on known data and real eigenvalues derivative which is calculated anyway to apply Nelson’s
algorithm. In particular, Eq. 23 can be used to compute the modal damping matrix derivative. An
element-agnostic approach can be still used employing the primary matrix. Considering the element
of [Bhh] correspondent to the j-th mode, here indicated as B j j, the derivative can be computed as
follows:

∂B j j

∂b
= 2ζ m j

∂ωn, j

∂b
= 2ζ m jωn, j

ω ′n, j
ωn, j

= B j j
ω ′n, j
ωn, j

, (23)

where ζ is the critical damping coefficient, and ωn, j is the circular natural frequency of the j-th mode.
The derivative of the circular frequency (ω ′n, j) is known since when applying Nelson’s algorithm for
deriving eigenvectors, real eigenvalues derivatives are also calculated, as discussed in the following
paragraph.

2.6 Derivative of real eigenvector matrix
To calculate the derivative of the real eigenvector matrix, Nelson’s algorithm for real eigenvalue prob-
lems can be used [29]. This method employs discrete analytical differentiation and requires the
stiffness and mass matrices, along with their derivatives. Although traditionally applied to sizing-
type design variables, recent work by the authors [32] demonstrates its applicability to shape design
variables as well.
To apply Nelson’s algorithm, it is necessary to calculate the derivative of the real eigenvalue. A pri-
mary modal analysis ([K]φR = λ [M]φR) is always performed to obtain the modal parameters needed for
subsequent aeroelastic calculations. If mass-normalized eigenvectors are used, the real eigenvalue
derivative can be calculated using the following formula:

λ
′
j = {φR, j}T ([K′]−λ j[M′]

)
{φR, j}, (24)

where {φR, j} is the j-th real eigenvector, and [K] and [M] are the structural matrices expressed in the
grid set.
Defining the vector { f} ≡

(
λ ′j[M]+λ j[M′]− [K′]

)
{φR, j}, the following Nelson’s algorithm can be used

to calculate the j-th eigenvector derivative [33]:

1. Let [G]≡ [K]−λ j[M] and assume {φR, j}= (x1,x2, ...,xn)
T .

2. Find k such that |xk|= ‖xk‖∞ ≡ maxi|xi|.

3. Replace the k-th row and column of [G] with zeros except for 1 on the k-th diagonal element.
Call the result [Ḡ].

4. Replace the k-th element of { f} with zero. Call the result { f̄}.

5. Solve [Ḡ]{v}= { f̄}.

6. Compute c =−{v}T [M]{φR, j}−0.5{φR, j}T [M′]{φR, j}.

7. Let {φ ′R, j}= {v}+ c{φR, j}.

Applying the previous algorithm for each eigenvector {φR, j}, it is possible to obtain the eigenvectors’
matrix derivative [Φ′R] required by the SAAS method.

2.7 Derivative of aerodynamic matrices
The DLM aerodynamic matrices calculation is not based on an original analytical theory. Thus, they
cannot be differentiated by employing analytical methods. They are calculated by evaluating the lifting
pressure distribution that generates the proper normalwash amplitude w at all the points located at
3/4 chord of each element [34]. In this work, the FDM has been employed to obtain the derivative of
the sole aerodynamic matrix.
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As mentioned earlier, the aerodynamic matrices are dependent on the reduced frequency. When us-
ing the semi-analytical differentiation in the K-method case, the reduced frequency is fixed and only a
single aerodynamic matrix needs to be differentiated. In contrast, each PK-method eigenvalue corre-
sponds to a different reduced frequency. There is therefore a need to consider multiple aerodynamic
matrices and then perform interpolations. In particular, the interpolation must be done in a specific
way when performing finite differences. The PK-method operates at a constant airspeed, and when
a geometric shape variable (b) is altered, the eigenvalue associated with the same airspeed corre-
sponds to a different reduced frequency. Consequently, the aerodynamic matrices corresponding to
b+∆b and b−∆b must be interpolated at the new reduced frequencies. Calculating all matrices at the
nominal k value would introduce errors. When considering a general single eigenvalue p character-
ized by a specific reduced frequency k, the forward and backward derivatives must be computed for
each step size ∆b at the corresponding reduced frequencies kb+∆b = k (b+∆b) and kb−∆b = k (b−∆b).
Ignoring the Mach number dependence for the sake of simplicity, it is known that the aerodynamic
matrix is dependent on the reduced frequency and the shape design variable b due to its influence
on the aerodynamic panel dimensions ([Qhh (k,b)]). Employing equations 25 and 26, the forward
and backward derivatives of each term of the aerodynamic matrix ([Qhh (k,b)]i j) can be calculated,
respectively.

