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Abstract 

Surface loads based on the measurements from sensors in wind tunnel test or during flight are crucial 

for aerodynamic design, health monitoring and flight control. However, obtaining the complete surface 

loads in real-time is challenging due to the limitations of available measurements. To handle this 

problem, we propose a sparse reconstruction modeling method based on proper orthogonal 

decomposition (POD) and radial basis function neural network (RBFNN). This method leverages the 

dimensionality reduction capabilities of POD to extract the dominant modes of surface loads, and 

then use RBFNN to accurately predict the mode coefficients based on sparse measurements. 

Furthermore, to improve the accuracy of sparse reconstruction, we have developed an objective 

function that integrates the surface loads in optimizing the sensor locations. The case study of the 

DLR-F6 aircraft shows that a weight of 0.25 for the objective function provides the best reconstruction 

performance. Additionally, a minimum of 240 modeling samples is required to ensure the accuracy 

of the sparse reconstruction model. Specifically, with just 37 sensors, we can achieve real-time 

sparse reconstruction of surface pressure coefficients. 

Keywords: Sparse reconstruction; Surface loads; Proper orthogonal decomposition; Sensor locations 

optimization; Aircraft 

 

1. Introduction 

In the aerospace field, sparse reconstruction is widely applied for acquiring aerodynamic loads on 

aircraft surfaces both in wind tunnel testing and actual flight conditions. [1-3]. And a comprehensive 

sparse reconstruction process for surface loads includes two main components: constructing the 

sparse reconstruction model and optimizing sensor locations [4]. 

The sparse reconstruction model directly affects the efficiency and accuracy of the sparse 

reconstruction. In general, sparse reconstruction models can be divided into three types: compressed 

sensing, neural network and surrogate model based on reduced-order model (ROM). Compressed 

sensing, originally developed as a signal processing theory, reconstructs signals from minimal 

observations by utilizing their sparse characteristics [5]. This model finds widespread application in 

fields such image processing, communications, and fluid dynamics. Bai et al. reconstructed particle 

image velocimetry flow data via compressed sensing [6]; Sha et al. utilized compressed sensing to 

reconstruct the pressure field of cavitation hydrofoils [7]. However, compressed sensing imposes 

stringent requirements on data sparsity and involves high computational complexity for reconstructing 

high-dimensional data. The neural network-based model utilizes intelligent algorithms [8], such as 

deep neural network, to directly establish a mapping model from sparse measurements to high-
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dimensional system data. Santos et al proposed an encoder–decoder architecture and reconstructed 

nonlinear flow fields using limited sensor measurements [9]. This model demonstrates high 

reconstruction accuracy, particularly for nonlinear systems. However, training neural networks with 

complex architectures leads to low problem-solving efficiency, especially when optimizing sensor 

locations. The surrogate model based on ROM is a composite model that reduces high-dimensional 

system data to low-dimensional mode coefficients using ROM [10] and establishes a mapping 

relationship from sparse measurements to mode coefficients using surrogate models with simple 

architecture. Zhang et al. proposed a sparse reconstruction model based on Dynamic mode 

decomposition and long short-term memory, enabling the prediction of unsteady flow around a 

cylinder from sparse sensor measurements [11]. This model effectively tackles the problem of low 

modeling efficiency and thereby achieving widespread adoption.  

In summary, taking into account the accuracy and efficiency of the aforementioned three types of 

sparse reconstruction models, this paper adopts the surrogate model based on ROM. 

The sensor locations are also crucial for the accuracy of sparse reconstruction [12-13], highlighting 

the need for their optimization. Heuristic optimization algorithms [14] are commonly employed to 

ensure global optimization. Zhao et al. utilized the particle swarm optimization algorithm to obtain the 

best sensor locations for sparse reconstruction of airfoil surface pressure [4]. Additionally, genetic 

algorithm [15], Differential evolution (DE) [16] and NSGA-II [17] have also been successfully applied 

to sensor location optimization in various sparse reconstruction problems. However, in existing 

sensor location optimization problems, the objective function typically includes only the system data 

to be reconstructed, without incorporating additional physical qualities.  

Recent data-driven modeling studies indicate that incorporating additional physical quantities as 

constraints or objective functions can improve the modeling accuracy of the original physical 

quantities [18-19]. Therefore, in sensor location optimization problem for sparse reconstruction of 

surface loads, the integral quantities of surface loads can be included in the objective function to 

enhance reconstruction accuracy. 

