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Abstract

A tailsitter unmanned aerial vehicle (UAV) enables efficient cruise flight along with vertical take-off and landing
(VTOL) capabilities without extra mechanisms for a transition maneuver. Flight envelope of the tailsitter includes
a post-stall range, which makes its aerodynamic model highly nonlinear and difficult to identify. Moreover,
control inputs from elevons and propellers are inherently coupled with the aerodynamic model. Thus, it is
essential to obtain an accurate aerodynamic model to achieve precise control of the system. As a data-driven
approach, a sparse identification of nonlinear dynamics (SINDy) is applied to identify the aerodynamic model
of the tailsitter UAV. SINDy can learn nonlinear dynamics from noisy measurement data and balance accuracy
with model complexity to avoid overfitting by sparsifying the space of composing equations. By utilizing the
minimum knowledge of the model, the aerodynamic model is constructed from measurement data and the
overall system is fully derived. As a result, the aerodynamic forces and moments are expressed as nonlinear
functions of system states. We present results of numerical simulation and application of the derived model
into feedback linearization controller.
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1. Introduction

A tailsitter is one of unmanned aerial vehicles (UAV) configurations with vertical take-off and landing
(VTOL) capability. The tailsitter takes off and lands vertically on its tail and tilts the entire airframe
horizontally to achieve cruise flight [1]. Due to its VTOL characteristics, it has three distinct flight
phases which are hover, transition, and cruise flight as shown in Fig. 1] In hover phase, the vehicle
hovers vertically by the thrust generated by propellers which is same with rotary-wing aircrafts. The
transition flight is an intermediate phase between hover and cruise phase [2]. Pitch is tilted along with
a wide variation in horizontal velocity. Forward transition refers to a transition from hover to cruise
flight and the vehicle performs pitch down for about 90°. Backward transition refers to the vice versa.
The vehicle pitches up for about 90° and changes from cruise to hover flight. During the cruise phase,
it flies in near-horizontal attitude with efficient lift production from the main wing like the conventional
fixed-wing UAVs.

The tailsitter has distinct advantages over multicopters and fixed-wing aircrafts due to its unique
flight mechanism. Compared to multicopters, the tailsitter has longer endurance time and operational
range because its lift is generated from the main wing during cruise flight. Due to its efficient for-
ward flight, the operational range and versatility can be extended. Compared to fixed-wing aircrafts,
the operational environment can be broadened to a narrow and confined area, allowing full opera-
tional autonomy [3]. One distinct feature of the tailsitter from other VTOLs is the absence of extra
mechanism for changing the direction of propulsion system. Unlike tilt-rotors or tilt-wing VTOLs that
have mechanical devices for tilting rotors or wings, the tailsitter is operable without any additional
tilting devices. It typically utilizes a set of propellers and control surfaces that can cover the entire
flight phases. It gives mechanical simplicity along with light-weight and decreased susceptibility to
hardware failures [4].
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Figure 1 — Flight modes of a tailsitter UAV.

However, the advantage in simple mechanism acts as difficulties in the perspective of control. Due to
its structural configuration, the control forces and moments are coupled with aerodynamic effects of
the main wing. Specifically, the pitching moment during the transition flight is affected by aerodynamic
moments. In addition, the flight envelope includes a post-stall area with a wide range of angle of attack
[1]. It induces nonlinear and complex aerodynamic model with unknown lift and drag coefficients.
The unknown aerodynamic forces and moments act as uncertainties in the system model, which
degrades the control performance. For a tailsitter with dual-rotor configuration, control inputs can be
expressed as a nonlinear function of vehicle velocity, control surface deflection angle, and thrust. In
order to control such system, the nonlinear relations should be revealed through accurate modeling.
Therefore, the importance of identifying precise aerodynamic model is magnified.