∂ [Qhh (k,b)]i j

∂b

∣∣∣∣
FWD
'

[Qhh (kb+∆b,b+∆b)]i j− [Qhh (k,b)]i j

∆b
(25)

∂ [Qhh (k,b)]i j

∂b

∣∣∣∣
BWD
'

[Qhh (k,b)]i j− [Qhh (kb−∆b,b−∆b)]i j

∆b
(26)

In addition, the convergence of finite differences should be studied separately for each element in-
stead of the overall matrix. In general, the optimal step size can be different for each element of the
matrix. In the end, the overall differentiated matrix [Q′hh] will contain the derivatives of the various
elements of [Qhh], each calculated in its optimal step size employing the central difference scheme.
More practically, the finite differences of the aerodynamic matrices are calculated at the same val-
ues of the reduced frequencies as the primary analysis kr = k1,k2, . . . ,kr and for each step size.
The aerodynamic matrices [Qhh (kr,b)] are already available from the primary analysis, while the
[Qhh (kr,b−∆b)] and [Qhh (kr,b+∆b)] ones must be computed. They are employed to calculate the
[Qhh (kb+∆b,b+∆b)]i j and [Qhh (kb−∆b,b−∆b)]i j values necessary to apply Eqs 25 and 26. Conver-
gence studies are performed to find the best step size and finally, the central difference scheme is
applied for the final derivative estimation:

∂ [Qhh (k,b)]i j

∂b

∣∣∣∣
C
'

[Qhh (kb+∆b,b+∆b)]i j− [Qhh (kb−∆b,b−∆b)]i j

2∆b
. (27)

3. Applications and results
In this section, the SAAS method is applied to a cantilever rectangular wing, with its length considered
as a shape design variable. The effectiveness of this approach has been evaluated for both K- and
PK-methods under various conditions. Specifically, the stiffness, reduced frequency, airspeed, and
structural or modal damping have been systematically varied to validate the methodology across a
range of scenarios.

3.1 Aeroelastic model
A cantilever wing aeroelastic model has been considered to validate the sensitivity methods. The
wing has a rectangular shape with a 1m chord and a midspan of 4.5m. A stick-beam structural model
has been developed (Figure 1). In order to validate the method in a general condition, a variable mesh
size has been employed. Both continuous (density) and point masses have been employed to model
the inertia. It makes more tricky the differentiation of the mass matrix since the components due to
density vary with shape, while point masses do not. DLM has been employed for the aerodynamic
model (Figure 2). The structural and aerodynamic degrees of freedom have been connected through
a linear spline. This aeroelastic model closely aligns with the standard models utilized during the

9



SEMI-ANALYTICAL SENSITIVITY METHODS FOR AEROELASTIC SHAPE OPTIMIZATION

design and optimization phases, which are the focus of this work. Generally, beam-like models are
used to simulate the overall stiffness characteristic of the wing, and point masses are used to simulate
the non-structural mass.

Figure 1 – Cantilever wing stick-beam structural model.

Figure 2 – Cantilever wing aerodynamic panel and spline.

3.2 Validation of the discrete analytical differentiation in modal coordinates
Before incorporating the derivatives of the aerodynamic matrices into the model, it is essential to as-
sess the discrete analytical differentiation in modal coordinates. For this purpose, the structure of the
cantilever wing model has been considered, with its length treated as a shape design variable. The
first eight eigensensitivities have been calculated using the well-established and validated Nelson’s
formula (Eq. 24), along with the proposed methodology in modal coordinates. By applying Nelson’s
equation to the matrices and eigenvectors expressed in the modal coordinates instead of the grid set
and taking advantage of the Eqs. 11 and 13, the following formula is obtained:

λ
′
j =
{

φM, j
}T (

[K′hh]−λ j[M′hh]
){

φM, j
}

=
{

φM, j
}T
([

Φ
′
R
]T

[K] [ΦR]+ [ΦR]
T [K′] [ΦR]+ [ΦR]