In this work, we researched the sparse reconstruction of surface aerodynamic loads on aircraft. To 

ensure modeling efficiency, we constructed a sparse reconstruction model based on proper 

orthogonal decomposition (POD) and radial basis function neural network (RBFNN). To improve 

reconstruction accuracy, we devised an enhanced objective function for sensor location optimization 

by fusing distributed and concentrated forces. The proposed method is applied to the sparse 

reconstruction of surface pressure coefficients on the DLR-F6 aircraft.  

2. Sparse reconstruction method 

The proposed sparse reconstruction method is introduced in this section. Taking the sparse 

reconstruction of surface pressure coefficients of the aircraft as an example, Figure 1 shows the 

architecture of the sparse reconstruction method. The whole modeling process consists of two parts: 

constructing the sparse reconstruction model and optimizing the sensor locations. The purpose of 

the sparse reconstruction model is to map sparse measurements to surface distributed loads and 

solve the objective function in sensor locations optimization. Sensor locations optimization aims to 

provide new sensor locations during optimization, update the sparse reconstruction model, and obtain 

optimum sensor locations through iterative convergence. The specific processes of the sparse 

reconstruction model and sensor optimization are outlined below. It is worth noting that both the 

sparse measurements and the surface pressure coefficients in this work are derived from numerical 

simulations. 
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Figure 1 – The architecture of the proposed sparse reconstruction method 

2.1 Sparse reconstruction model based on POD and RBFNN 

The modeling and reconstructing process of the sparse reconstruction model are shown in Figure 2.  

 

Figure 2 – The schematic diagram of modeling and reconstructing process of the sparse 
reconstruction model 

In the modeling stage, the database of surface pressure coefficients 𝑪𝑝 = [𝑪𝑝1
, 𝑪𝑝2

, ⋯ , 𝑪𝑝𝑘
]
T
∈ ℝ𝑛×𝑟 

under various flow conditions is first generated through numerical simulation. Divide 𝑪𝑝 into several 

groups based on the components of the aircraft, as shown in equation (1). For each group, the 

dimension and complexity are less than the whole surface pressure coefficients, which is helpful to 

improve the modeling accuracy of the ROM [20].  
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 𝑪𝑝 = {𝑪𝑝
1 ∈ ℝ𝑛1×𝑟 , 𝑪𝑝

2 ∈ ℝ𝑛2×𝑟 , ⋯ , 𝑪𝑝
𝑘
∈ ℝ𝑛𝑘×𝑟} (0 < 𝑛1, 𝑛2, ⋯ , 𝑛𝑘 < 𝑛) (1) 

Where, 0 < 𝑛1, 𝑛2, ⋯ , 𝑛𝑘 < 𝑛 and 𝑛1 + 𝑛2 +⋯+ 𝑛𝑘 = 𝑛. 

Then, the POD model (as described in section 3.1) for each group is established, thus the modes 

𝜱 = {𝜱1, 𝜱2, ⋯ ,𝜱𝑘}  and corresponding mode coefficients 𝒂 = [𝒂1, 𝒂2, ⋯ , 𝒂𝑘 ]T ∈ ℝ𝑚×𝑟  can be 

obtained. The built POD models can be expressed by equation (2). 

 

{
 
 

 
 [𝒂

1, 𝜱1] = 𝑓POD−1(𝑪𝑝
1)  (𝒂1 ∈ ℝ𝑚1×𝑟 , 𝜱1 ∈ ℝ𝑛1×𝑚1)

[𝒂2, 𝜱2] = 𝑓POD−2(𝑪𝑝
2)  (𝒂2 ∈ ℝ𝑚2×𝑟 , 𝜱2 ∈ ℝ𝑛2×𝑚2)

⋮
[𝒂𝑘 , 𝜱𝑘] = 𝑓POD−𝑘(𝑪𝑝

𝑘) (𝒂𝑘 ∈ ℝ𝑚𝑘×𝑟 , 𝜱𝑘 ∈ ℝ𝑛𝑘×𝑚𝑘)

 (2) 

where, 0 < 𝑚1, 𝑚2, ⋯ ,𝑚𝑘 < 𝑚 and 𝑚1 +𝑚2 +⋯+𝑚𝑘 = 𝑚. 

Define a comprehensive POD model as 𝑓POD = {𝑓POD−1, 𝑓POD−2, ⋯ , 𝑓POD−𝑘} , equation (2) can be 

simplified into equation (3). 