System identification is the process of building mathematical models for dynamic systems using im-
perfect measurements of the systems. Several approaches have been introduced for the system iden-
tification of aerodynamic model of UAVs. In [5] and [6], dependent Gaussian process is introduced
to estimate the aerodynamic coefficients of fixed-wing aircrafts. The proposed algorithms learned the
force and moment coefficients from real flight data. However, they do not consider the aerodynamic
model in post-stall region. Extended Kalman filter is used to estimate the aerodynamic parameters
of a flying wing tailsitter in [4] and a sequentially thresholded least squares algorithm is suggested to
find an aerodynamic model of a fixed-wing UAV in [7]. In [8], Extended and unscented Kalman filter
is used to estimate aerodynamic parameter of fixed-wing aircrafts from real flight data. In [9], Dy-
namic mode decomposition with control is applied to attain aerodynamic parameters of a sub-scale
jet transport aircraft. However, limitations still exist in the aerodynamic model of the tailsitter because
it is more complex on post-stall region and learning multiple outputs while capturing dependencies is
required.

There have been work done on identifying the aerodynamic model of tailsitter vehicles. In [10], non-
linearities of a tailsitter during transition are estimated with Neural Network. The aerodynamic forces
are well estimated, which improved control performance, but a significant amount of data was needed
for network construction. Additionally, several tailsitter researches conducted wind tunnel tests in [3]
and [11]. However, the previous approaches have drawbacks to some extent. Wind tunnel testing is
labor intensive and is only applicable to a narrow flight envelope. And model-based system identifi-
cation approaches require prior knowledge of the model structure. And the Neural networks require
a considerable amount of training data and time to learn the model. Also, it has longer execution
time compared to SINDy [12]. For the tailsitter platform, these drawbacks are critical in that collecting
abundant flight data is practically difficult due to the limitations on maneuvering. Moreover, the data
should be obtained without knowing exact aerodynamic model, which makes stable flight difficult.
The frequency of a feedback control loop should be kept fast enough to keep the vehicle stable and
it does not give sufficient computing time for any algorithms.
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To solve those challenges, a data-driven based approach is suggested in this paper. Sparse |dentifi-
cation of Nonlinear Dynamics (SINDy) algorithm provides a data-driven model discovery framework,
resulting in interpretable models that avoid overfitting, relying on sparsity-promoting optimization to
identify parsimonious models from limited data. In [13], [14], and [15], SINDy is introduced to discover
an unknown model from the data. In [12], a sparse identification of nonlinear dynamics with control
(SINDYc) considering both system states and control inputs is introduced with backstepping control
method. The SINDYc is compared with Neural network and it showed higher prediction accuracy and
stronger generalization ability. In [16] and [17], a data-driven SINDy method is extended to obtain
the dynamic model of serial manipulators and 6DOF spatial manipulators. The identified model accu-
rately replicated the performance of the robot in the simulation and experiments when different levels
of noise are added to the data. In [18], SINDy is implemented in the quadrotor system, including
the gyroscopic and aerodynamic effect. Also, SINDy is combined with sliding mode controller to get
accurate and low complexity model of end-effector positioning of a soft robot in [19].

The precise dynamic model of the tailsitter is hard to attain, motivating the application of SINDy al-
gorithm to learn an accurate and sparse model from flight test data. Therefore, in this paper, the
identification of the aerodynamic model of a tailsitter will be conducted using SINDy.

This paper is structured as follows: In Section 2, the dynamic model of a tailsitter with flying wing
configuration is described. The methodology of sparse identification of nonlinear dynamics and its
formulation for aerodynamic model identification is presented in Section 3. Simulation results of the
proposed methodology are given in Section 4 along with the results with controller using the con-
structed model. Finally, the summary and conclusion will be addressed in Section 5.

2. Problem Formulation
2.1 Coordinates

The body-fixed and inertial coordinate frames are defined in Fig. |2 For the inertial frame I, North-
East-Down (NED) convention is used where x; is North, y; is east, and z; is down. The body-fixed
coordinates B follow conventional fixed-wing aircraft notation with the origin located at the center of
gravity. xp is forward direction in the fixed-wing configuration, which is perpendicular to the propeller
plane, y; is the right wing direction, and zp is downward direction expressed as zz = xz X ys.