T [K]
[
Φ
′
R
]){

φM, j
}
,

(28)

where
{

φM, j
}

represents the j-th modal (real) eigenvector. The first eight natural frequencies of the
wing are presented in Table 1. Additionally, the derivative of the natural frequency with respect to the
wing length, evaluated using Nelson’s method in both the grid and modal coordinates, is provided.
The reference values are obtained using the NASTRAN Design Sensitivity and Optimization solution
(SOL 200) [4]. An excellent correspondence between the results obtained in the grid and modal sets
and the reference values has been obtained. It validates the novel discrete analytical differentiation
in the modal coordinates introduced in this paper. Furthermore, it confirms the consistency of the
derivative of the eigenvector matrix [Φ′R], which is calculated using Nelson’s algorithm.

10



SEMI-ANALYTICAL SENSITIVITY METHODS FOR AEROELASTIC SHAPE OPTIMIZATION

Table 1 – Natural frequencies and their derivative with respect to the wing length. Comparison be-
tween the differentiation in the grid and modal set with respect to NASTRAN SOL 200 reference
values.

Mode f Mode Natural frequency derivative, f ′ (Hz/mm)
ID (Hz) description Grid set Modal set SOL 200
1 5.636 First vertical bending -2.2914E-03 -2.2915E-03 -2.2915E-03
2 22.49 First fore-and-aft -9.1108E-03 -9.1116E-03 -9.1118E-03
3 34.74 Second vertical bending -1.4064E-02 -1.4064E-02 -1.4064E-02
4 67.91 First torsion -7.5457E-03 -7.5457E-03 -7.5457E-03
5 96.55 Third vertical bending -3.9039E-02 -3.9039E-02 -3.9039E-02
6 136.7 Second fore-and-aft -5.4073E-02 -5.4074E-02 -5.4074E-02
7 188.5 Fourth vertical bending -7.6213E-02 -7.6213E-02 -7.6213E-02
8 195.8 Second torsion -2.1759E-02 -2.1759E-02 -2.1759E-02

3.3 K-method solution results
The first application involves calculating the derivative of all flutter eigenvalues with respect to the
length of the beam. To also validate the differentiation of the modal damping matrix, a critical damping
coefficient of ζ = 0.05 is introduced. A reduced frequency of k = 1.0 is selected. Table 2 provides
the first eight flutter eigenvalues, along with their corresponding natural frequencies and damping
coefficients. The second and sixth mode shapes are fore-and-aft ones and are poorly affected by
aerodynamics. Consequently, the damping coefficient is essentially equal to the structural one (g ≈
2ζ ).

Table 2 – Flutter eigenvalues with corresponding natural frequencies and damping coefficients: nom-
inal stiffness, k = 1.0, structural damping ζ = 0.05.

Mode Flutter Natural Damping
ID eigenvalue, p frequency, f (Hz) coefficient, g
1 -9.3327e+2 + 1.7629e+4i 5.635 -1.061e-1
2 -3.5326e+3 + 7.0563e+4i 22.55 -1.004e-1
3 -5.7276e+3 + 1.0869e+5i 34.74 -1.060e-1
4 -1.6681e+4 + 2.0859e+5i 67.04 -1.610e-1
5 -1.5779e+4 + 3.0212e+5i 96.56 -1.047e-1
6 -2.1478e+4 + 4.2902e+5i 137.1 -1.004e-1
7 -3.0547e+4 + 5.8990e+5i 188.5 -1.038e-1
8 -4.5509e+4 + 6.0306e+5i 193.6 -1.518e-1

