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Abstract

Shape sensing is a branch of Structural Health Monitoring that allows real-time reconstruction of a structure
displacement field from discrete strain measurements. The inverse Finite Element Method (iFEM) is a highly
effective approach for this purpose. However, iFEM accuracy heavily relies on the number of installed sensors,
which presents practical implementation and cost challenges. To mitigate these issues and achieve highly
accurate results with significantly fewer sensors, iFEM is combined with Smoothing Element Analysis (SEA), a
technique that allows the pre-extrapolation of the strain field across the entire structure from a limited number
of measurement points. Effective SEA extrapolation across multiple load cases requires strategic sensor
placement. This study proposes an optimization strategy using a multi-objective genetic algorithm to determine
an optimal sensor layout for the combined use of SEA and iFEM. This approach aims to enhance SHM
effectiveness for aeronautical structures such as stiffened panels under various operational scenarios. Results
demonstrate significant improvements in monitoring capabilities with a reduced number of sensors, maintaining
comparable accuracy to conventional iFEM.

Keywords: structural health monitoring; shape sensing; optimal sensor placement; inverse finite element
method.

1. Introduction

The in-service Structural Health Monitoring (SHM) of aircraft structures plays a key role in estimating
their performance and integrity. By strategically deploying sensors, a Structural Health Monitoring
system collects crucial data about the structure and its environment, enabling a comprehensive
evaluation of the overall state of the system. SHM differs fundamentally from Non-Destructive Testing
(NDT) by allowing real-time monitoring without human intervention [1].

Within the context of SHM, increasing research efforts have been put into the development of shape
sensing techniques, which enable the real-time evaluation of the displacement field from discrete
strain measurements. These methods allow continuous tracking of both static and dynamic
responses, which can also be employed to evaluate stresses across the structure. Among the various
shape sensing techniques, the inverse Finite Element Method (iFEM) [2] has emerged as a prominent
approach. iFEM employs a weighted least-squares variational principle to reconstruct the
displacement field by discretizing the structural domain into inverse finite elements and minimizing
the error between analytical and experimental strain measures. This method is particularly
advantageous for monitoring structures under stochastic loading conditions, as it does not require
knowledge of the material properties or applied loads [3]. In recent years, iFEM has been applied in
both numerical and experimental shape-sensing analyses for various complex case studies, including
wing boxes [4], stiffened panels [5] and spaceborne antennas [6]. The potential of iIFEM extends
beyond linear problems as it also includes scenarios involving large deformations. For example, such
an approach has been applied to monitor the deflection of thin laminated plates in post-buckling
conditions [7]. The inverse Finite Element Method has also been applied successfully in the context
of damage diagnosis, proving to be a valuable tool for identifying cracks [8], estimate their size [9]
and growth [10].

Despite its benefits, the accuracy of iIFEM is heavily dependent on the number of sensors, posing a

challenge in terms of cost and practicality. To address this limitation, strain interpolation and

extrapolation techniques, such as Smoothing Element Analysis (SEA) [11], have been introduced.

SEA relies on a variational principle and discretizes the geometry into a triangular mesh to produce a

continuous description of the strain field from a limited number of sensors [12]. This approach allows
1
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the use of dense meshes in iIFEM, ensuring high accuracy by providing virtual measurement
information for each element. As an example, Oboe et al. [13] employed SEA in conjunction with iFEM
to the shape sensing problem of a plate subjected to a compressive load. However, optimizing sensor
placement becomes crucial to enhance the effectiveness of SEA, particularly under various loading
conditions [14].

This study proposes an optimization strategy using the Non-dominated Sorting Genetic Algorithm |l
(NSGA-II) [15] to find an optimal sensor layout capable of accurately reconstructing deformations
under multiple loading conditions. In this process, Smoothing Element Analysis is employed to pre-
extrapolate strain data, which serves as input for the inverse Finite Element Method. Each sensor
layout is evaluated based on the error between the iFEM reconstructed displacement field and the
reference solution. By integrating SEA with optimal sensor placement within the iFEM framework, the
method aims to enhance Structural Health Monitoring system capabilities for aeronautical structures,
such as hat-stiffened panels, under various operational scenarios. Results from this combined
approach are compared those of conventional iIFEM to illustrate its effectiveness, indicating a
significant improvement in monitoring capabilities by using a reduced number of sensors while
maintaining a similar accuracy.