2.2 Flying Wing Tailsitter Model
x|
Vi

Zy
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Figure 2 — lllustration and coordinates of a flying wing tailsitter UAV.

The tailsitter model has a dual-rotor flying wing configuration as shown in Fig. (2} It is designed to have
two rotors and two elevons on the left and right wing each to maximize mechanical simplicity. Two
rotors are mounted on the leading edge of the left and right wing, respectively. The motors turn each
rotors in opposite direction to compensate angular momentum in zz axis. 7; and 7, are the primary
and unique thrust source of the vehicle and acts in xp direction. Also, differential thrust of the rotors
can generate moment in zz axis. As control surfaces, elevons are located on the trailing edge of the

3



AERODYNAMIC MODEL IDENTIFICATION OF A VTOL TAILSITTER UAV USING SINDY

Table 1 — Tailsitter UAV properties

Property Symbol Value
Airfoil - NACA0012

Mass m 709¢

Aspect ratio AR 2.96

Sweep angle Y 25.21°
Mean chord length ¢ 310mm

Wing surface area Swing 0.26m?
Elevon surface area Selv 0.06m?
Distance to center of gravity Xcg 57.5mm
Distance to aerodynamic center Xac 77.5mm
Propeller radius Rprop 63.5mm
Propeller moment arm lorop 120mm

Propeller reaction torque coefficient co 2.4e-6Nm/rad*

left and right wing. The elevons generate moment in xg and yg axis through deflection to opposite
or same direction. The deflection angle of left and right elevons are denoted as §; and g, each and
positive deflection corresponds to downward direction. Unlike conventional aircrafts, we assume the
elevons are always effective with unstalled condition. It is achievable since the propeller-induced
airflow can produce a steady flow without separation from the main wing. Therefore, the elevons can
generate moment in hovering or post-stall condition [11]. And in order to generate sufficient moments
for transition flight, the elevons are designed to have larger surface compared with conventional flying
wing aircrafts. The detailed properties of the tailsitter UAV is summarized in Table.

During the cruise flight, the flying wing model is designed to have longitudinal and directional stability.
As shown in Fig. |3, The upward trim of elevons &,im makes the symmetric airfoil to have reflexed
camber line. It makes the positive pitching moment M, at the aerodynamic center. Overall, M; ,s
makes the moment equilibrium combined with the weight at the center of gravity and the lift force at
the aerodynamic center. Since the center of gravity is located in front of the aerodynamic center, it
can ensure longitudinal stability in disturbed states also. And the differential induced drag from the
sweep back angle can provide directional stability.

.

al

"mg

Figure 3 — lllustration of airfoil cross-section in equilibrium state.

2.3 Dynamics of the Tailsitter

Let us define vz = [u, v, w|” and p; = [x;, y1, z;]" be the vehicle velocity in the body frame and position
in the inertial frame. wp = [p, ¢, r]” is angular velocity in the body frame and ¢, 6, v are the Euler
angles to represent attitude. o = tan~! (%) is the angle of attack (AOA) and 8 =sin~" (v/Vu? +v2 +w?)
is the angle of sideslip. Then, the system states and control inputs are defined as:

X= [M7 Vi W, Dy 4, Vs X1, VI 2 ¢7 67 v, &, ﬁ]Tv

1
u= [Tb Tra 51, SV]T7 ( )
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where T;,T, correspond to the left and right rotor thrust each and §;, 3, are the left and right elevon
deflection angle, respectively.