The eigenvalues have been differentiated with respect to the length of the wing, and the results are
compared to the FDM ones calculated at the optimal step size. Finite differences require performing
the complete flutter analysis multiple times for both backward and forward derivatives to determine the
optimal step size. Once the optimal step is found, the derivative of the reference eigenvalues is cal-
culated using the central difference scheme. In contrast, the SAAS method offers a more convenient
procedure. It involves a formula with elements that are either already known or can be calculated an-
alytically using simple operations. Only the aerodynamic terms are derived using FDM. The results
of the differentiation are summarized in Table 3. A good correspondence has been achieved for all
the considered modes, both in terms of the real and imaginary parts of the eigenvalues. However, it
should be noted that the 4th and 8th modes, which are torsional modes, exhibit relatively larger errors,
particularly in the real part, which represents damping. This can be attributed to the higher sensitivity
of these eigenvalues to aerodynamic terms, which are derived using FDM and therefore have lower
accuracy. The obtained eigensensitivities enable the calculation of derivatives for the natural frequen-
cies and damping coefficients, providing valuable guidelines for aeroelastic shape design. Moreover,
these accurate and efficient derivatives can be utilized in gradient-based optimization techniques.
Importantly, the procedure does not require access to the software source code and is independent
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Table 3 – Flutter eigenvalues derivative with respect to the wing length. Comparison between the
semi-analytical method and FDM results, k = 1.0, structural damping ζ = 0.05.

Mode FDM Semi-analytical ℜ(p′) error ℑ(p′) error
ID derivative (p′) derivative (p′) (%) (%)
1 0.37219 -7.1737i 0.37217 -7.1737i -0.00537 0.00000
2 1.43127 -28.5900i 1.43131 -28.5890i 0.00279 0.00350
3 2.27494 -44.0370i 2.27397 -44.0371i -0.04264 -0.00023
4 0.43050 -24.2580i 0.42292 -24.2294i -1.76074 0.11790
5 6.25120 -122.280i 6.24864 -122.281i -0.04095 -0.00082
6 8.49380 -169.665i 8.49347 -169.665i -0.00389 0.00000
7 12.1126 -238.810i 12.1134 -238.803i 0.00660 0.00293
8 1.22230 -69.9030i 1.21075 -69.8579i -0.94494 0.06452

of the properties of the structural elements, making it highly suitable for practical applications.
To comprehensively assess the semi-analytical method under various conditions, variations in the
reduced frequency, stiffness, type, and amount of structural damping have been conducted. The
results of the sensitivity analysis are presented in Table 4. For brevity, only one eigenvalue for each
type of mode shape (vertical bending, fore-and-aft, and torsional) has been considered. The cor-
respondence of the remaining modes is analogous within each mode shape category. Notably, the
error in the imaginary part of the eigenvalues remains consistently low across all scenarios. This
holds true even when the wing stiffness is significantly reduced, resulting in substantial variations in
natural frequencies and the occurrence of instabilities with changes in airspeed.
When no structural damping is employed, the real part of the fore-and-aft eigenvalues is essentially
zero, rendering the derivative undefined. However, when structural damping is incorporated, the
derivative of the real part of the eigenvalue depends solely on the structural matrices, which are
differentiated analytically. Consequently, the error in the real part is extremely low. The bending
mode (1) exhibits a high level of correspondence across the various scenarios for the real part of the
eigenvalue.
The SAAS approach has been successfully utilized to compute shape design derivatives for aeroelas-
tic problems using the K-method of solution. The method has demonstrated its effectiveness across
various scenarios, involving parameter variations such as stiffness, reduced frequency, and different
types and levels of damping. Notably, the error is low across the various scenarios and is further
reduced when the derivative is only due to analytically differentiated matrices (mode 6). It suggests
a further improvement in accuracy if the aerodynamic matrices are more efficiently derived.

3.4 PK-method solution results
In this chapter, the semi-analytical differentiation has been applied and validated for the PK-method
of solution. Initially, the method was applied to a case with nominal stiffness, along with the inclusion
of a structural damping coefficient of ζ = 0.05. Table 5 provides a summary of the first eight flutter
eigenvalues, including their corresponding flutter frequencies and damping coefficients. It is worth
noting that the damping of the fore-and-aft modes is nearly equal to the structural damping, being
almost unaffected by aerodynamic loads.
The semi-analytical derivatives were compared to finite differences calculated at the optimal step size
(Table 6). PK-method of solution requires an iterative eigenvalue calculation since the eigenvalue
depends on the reduced frequency. However, the sensitivity of the reduced frequency, k, to changes
in shape is small. Therefore, only a few iterations are required for the differentiated problem. As
the flutter eigenvalues corresponding to the same airspeed are associated with different reduced
frequencies, equations 17 and 20 utilize distinct aerodynamic matrix derivatives for each mode. Thus,
a different formula must be utilized for each mode, while the same formula can be used for all modes
in the K-method case.
A strong correspondence has been achieved for the imaginary part of the eigenvalue derivative. For
what concerns the real part, the correlation is good for bending modes (1, 3, 5, 7). Fore-and-aft
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Table 4 – Derivative of three representative flutter eigenvalues with respect to the wing length. Com-
parison between the semi-analytical method and FDM results, K-method.