2. Theoretical Background
2.1 Inverse Finite Element Method (iFEM)

The inverse Finite Element Method (iFEM) reconstructs the displacement field of the system by
discretizing the structural domain with a set of inverse finite elements and minimizing an error
functional. Within each element, such functional ®¢is defined as the weighted least-squares
difference between the analytic strain measures and the corresponding experimental ones obtained
from in-situ strain sensors placed on the structure. For a shell element based on the First Order Shear
Theory ®¢ is expressed as [16]

D° = wy,l(e; — eDII> + wy (21?11 (k; — KDII? + will (g — gDII? (1)

In Equation 1 e, k and g are the membrane, bending, and transverse shear strains respectively, the
superscript ¢ is used to denote the values measured from a strain sensor and w,,,, w, and wg are
appropriate weighting constants. In general, these weights are set to unity but, if an element lacks
experimental strain data, they are assigned a small value, e.g., 10~* . Given a structure equipped with
a set of surface mounted strain sensors as shown in Figure 1, the experimental membrane and
curvature strains at the i —th measurement (i = 1,...,n) point can be derived as follows (the
superscripts + and — refer to the quantities corresponding to the top and bottom surface, respectively)
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Figure 1: Discrete surface strains at i-th measurement point

The kinematic variables inside each element (3 translations and 2 rotations) can be interpolated by
2
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means of a set of shape functions

[u vw b, Hy]T = N°u® 3)

In Equation (3), N¢ denotes the matrix of shape functions, and u® is a vector which collects the nodal
degrees of freedom of the element. Next, the strain components can be expressed as the product
between the matrices B,,, B;, and B, containing the derivatives of the shape functions, and the
element nodal displacements u®.

e(u®) =B,u® k@) =B,u® gu°) = Bu° (4)

By inserting Equation (4) into the functional of Equation (1) and minimizing it with respect to u¢ one
obtains a linear system

e
a¢m)=0 L Keut — F° (5)
Jué
With
Ke = f (WmBmTBm + (2h)2B" BP + WSBSTBS) dA (6)
4e

1 n
Fe = Ef Z (memTef + (2h)2BY" k¢ + WSBSTgf) dA (7)

Ae'i=1

After a standard assembly process of a finite element method, a linear system of the equations is
built, with the nodal displacements U of the whole structure as unknowns, as displayed in Equation
(8).

KU=F (8)

where K is a matrix depending on the shape functions and strain-sensor locations, whereas F is a
vector which depends on the measured data [17]. Since the formulation relies solely on strain-
displacement relations, it enables the reconstruction of both static and dynamic responses without
requiring any a priori knowledge of the material properties of the structure. Moreover, the algorithm
speed makes it suitable for real-time applications.

2.2 Smoothing Element Analysis (SEA)

The accuracy of the inverse Finite Element Method is significantly influenced by the number of
sensors used. Installing a multitude of sensors to achieve low error can be excessively costly and
impractical in the aeronautical industry. Therefore, it can be beneficial to employ pre-extrapolation
techniques to obtain a continuous description of the input strain field from a reduced number of
sensors. One such technique is Smoothing Element Analysis (SEA), which was initially proposed for
finite element stress recovery and a posteriori error estimation. This robust computational technique
effectively extrapolates a scalar quantity, such as a strain component, measured at discrete locations
within the structure. It generates a smoothed C1-continuous field with CO-continuous derivatives. The
numerical formulation of SEA relies on a variational principle employing a penalized-discrete-least-
squares (PDLS) functional. The algorithm adopts a finite element approach, in which the geometry is
discretized into a triangular mesh and within each element the functional is defined as

vE= %an( e(x;) — gih)z + aJ;((g,x - Kx)z + (S,y - Ky)z) as
5 [ (((e)" + ()" + (kg + 1y)° ) S

where n is the total number of measurements within the element; el-h is a general measured strain and
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£(x;) denotes the corresponding strain after the smoothing process; (), and (), represent the
partial derivative operator with respect to x and y; k, and k,, are the analytical counterpart of the
partial derivatives of the experimental strain along directions x and y respectively; « and S are
dimensionless constants. A triangular element of the SEA mesh with its corresponding nodal degrees
of freedom is displayed in Figure 2. The scalar field within an element is interpolated using suitable
shape functions, and the contribution from all the elements are assembled to compute the total error
functional W. Minimizing ¥ with respect to the nodal dofs and solving the resultant linear algebraic
equations yields the nodal components of the smoothed scalar field, i.e., a strain field component,
and its derivatives in each node.