The tailsitter vehicle is modeled as a rigid body with the mass m and the moment of inertia J =
diag{J,Jyy,J.} Where J is a diagonal matrix. The dynamics of the tailsitter can be expressed in
Newton-Euler equations as:

mvy = BR;FB +mgy, (2)

Jop = Mp — wp x Jog,
where g; = [0, 0, g]” is the gravitational acceleration and R, represent a rotation matrix from  to B.
Fp and M3 denotes the force and moment acting on the vehicle, respectively.
The force F and moment M exerted in the body frame can be decomposed as wing, propeller, and
elevon components as:

F = Fuwing + Fprop + Felv,

(3)
M = Myjing + Mprop + Meyy-

where (x),,n, denotes the aerodynamic component from the main wing without elevon effects. It de-
scribes forces and moments when elevon deflection angle is fixed at yim. (*)prop denotes the propeller
component and (), represents the extra effect due to elevon deflection. All of three components
can be seen as aerodynamic terms in that the forces and moments are produced by interaction with
airflow.

2.3.1 Main Wing Model

The lift, drag, and pitching moment are produced from the main wing model. Since the vehicle has
flying wing configuration without tail stabilizers, we can reasonably ignore the force in yz and moments
in xg and zg. The active terms in the body frame can be represented as;

[ Fiing.x Lsinot — Dcosa
Fuing = | Fuwingy | = 0 ,
| Fwing,z —Lcosat —Dsina @
_Lwing 0
Mying = | Mwing | = | Mpitch — (Lcosa+ Dsin@)(xac _xcg) ,
| Mwing 0

L= qswingCL(O‘)a
D= qswingCD(O‘)u (5)
Mpitch = 675win95CM(05)a
where L and D are the lift and drag force each, Micn denotes the pitching moment of the main wing.

The dynamic pressure is §= 1pV7 with air density p and total velocity of the vehicle Vy = vu2 +v2 + w2.
Cr(a),Cp(a),Cy () are unknown nonlinear functions of aerodynamic coefficients.

2.3.2 Propeller Model

The propellers generate outflow of the air that makes force in xz direction. Since two propellers are
attached in xp direction facing forward, they also induce moments in xz and zg direction through
differential thrust. From the classical momentum theory [20], the inflow and outflow velocity of the
propellers are

VT cos o + Vout
Vin = 2 9
6)
T, +T, (
Vout = : 5— 4+ (Vrcosa)?.
anprop

The outflow with V5t makes artificial airflow toward the elevons, producing unseparated airflow which
makes the elevons work as effective control inputs for the entire flight envelopes.
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The force and moment of the propellers are

_Fprop,x I +T,
Fprop = Fprop,y = 0 )
:Fprop,z 0 (7)
Lprop co(-T1+T,)
Mprop = | Mprop | = 0
_Nprop lprop(Tl - T}’)

2.3.3 Elevon Model

In order to make the elevons effective on post-stall region, we design the elevons to be covered by
outflow of propellers. With this assumption, we can construct the elevon model similar to conventional
fixed-wing model. The force and moment of the elevons are

_Felv,x 0
Fey = Felv,y =101,
F
L elv,z E) (8)
Leyy GsewbCy,, (81,0,)
Mgy = | M | = qSerC_‘CM@V (617 5r) ,
_Nelv 0

where g = 1pV2,.
Cr,, (81, 0,) is a control derivative of Lg, expressed as a nonlinear function of §; and 6. Also, C,, (9, 6,)
is a nonlinear function that describes the control derivative of Mgy, .

2.3.4 6DOF Equations of Motion
Combining (4), (7} and (8), the 6DOF equations of motion of the tailsitter can be formulated as shown,
Fwing,x Fprop,x Felv,x

uw=rv—gw—gsin0 + + + )
m m m

Fwing,y + Fprop,y + Felv,y
m m m '

v=pw—ru+gcos0sing +

Fwing,z Fprop,z Felv,z

W =qu— pv+gcosOcos¢ + - + = + ot
Jyy —J. ing L L (9)
S Y Lwing 4 Dprop L‘V,
Jxx Jxx Jx_x Jxx
_ Jzz - Jxx rp Mwing Mprop Melv
Jyy Jyy Jyy Jyy 7
Jox — Jyy Nui N, N,
P XX yy g+ wing + prop + er‘
JZZ JZZ JZZ JZZ

With (9), we derived the full dynamic model with unknown function of aerodynamic coefficients.