Mode FDM Semi-analytical ℜ(p′) error ℑ(p′) error
ID derivative (p′) derivative (p′) (%) (%)
Nominal stiffness, k = 0.5, no structural damping
1 0.05889 -14.3691i 0.05891 -14.3692i 0.03396 -0.00070
6 0.00000 -339.754i 0.00000 -339.754i - 0.00000
8 -8.19420 -143.170i -8.19106 -142.361i -0.03832 0.56506
Nominal stiffness, k = 1.0, no structural damping
1 0.01379 -7.1840i 0.01377 -7.1840i -0.14503 0.00000
6 0.00000 -169.8770i 0.00000 -169.877i - 0.00000
8 -2.35010 -69.7700i -2.36004 -69.724i 0.42296 0.06593
Nominal stiffness, k = 5.0, no structural damping
1 0.000291 -1.4376i 0.000290 -1.4376i 0.34364 0.00000
6 0.000000 -33.9754i 0.000000 -33.9754i - 0.00000
8 -0.09852 -13.8480i -0.098650 -13.8495i -0.13195 -0.01083
Reduced stiffness (EI/30 and GJ/30), k = 1.0, no structural damping
1 0.00252 -1.3116 0.00251 -1.3116 i -0.39683 0.00000
6 0.00000 -31.0151 0.00000 -31.0150 i - -0.00032
8 -0.42908 -12.7390 -0.43088 -12.7300 i 0.41950 0.07222
Reduced stiffness (EI/100 and GJ/100), k = 1.0, no structural damping
1 0.001379 -0.7184i 0.001379 -0.7184i 0.00000 0.00000
6 0.000000 -16.9877i 0.000000 -16.9877i - 0.00000
8 -0.235010 -6.9770i -0.236000 -6.9724i 0.42126 0.06593
Nominal stiffness, k = 1.0, structural damping gs = 0.04
1 0.15744 -7.1851i 0.15742 -7.1852i -0.01270 -0.00139
6 3.39685 -169.911i 3.39687 -169.911i 0.00059 0.00000
8 -0.95550 -69.8300i -0.96631 -69.7849i 1.13134 0.06459
Nominal stiffness, k = 1.0, structural damping gs = 0.10
1 0.37256 -7.1923i 0.37254 -7.1923i -0.00537 0.00000
6 8.48320 -170.088i 8.48329 -170.088i 0.00106 0.00000
8 1.13100 -69.9740i 1.11887 -69.9290i -1.07250 0.06502
Nominal stiffness, k = 1.0, structural damping gs = 0.20
1 0.72872 -7.2181i 0.72871 -7.2181i -0.00137 0.00000
6 16.9042 -170.716i 16.9042 -170.716i 0.00000 0.00000
8 4.58090 -70.3480i 4.56661 -70.3041i -0.31195 0.06240
Nominal stiffness, k = 1.0, modal damping ζ = 0.02
1 0.157164 -7.18205i 0.157142 -7.18203i -0.01400 0.00028
6 3.397570 -169.845i 3.397586 -169.843i 0.00047 0.00118
8 -0.922800 -69.8480i -0.933590 -69.8000i 1.16927 0.06872
Nominal stiffness, k = 1.0, modal damping ζ = 0.05
1 0.37219 -7.1737i 0.37217 -7.1737i -0.00537 0.00000
6 8.49380 -169.665i 8.49347 -169.665i -0.00389 0.00000
8 1.22230 -69.9030i 1.21075 -69.8579i -0.94494 0.06452
Nominal stiffness, k = 1.0, modal damping ζ = 0.10
1 0.73050 -7.1455i 0.73043 -7.1454i -0.00958 0.00140
6 16.9878 -169.025i 16.9879 -169.026i 0.00059 -0.00059
8 4.81110 -69.8625i 4.79754 -69.8078i -0.28185 0.07830

modes (2 and 6) exhibit a very good correspondence, as they are almost independent of the aerody-
namic loads, which are differentiated using FDM. Torsional modes have a stronger dependence on
the aerodynamic loads, resulting in relatively larger errors.
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Table 5 – Flutter eigenvalues with corresponding natural frequencies and damping coefficients calcu-
lated with PK-method: nominal stiffness, V = 30m/s, modal damping ζ = 0.05.