(&3, 123, Kys)

3

O 2

(&2, 152, Kyz)

(&1, Kx1, Koy1)

Figure 2: Triangolar smoothing element with its nodal dofs.

2.3 Multi-objective Genetic Algorithm

A Genetic Algorithm (GA) is a heuristic optimization method inspired by the principles of natural
selection. A GA operates on a population where each individual represents a potential solution to the
optimization problem. This population, usually initialized randomly, evolves over time, with fitter
solutions becoming more prevalent. GA uses two main operators to generate new solutions:
crossover and mutation [18]. In the crossover process, two parent individuals are combined to produce
an offspring, favoring fitter individuals through a selection operator. This operation integrates superior
genes into the population, driving convergence towards an optimal solution. Mutation introduces
random changes, maintaining genetic diversity and helping to escape local optima.

For multi-objective optimization problems, achieving a solution that is optimal for every objective is
often impossible. Instead, a Multi-objective Genetic Algorithm (MOGA) seeks a set of Pareto-optimal
solutions. NSGA-Il is a specific version of MOGA that operates similarly to a single-objective GA but
includes specific selection operations [19]:

e Fast non-dominated sorting approach: The population is sorted into different non-dominated
fronts. Individuals in the first non-dominated front are identified, and their rank is set to 1. The
remaining individuals, excluding those with rank 1, continue to be sorted using the same
procedure until all fronts are identified. An example of population in the solution space
organized in non-dominated fronts is displayed in Figure 3.

o Crowding Distance Assignment: Individuals with the same rank are arranged based on
crowding distance, which represents the average distance in the objective space between a
solution and its neighboring solutions on the same front.

o Selection operator: Binary tournament selection is employed to choose parents. Two
individuals are randomly selected from the population, and if their ranks differ, the one with
the smaller rank is chosen. If their ranks are the same, the individual with a larger crowding
distance is selected. This method ensures a more even distribution of solutions along the
Pareto front, preventing overcrowding in specific regions.
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Figure 3: Example of solution in the objective space (two-objectives Z; and Z,); points marked with the same color belong to
the same non-dominated front.

2.4 Proposed Methodology

In this study, we utilize Smoothing Element Analysis to pre-extrapolate the strain field, which serves
as input for the inverse Finite Element Method. This smoothing process generates a continuous
description of the strain field, enabling the application of iFEM on a fine mesh. To ensure accurate
reconstruction, we optimize sensor placement using a genetic algorithm. Given that structures usually
experience various loading conditions, a multi-objective optimization based on multiple operational
scenarios is necessary. Therefore, we employ the Non-dominated Sorting Genetic Algorithm (NSGA-
I for this purpose.

MOGA Outline Fitness Evaluation for Objective #i

FE Model/ —} gl:r::‘;?‘;: H Ge;:;::“lg:’ual } / Number of Sensors /’ 7
/ Sensor Pattern /
/ /

Strain Readings for
Objective #i

SEA on Each
Domain

{

Fitness and
Sorting

Selection

Mutation

Fitness and
Sorting
i‘SeIecl Optimal Pattem;

Figure 4: Flowchart of the optimization algorithm (left) and of the process to evaluate the fitness of the i-th objective (right).
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The optimization procedure is outlined in the following paragraph and in the flowchart of Figure 4. A
Finite Element (FE) model of the structure generates discrete strain data (simulating real-world sensor
readings) and provides a reference solution for evaluating the accuracy of results obtained from the
shape sensing technique. Potential sensor locations for the optimization process are chosen from the
centroids of 4-node quadrilateral shell elements of the same FE mesh. Once the number of sensors
to be installed is determined, each individual in the population is represented as an array of Cartesian
coordinates corresponding to the sensor layout. The number of individuals is denoted as Np,,. For
each individual in the population, SEA pre-extrapolates each component of the membrane strains and
bending curvatures. These are used as input for the inverse Finite Element Method to reconstruct the
displacement field. Since the case studies involve stiffened panels, and strain fields at stiffener-panel
junctions are generally discontinuous, SEA is applied in separate, independent domains to avoid
unphysical smoothing across these junctions [20]. In Figure 5, an example of a hat-stiffened panel is
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divided into six independent smoothing domains each depicted in a different color. Within each
domain, strain resultants are defined relative to a convenient coordinate system, and these strain
components are smoothed independently. This process produces a continuous description of the
strain field, enabling the application of iFEM on a fine mesh for the whole structure.