3. Methodology
3.1 Sparse Identification of Nonlinear Dynamics
Consider a nonlinear dynamic system as:

() =f(x(1),u(n)), (10)

where x(¢) € R"” denotes system states, u(z) € R™ denotes control inputs, and f(x(¢)) represents a
nonlinear function of the states with dimension R” x R/ — R".
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Figure 4 — Concept of SINDy.
To identify the unknown function f from data, we collect a time history of the states x(r) and the

derivatives x(r) [13]. We assume all the required states and their derivatives are observable and
collectable. The data can be arranged with time series into two matrices as follows:

XT(l‘l) xl(tl) XZ(tl) xn(tl) )'(T(tl) Xl(tl) )Q(ll) Xn(l‘l)
X — XT(IQ) _ xl(tz) X2(t2) x,,(tz) ’X: )'(TFQ) _ )'Cl(.tz) Xz(.l‘z) )'Cn(.tz) (11)
o) | [xin) () o xaltn) )| L) Baltn) oo n(tn)
And the library of candidate nonlinear functions are
. ! | |
OX,U)=|1 X X7 ... sin(s;X) cos(ssX) ... U U2 .|, (12)

where X is same data sets, X?2,U%,... denote higher polynomials, and s, s, ... represent frequen-
cies of the sinusoidal functions.

Each column of ©(X,U) expresses a candidate function of the governing equation f and it can be
arbitrarily selected to represent the nonlinearity effectively. The corresponding sparse vector of coef-
ficients & comprises the below vector as shown in Fig.

E=[& & - &l (13)
The system in can be expressed in terms of data matrices as:

X= Ootal (X, U)ZEiotal + NZ

: g (14)
= Oxnown (X, U)Exnown + O(X,U)E+nZ,

where Z models the matrix of independently identically distributed Gussian noise with zero mean
with magnitude 7. Since the data X and X are always contaminated with noise in realistic sense, it
is reflected in (14). And in order to reduce the dimension and load of SINDy, the unknown model is
divided from the known model which has determined parameters from existing knowledge.

Since most dynamical systems can be represented with few active terms in the governing equations,
we will employ spare regression to identify the sparse matrix of coefficients E signifying the fewest
nonlinearities in ®(X) that results in a good model fit as:

N T 2
Sk = argmin Xk = &k known®@hnown (Xis Uk) — E® (Xie, Ui || + A 11 &ll (15)

k

7
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where A is the regularizing parameter that make the our solution have a sparsity as a L1 penalty.
Thus, it is converted into a problem of obtaining a spare solution of an overdetermined system with
noise. The sparse vector of coefficients &, can be found using the sequential threshold least square
algorithm (STLS) [13]. With the optimization on (15), we can get the sparsed model representation of
f by removing unwanted noise by adjusting the parameter 1.

3.2 Aerodynamic Model Identification

Combining the dynamics of tailsitter in (9) and aerodynamic models in (4), (7), and (8), the nonlinear
dynamic model of the tailsitter can be reconstructed as follows:

. _ T,+T, G SwingCr(a) sin & — G swingCp () cos o
= (rv—qw—gsinB + r)known ( LEL m -9 )unknown
v = (pw—ru+ gcos 0sin ¢ )xnown,
. —GSwingCL(0) cos & — G syingCp () sin o
W= (qu_PV+gCOSGCOS ® )known +< v " v )unknowm
. Jyy —J. co(—T;+T, q Sel bCLev 4,0, 16
p :( = qur+ Q( r) )known ( = : ( r))unknown, (16)
JXX ‘]XX Jxx
Jop —Jx G SwingCCu (@) — (Lcos & + Dsin &) (xac — Xcg) + G Seiv€ Cpr, (01,)
= ( 7 7P)known + ( 7 )unknown
VY yy

o Jxx *]yypq_i_ lpl’op(n - Tr)
Jzz JZZ

)known )