Mode Flutter Natural Damping
ID eigenvalue, p frequency, f (Hz) coefficient, g
1 -3.7352e+0 + 3.5128e+1i 5.613 -1.114e-1
2 -1.4130e+1 + 1.4060e+2i 22.46 -1.001e-1
3 -2.1958e+1 + 2.1661e+2i 34.61 -1.016e-1
4 -4.3901e+1 + 4.2084e+2i 67.24 -1.068e-1
5 -6.0699e+1 + 6.0278e+2i 96.30 -1.004e-1
6 -8.5912e+1 + 8.5482e+2i 136.6 -1.001e-1
7 -1.1841e+2 + 1.1778e+3i 188.2 -1.001e-1
8 -1.2301e+2 + 1.2220e+3i 195.2 -1.002e-1

Table 6 – Flutter eigenvalues derivative with respect to the wing length, PK-method. Comparison
between the semi-analytical method and FDM results: nominal stiffness, V = 30m/s, modal damping
ζ = 0.05.

Mode FDM Semi-analytical ℜ(p′) error ℑ(p′) error
ID derivative (p′) derivative (p′) (%) (%)
1 0.000681 -0.014342i 0.000681 -0.014345i -0.01175 -0.02092
2 0.002863 -0.057178i 0.002863 -0.057150i -0.00349 0.04897
3 0.004374 -0.088169i 0.004375 -0.088150i 0.02515 0.02155
4 0.001849 -0.048263i 0.001865 -0.048300i 0.84352 -0.07666
5 0.012220 -0.24521i 0.012220 -0.24525i 0.00000 -0.01631
6 0.016987 -0.33933i 0.016985 -0.33935i -0.01177 -0.00589
7 0.023931 -0.47876i 0.023930 -0.47900i -0.00418 -0.05013
8 0.006767 -0.13801i 0.006770 -0.13800i 0.04433 0.00725

The semi-analytical method has been applied to a wide range of scenarios, including different air-
speeds, stiffnesses, and types and amounts of structural damping. The error relative to the imaginary
part of the eigenvalue derivative remains consistently low across these scenarios. The representa-
tive bending mode demonstrates good correspondence for the real part as well. While the derivative
of the fore-and-aft eigenvalues is undefined in undamped cases, its correspondence is very good in
damped cases, as it depends solely on analytically differentiated structural matrices. Similar to the
K-method, the torsional mode exhibits larger errors in the real part due to its increased dependence
on numerically differentiated aerodynamic matrices. However, the error decreases in damped cases,
as a portion of the damping derivative relies on analytically differentiated structural matrices.
The SAAS method has been successfully employed to compute shape design derivatives for aeroe-
lastic problems using the PK-method of solution. The sensitivity method has been assessed across
various scenarios, involving parameter variations such as stiffness, airspeed, and different types and
amounts of structural damping. Contrary to the K-method, the PK one is the most diffusely employed
in the flutter analysis due to its higher accuracy and usefulness of the output results, which are ex-
plicitly provided for each airspeed. The PK semi-analytical sensitivity method can be thus applied to
general aeroelastic shape optimization problems.

4. Conclusion
This work presented innovative semi-analytical methods for calculating shape design derivatives of
aeroelastic problems. Existing methods allow for the derivation of complex eigenvalues when the
problem is formulated in grid coordinates. A novel methodology has been developed to differenti-
ate flutter equations in the modal coordinates, which involves the derivative of the real eigenvector
matrix. The derivative of the eigenvectors has been calculated using a discrete analytical approach.
Furthermore, an element-agnostic approach has been developed to differentiate the mass, damping,
and stiffness matrices with respect to the shape. The semi-analytical sensitivity method has been as-
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Table 7 – Derivative of three representative flutter eigenvalues with respect to the wing length. Com-
parison between the semi-analytical method and FDM results, PK method.