The accuracy of the reconstructed solution for each individual is evaluated using the root mean square
error (rmse) between the iFEM reconstructed displacement magnitude and the reference solution:

fr = rmse(w,FEM u,7ef) (r=1, s Nobj) (10)

Through this procedure the fitness of the whole population can be evaluated.

Figure 5: An example of hat-stiffened panel with each smoothing domain depicted in a different color.

For each iteration of the genetic algorithm, crossover and mutation are applied until convergence to
a set of Pareto-optimal solutions is achieved. These processes can occur with a probability denoted
as Peross aNd Py respectively. This study uses a uniform crossover, where each gene of an offspring
is randomly selected from one of the parents with equal probability. Figure 6 (a) illustrates an example
of such a crossover on a square plate. The blue and red dot patterns on the left represent Parent 1
and Parent 2, respectively. Following the crossover, the two resulting children inherit some sensor
positions from Parent 1 (blue dots) and the remaining positions from Parent 2 (red dots). Some
offsprings may undergo a mutation process. In this study, mutation involves changing the positions of
nmue fandom sensors in the individual pattern to other random positions among the set of centroids
in the FE model. An example of such process is shown Figure 6 (b)): the two circled sensors of the
individual on the left are randomly chosen to undergo the mutation process; on the right, the individual
after mutation with the purple dots indicating the new positions of the two mutated sensors.

(@) (b)

Parent 1 Offspring 1

.
. . .
oo . ®

Offspring Mutated Offspring

N . . s ..
. 9, 4
. o . Y .
. .
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. : . . : 5 ™

.
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. .

Figure 6: Uniform crossover (a) and mutation process (b).

At the end of the mutation process, elitism is applied to form the new population for reproduction,
keeping only the best N, individuals among parents, offsprings, and mutated individuals. A ranking
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is needed to choose the best N, solutions, and thus non-dominated sorting and crowding distance

are employed. The use of elitism ensures that there is no loss of good genes between generations,
leading to a monotonic convergence to the optimal solution.

3. Results
3.1 Case Study

The case study involves a rectangular plate reinforced with three equally spaced hat-stiffeners. Such
a structure is assumed to be made of an isotropic material with properties similar to an aluminum alloy
(E =70GPa, v=0.3, p=2700kg/m3). The geometric dimensions of the system are displayed in
Figure 7 (a)-(c), and Table 1. The panel is constrained along the transverse sides (highlighted in red
in Figure 7 (a)) to be simply supported, which restricts the three translational degrees of freedom u,
v, and w. It should be noted that the constraints are applied only to the plate and not to the stiffeners.
The longitudinal sides are left free to move.

This system is subjected to two different static loading conditions. The first condition is an upward

uniform pressure load p; = 1000 Pa applied to the plate to which the three hat-stiffeners are bonded.

The second condition is a pressure load given by p, = k sin (:—X) cos (:—Y) with k = 1000 Pa applied
1 2

to the plate to which the three hat-stiffeners are bonded. These load conditions are chosen merely as
examples and are not intended to simulate the actual loading conditions of the structure. Their
purpose is solely to demonstrate the effectiveness of the entire process in the presence of relatively
complex displacement fields.

Static analyses are performed using the commercial software MSC Nastran to obtain the reference
displacement field for each loading scenario. The mesh used in the FE analysis is shown in Figure 7
(a) and consists of 2772 four-node shell elements. The centroids of these elements are extracted to
represent potential sensor locations for the optimization process. For each sensor pattern, the strains
at these points are extracted to be used in the SEA smoothing process. The mesh used by SEA is
shown in Figure 1(b): the entire structure is divided into 20 subdomains, each with its own triangular
mesh, where the pre-extrapolation process is independently conducted. Once the strain field is pre-
extrapolated, the same FE reference mesh (the one displayed in Figure 7 (a)) is used by the inverse
Finite Element Method to perform the shape sensing.