where (x)known denotes the known model that is composed of observable states only and (*)unknown
represents the unknown model that contains the unknown function of aerodynamic coefficients.
Using the dynamic model can be expressed as

x = fo(x,u) +f(x,u), (17)

where f; is the known model and f is the unknown model. Since the purpose of this paper is to identify
the unknown aerodynamic coefficients, we utilize the existing knowledge of the model in (16). The
unknown model is separated from the known model as a prior step and then SINDy is applied to
the unknown model only. By moving the known model f; to the left side of (17), we can apply the
SINDy for the unknown model f. It reduces the size of the candidate function and helps to represent
the aerodynamic model with fewer terms. Also, the constructed aerodynamic model can be clearly
separated from the known model.

Reflecting the characteristics of the aerodynamic coefficients, the candidate function is chosen to be
a set of constant, polynomials, and trigonometric functions since these functions have the univer-
sal function approximation property. To enhance the performance of sparse identification, the prior
knowledge of the coefficients is be applied to the library selection. The lift, drag, and pitching moment
functions are periodic functions that has a cycle of 360°. Also, they have symmetrical properties with
respect to 0° AOA. ltis also well known that the lift coefficient can be approximated as a linear function
when it is not stalled. Thus, the lift coefficient function is divided in to post-stall region and unstalled
region. With these prior knowledge, we suggest the basis of trigonometric function and polynomials
to formulate the candidate function as:

| | | | | |
OX,U)= |1 X? sin(6X) --- sin(2560X) cos(6X) --- cos(2560X) U?|, (18)

where p is the order of polynomials of X that range from 1 to 4, ¢ is the order of polynomials of U that
range from 1 to 3, and 6 is the base frequency of the sinusoidal functions and the value of 0.01° is
used for the given model.
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4. Simulation Results

The state datasets for SINDy are generated through the 6DOF numerical simulation on Matlab. And
the aerodynamic coefficient functions of the tailsitter is identified using the proposed method. To
generate the dataset of the system, true dynamics are formulated using aerodynamic coefficients
of NACA0012 airfoil obtained from wind tunnel analysis in [21]. The lift, drag, and pitching moment
coefficient of NACA0012 from the wind tunnel data is used as a true value as shown in Fig.[5| For the
control derivatives of the elevon model, a linear function is defined as a true model since we assumed
the elevons actuate in unstalled condition.

Figure. 5] shows the result of SINDy analysis. It shows the identified aerodynamic coefficient function
from measured data. Gaussian noise that has 1o at 3°/s is added on the angular velocity measure-
ment wp and Gaussian noise with 1o at 0.1m/s(10) is applied on the linear velocity measurement v.

-200 -150 -100 -50 0 50 100 150 200

-200 -150 -100 -50 0 50 100 150 200

T T T I T
Data

mm SINDy

= = True

-150 -100 -50 0 50 100 150 200
Angle of attack [deg]

Figure 5 — Identified C;,Cp,Cy from state measurement using SINDy.

Table. [2|shows the result of sparse regression. We can check that the initial sparse vector coefficients
are reduced, leaving not more than 20 coefficients for the SINDy model. Therefore, the constructed
model from SINDy represents the aerodynamic model with few active terms.

Table 2 — Reduced number of £ of aerodynamic coefficients

f CL (Linear) CL (Nonlinear) Cp Cu Cry, Chuy,
Number of unsparsed & 58 58 58 58 58 58
Number of sparsed & 1 20 16 15 1 1

Table. [3[ shows the sparsed basis function and its coefficient. Since the Cp is symmetric with respect
to a =0, the cosine functions with varying frequency remained with a constant term as a offset.