Mode FDM Semi-analytical ℜ(p′) error ℑ(p′) error
ID derivative (p′) derivative (p′) (%) (%)
Nominal stiffness, V = 30m/s, no structural damping
1 -3.9324e-5 -0.014358i -3.9350e-5 -0.014358i 0.06612 0.00000
6 0.00000 -0.339750i 0.00000 -0.339750i - 0.00000
8 -6.8553e-5 -0.138180i -6.7195e-5 -0.138000i -1.98095 0.13026
Nominal stiffness, V = 100m/s, no structural damping
1 -1.4088e-4 -0.014390i -1.4083e-4 -0.014363i -0.03904 0.18763
6 0.00000 -0.33975i 0.00000 -0.33975i - 0.00000
8 -1.4512e-3 -0.13917i -1.4273e-3 -0.139000i -1.64691 0.12215
Reduced stiffness (EI/30 and GJ/30), V = 30m/s, no structural damping
1 -4.8492e-5 -0.002637i -4.7950e-5 -0.002635i -1.11771 0.07586
6 0.00000 -0.062030i 0.00000 -0.062050i - -0.03224
8 -1.6278e-3 -0.028749i -1.6250e-3 -0.028800i -0.17201 -0.17740
Reduced stiffness (EI/100 and GJ/100), V = 30m/s, no structural damping
1 -5.2335e-5 -1.5108e-3i -5.1725e-5 -1.5123e-3i -1.16557 -0.09929
6 0.00000 -3.3975e-2i 0.00000 -3.3975e-2i - 0.00000
8 -4.4948e-4 -1.3865e-2i -4.4520e-4 -1.3925e-2i -0.95221 -0.43274
Nominal stiffness, V = 30m/s, structural damping gs = 0.04
1 0.000249 -0.014356i 0.000249 -0.014355i 0.00804 0.00697
6 0.006795 -0.33969i 0.006795 -0.33970i 0.00000 -0.00294
8 0.002666 -0.13815i 0.002665 -0.13825i -0.02626 -0.07239
Nominal stiffness, V = 30m/s, structural damping gs = 0.10
1 0.000681 -0.014342i 0.000681 -0.014345i -0.01175 -0.02092
6 0.016985 -0.33935i 0.016987 -0.339330i 0.01153 0.00599
8 0.006770 -0.13800i 0.006767 -0.138012i -0.04434 -0.00896
Nominal stiffness, V = 30m/s, structural damping gs = 0.20
1 0.001401 -0.014289i 0.001401 -0.014290i 0.00000 -0.00700
6 0.033976 -0.33805i 0.033980 -0.33805i 0.01177 0.00000
8 0.013602 -0.13751i 0.013600 -0.13750i -0.01470 0.00727
Nominal stiffness, V = 30m/s, modal damping ζ = 0.02
1 0.000249 -0.014356i 0.000249 -0.014355i 0.00804 0.00697
6 0.006795 -0.33969i 0.006795 -0.33970i 0.00000 -0.00294
8 0.002666 -0.13815i 0.002665 -0.13825i -0.02626 -0.07239
Nominal stiffness, V = 30m/s, modal damping ζ = 0.05
1 0.000681 -0.014342i 0.000681 -0.014345i -0.01175 -0.02092
6 0.016987 -0.33933i 0.016985 -0.33935i -0.01177 -0.00589
8 0.006767 -0.13801i 0.006770 -0.13800i 0.04433 0.00725
Nominal stiffness, V = 30m/s, modal damping ζ = 0.10
1 0.001401 -0.014289i 0.001401 -0.01429i 0.00000 -0.00700
6 0.033976 -0.33805i 0.033980 -0.33805i 0.01177 0.00000
8 0.013602 -0.13751i 0.013600 -0.13750i -0.01470 0.00727

sessed in a wide range of scenarios, including various reduced frequencies, airspeeds, stiffnesses,
types, and amounts of structural damping. The semi-analytical method has been developed for both
the K-method and PK-method of flutter solution, making it practical for aeroelastic shape optimiza-
tion of real airplanes. The accuracy of the method can be further improved by using more precise
methods to differentiate the aerodynamic matrices, which is deferred to future works. The developed
tool is a valid method to optimize aircraft shape leading the way to a more accurate and efficient
aeroelastic tailored design.
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