(@) (D)

>

tS
h
t, + t,
! ty

W,

Figure 7: Four-nodes quadrilateral shell elements mesh (a), triangular smoothing elements mesh (b), section of a hat-stiffener

(c).
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800 mm
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100 mm

50 mm

100 mm

25 mm

50 mm

2mm

0.5 mm

Table 1: Geometric dimensions of the hat-stiffened panel

3.2 Optimization Results

The number of sensors to be placed on the structure, denoted as N, is determined beforehand. It is
chosen to ensure that the measurement points are sufficient to achieve a low error level in the
reconstruction. The number of measurement points is kept to a reasonable value, ensuring the benefit
of pre-extrapolation. Therefore, the optimization goal is to find a set of Pareto optimal sensor positions.
After testing multiple values of Ng to monitor the displacement field of the case studies, we selected
25 measurement points.

The multi-objective genetic algorithm was run with a population of N, = 100 individuals for 100
iterations, achieving convergence by the end. The crossover and mutation probabilities were set at
Peross = 0.9 and p,,,.: = 0.1 respectively. The number of mutated genes was selected as n,,,;; = 2,
and the number of elites was equal to N,,,, thus selecting the top 100 individuals among parents,
offspring, and mutants. The optimization process was repeated multiple times to account for the
inherent randomness of the genetic algorithm. From all the runs, the final population exhibiting the
best global fitness was selected to extract a single solution. The final population from which the sensor
pattern is selected is shown in Figure 8. The graph illustrates the evolution of fitness values for the
two objectives, comparing the initial population (blue dots) with the final population (red dots),
demonstrating the effectiveness of the optimization process. It should be noted that the final
population includes multiple elements located on the Pareto front that repeat, making it appear as
though it consists of fewer individuals.

%10
55 x10

® Initial Population
5 * Final Population

Fitness Objective 2 (m)

Selected Pattern

05 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

s _ %107
Fitness Objective 1 (m)

Figure 8: Evolution of the fitness between the initial population (blue dots) and the final one (red dots).

To choose an optimal individual from the final population, we selected a solution from the first Pareto
front with well-balanced results for each objective (displayed in Figure 8). The chosen sensor
arrangement is illustrated in Figure 9, with each measurement point displayed as a yellow dot.
Theoretically each measurement point is associated with two strain rosettes—one for the top surface
and another for the bottom one. However, in this case study, the inclined faces and the top face of
the hat stiffeners deform mainly in membrane mode, while the rectangular plate and the flanges
deform mainly in bending mode. Consequently, a single strain rosette can be used for each
measurement point. For the membrane rosettes, it is indeed assumed that ¢ = ¢ (i = xx,yy, xy)
and for the bending rosettes, it is assumed that ¢ = —¢; (i = xx,yy, xy).

Using the optimal sensor pattern shown in Figure 9, the different components of the displacement
field can be reconstructed and compared with the reference condition obtained from FE analysis.
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View from above View from below

Figure 9: Optimal sensor pattern for the hat-stiffened plate.

Figure 10 shows the Z direction displacement component, w, reconstructed with iFEM combined with
SEA and MOGA, compared to the reference. This displacement component is shown because it is
the predominant one, and only this is reported for brevity, but similar results are reported for u and v.
As it can be seen, for both load conditions, the shape of the field is well captured, and the zones of
maximum and minimum displacement are correctly identified. A slight asymmetry can be noted, which
is due to the non-symmetric distribution of the chosen sensor pattern. This can be addressed during
the design phase of the optimization process by imposing suitable constraints on the generation of
individuals in the population. Additionally, observing the colorbars in Figure 10 , the maximum
displacement of the structure can be retrieved. For the case of uniform pressure load (Objective 1),
the maximum vertical displacement produced by the reference FEM is about 0.2637 mm, while that
estimated by iIFEM is 0.2547 mm, with an error of approximately 3.5%. For the second loading
condition (Objective 2), the maximum/minimum displacement is +0.13854 mm from the reference
FEM, while the proposed method estimates a maximum of 0.13919mmand a minimum of
—0.13471 mm, with errors of 0.46% and 2.8%, respectively. Overall, the excellent shape sensing
capabilities derived from the combination of iIFEM with SEA and an appropriate choice of sensor
pattern can be observed.