In order to check the validity of the identified SINDy model, a feedback linearization [22] based
controller that uses a nonlinear dynamic model as a trim condition is implemented. The feedback
linearization controller compensates the nonlinear aerodynamic model as a trim condition. And for

9
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Table 3 — Sparsed basis function and its coefficient of Cp

f Cp

C) 1 cos(40ax) cos(560a) cos(760a) cos(96a) cos(110c) cos(120a) cos(136)
= 0.9664 -1.2978 0.5403 -0.3264 0.2875 -0.8241 1.3321 -0.9354
O | cos(156a) cos(1760a) cos(180ct) cos(200c) cos(210) cos(220) cos(236a) cos(246a)
E | 0.4806 -0.7830 0.8897 -1.1554 1.7675 -1.4838 0.8031 -0.2428

the feedback control, three-loop structure is designed to deal with remaining model errors [23]. The
forward transition flight where the longitudinal control is influenced by the aerodynamic model is sim-
ulated for 10 seconds. The initial pitch angle is 80° with zero speed. Then the pitch command of 0°
and forward velocity command is set as 15m/s to keep steady level flight after the transition. In Fig.
[6] the roll, pitch, yaw rate, and forward velocity in xz is plotted. The control results of SINDy model
are presented with the results of model error cases. Since there always exists modeling errors in ac-
tual flight, 10%, 20%, and 30% error is set to the aerodynamic coefficients and control derivatives of
the elevon. We can check that the overshoot and damping are significantly decreased on the SINDy
model when compared with the model error cases.

1 80
Command Command
= Model error 30% 60 H = Model error 30% | |
0.5F Model error 20% | 1 Model error 20%
Model error 10% Model error 10%
= = SINDy =4 = SINDy
5] Q
z 0 S,
< T 20t
051 ] N
0 - v "
4 I ! ! I
0 2 4 6 8 10 0 2 4 6 8 10
time [s] time [s]
L —
Command E
= Model error 30%
0.5 Model error 20% |
Model error 10%
_g) = SINDy W
2 o E
o, m
— > Command
e Model error 30% |
051 Model error 20% | |
Model error 10%
——SINDy .
4 | ! | ! 2 ! | ! |
0 2 4 6 8 10 0 2 4 6 8 10
time [s] time [s]

Figure 6 — States comparison between SINDy and model error cases.

The AOA, ACS, lift, and drag of the vehicle during forward transition is shown in Fig. |/} The SINDy
model reduced the oscillation on lift and drag compared with the 10%, 20%, and 30% model error
cases. It shows that the constructed the SINDy model represents the true aerodynamic model with
less error.

5. Summary and Conclusion
In this paper, we designed an aerodynamic model identification of a tailsitter with flying wing configu-
ration using Sparse Identification of Nonlinear Dynamics (SINDy). As a data-driven approach, SINDy

10



AERODYNAMIC MODEL IDENTIFICATION OF A VTOL TAILSITTER UAV USING SINDY

= === Model error 30%

Model error 20% | |
= = Model error 10%
——SINDy

= === Model error 30%
Model error 20%

= = Model error 10%

——SINDy

05

g o g
E E‘ 0—I_l_l_l_l_l_l_l_l_l_l_I_l_l_l_l-
s -
30
051
0N\
-
0 2 4 6 8 10 0 2 4 6 8 10
time [s] time [s]
30 T 0.6 ‘
”
25 LN TN e aeme

Lift Force [N]

=== Model error 30%

Model error 20%
= = Model error 10%
= SINDy

=== Model error 30%| |

Model error 20%
= = Model error 10%| |
—— SINDy

Drag Force [N]

time [s] time [s]

Figure 7 — Aerodynamics comparison between SINDy and model error cases.

was modeled to extract aerodynamic model based on the full dynamic model of the tailsitter. By uti-
lizing the minimum knowledge of the model, SINDy identified the nonlinear functions of aerodynamic
coefficients and control derivatives. The identified model was expressed with few active terms from
the sparse solution. The SINDy model improved control performance when combined with feedback
linearization controller. This approach can provide a new direction to utilize SINDy on aerodynamic
model identification of VTOL aircrafts. Our future work will be to conduct a flight experiment to verify
the proposed method.
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