Objective 1

4 %104
25473 2.6367
- 1.7746 1.8668
1.0020

1.0969

0.2293 0.3270

-0.5434 -0.4428

Objective 2

0.7072 0.6927

0.0224

-0.0000

-0.6623 -0.6927

-1.3471 -1.3854

NSGA I + SEA +iFEM Reference

Figure 10: Comparison between reconstructed w displacement (in meters) for the proposed methodology and the reference
FE solution for the two loading conditions.
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Although the results obtained are valid for static loading conditions, the method can be extended to
track dynamic responses. It is indeed possible to perform the optimization in such a way that the
combination of SEA and iFEM can accurately reconstruct a set of the structure mode shapes. Since
the dynamic response of a system can be represented as a weighted composition of the structure
modes, the ability to accurately reconstruct these modes should also enable the adequate
reconstruction of a dynamic response primarily influenced by the target modes.

3.3 Comparison with Conventional iFEM

To demonstrate the advantages of the proposed methodology over conventional iFEM (which does
not use SEA and/or an optimized sensor pattern), a comparison of reconstruction capabilities between
the two approaches is performed. Specifically, a comparison on how the maximum value of the
displacement field magnitude is estimated relative to the reference solution, denoted as

UNEEM /|1u||7¢f | is drawn for both loading conditions. For conventional iFEM, this parameter is
observed to vary as the mesh size decreases and therefore the number of elements, n,, increases.
In this process, it is assumed that each mesh element is equipped with a sensor, so n, is equal to the
number of installed sensors.

Figure 11 shows the trend of the ratio ||U||imF§§C"’/||U||:,f£x as the number of sensors increases, starting
from a minimum of 60 up to a maximum of 2772 for each of the two objectives, represented by the
blue curve. The errors can be quantified by observing how the curve deviates from the unit value
(which would indicate a perfect estimation of the maximum displacement value). As can be seen, for
both objectives, convergence is achieved with around 1000 elements, with errors of approximately
3.5% for the first load condition and close to 3.8% for the second. The dashed red line represents the
solution obtained with the proposed methodology, using 25 sensors. Notably, comparable errors are
achieved with the proposed method, significantly reducing the number of installed sensors. This
demonstrates the effectiveness of the proposed approach.

Objective 1
14 .
1= 4

09- d
; 08~ ]
=} J
=~ 07 —Conventional iFEM
< NSGA Il + SEA +iFEM
B (ENSGA T+ SEA + IFEM
: 0.6

05 d

04+ |

03 - L 1 I

500 1000 1500 2000 2500
n,
Objective 2
1.4 i .
il o]

09
Fios- d
=) e
o7- — Conventional iFEM i
2y ~-=NSGA Il + SEA +iFEM
<3
S 06- |

0.5

0.3 I I L I
500 1000 1500 2000 2500

n,

Figure 11: ||U||iEEM /)\U ||;f§x as the number of inverse elements increases for the conventional iFEM (blue curves)
compared with the values from the proposed methodology (red dashed lines) for the two objectives.
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4. Conclusions

This study introduces an innovative approach to the shape sensing problem of aeronautical structures
by integrating Smoothing Element Analysis and Multi-objective Genetic Algorithms with the inverse
Finite Element Method. The methodology was validated through numerical simulations on a hat-
stiffened panel subjected to two different static pressure loads. The results indicate that the optimized
sensor configuration, integrated with SEA, provides reconstruction accuracy comparable to
conventional iFEM approaches but with far fewer sensors. This reduction in sensor count not only
addresses practical and cost challenges but also maintains high monitoring fidelity, making it a viable
solution for real-time Structural Health Monitoring (SHM) of complex structures. Although the method
has been employed for static loading conditions, it can also be extended to dynamic loading scenarios.
By optimizing the sensor placement to accurately reconstruct a set of natural modes of the structure,
the combined SEA and iFEM approach can potentially ensure accurate dynamic response
reconstruction.
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