 [𝒂,𝜱] = 𝑓POD(𝑪𝑝) (3) 

Meanwhile, given a set of installed sensors 𝒙 ∈ ℝ𝑝×1 , the sparse measurements 𝑪𝑝
S ∈ ℝ𝑝×𝑟  are 

obtained by equation (4). 

 𝑪𝑝
S = 𝑪𝑝(𝒙) (4) 

Furthermore, an RBFNN model (as described in section 3.2) is built to map the sparse measurements 

𝑪𝑝
S to the mode coefficients 𝒂, as shown in equation (5).  

 𝒂 = 𝑓RBFNN(𝑪𝑝
S) (5) 

So far, the sparse reconstruction model 𝑓SR has been built by combing the POD and RBFNN model, 

which is given by equation (6). 

 𝑪𝑝 = 𝑓SR(𝑪𝑝
S) (6) 

where, 𝑪𝑝
S 𝑓RBFNN
→     𝒂

𝑓POD
←   𝑪𝑝. 

In the reconstructing stage, given the sparse measurements 𝑪𝑝
S′ ∈ ℝ𝑝×1 under a new flow condition, 

the mode coefficients 𝒂′ ∈ ℝ𝑚×1 are first predicted by the RBFNN model, as shown in equation (7). 

 𝒂′ = [𝒂1
′
, 𝒂2

′
, ⋯ , 𝒂𝑘

′
 ]
T
= 𝑓RBFNN (𝑪𝑝

S′) (7) 

Then, the surface pressure coefficients 𝑪𝑝
′ ∈ ℝ𝑛×1 are reconstructed by the POD model 𝑓POD, as 

shown in equation (8). 

 

{
 
 
 

 
 
 𝑪𝑝

′ = [𝑪𝑝1
′, 𝑪𝑝2

′, ⋯ , 𝑪𝑝𝑘
′]
T

𝑪𝑝1
′ = 𝑓POD−1

′(𝒂1
′
, 𝜱1)

𝑪𝑝2
′ = 𝑓POD−2

′(𝒂2
′
, 𝜱2)

⋮

𝑪𝑝𝑘
′ = 𝑓POD−𝑘

′(𝒂𝑘
′
, 𝜱𝑘)

 (8) 

where, 𝑓POD−𝑖
′(𝑖 = 1,2,⋯ , 𝑘) represents the POD reconstruction for 𝑓POD−𝑖. 

2.2 Sensor locations optimization with an enhanced objective function 

The sensor locations optimization problem can be expressed as 
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𝑓𝑖𝑛𝑑     𝒙 

𝑚𝑖𝑛      𝑔(𝒙) = |𝑓SR (𝑪𝑝(𝒙)) − 𝑪𝑝|
1

   (9) 

where, |∙|1represents the 1-norm. 

Detailed optimization procedure of the sensor locations is shown in Figure 3. 

 

Figure 3 - Flowchart of sensor location optimization with an enhanced objective function 

First, an initial set of sensor locations 𝑿 ∈ ℝ𝑝×𝑁 (𝑁 represents the population size in optimization) are 

generated by Latin hypercube sampling (LHS) method.  

Then, the steps for solving the objective function are performed. Specifically, ∀𝒙 ∈ 𝑿, the sparse 

measurements 𝑪𝑝
S  are obtained, and the surface pressure coefficients 𝑪𝑝

′  are predicted by the 

sparse reconstruction model. To enhance the sparse reconstruction accuracy, relevant quantities of 

surface pressure coefficients are introduced into the objective function, including the lift coefficient 

𝐶𝐿
′ , pressure drag coefficient 𝐶𝐷

′ , and moment coefficient 𝐶𝑀
′ . These three coefficients are all 

obtained through the integration of 𝑪𝑝
′. Thus, the novel objective function for optimizing the best 

sensor locations is modified as equation (10). 

 

{
 
 
 
 

 
 
 
 
𝑔 = 𝑔0 + 𝛽 ∙ (𝑔1 + 𝑔2 + 𝑔3)

𝑔0 =
∑ |𝑪𝑝

′
𝑖
−𝑪𝑝𝑖

|
1

𝑟
𝑖=1

|𝑚𝑎𝑥(𝑪𝑝)−𝑚𝑖𝑛(𝑪𝑝)|1

𝑔1 =
∑ |𝐶𝐿

′
𝑖−𝐶𝐿𝑖|

𝑟
𝑖=1

𝑚𝑎𝑥(𝐶𝐿)−𝑚𝑖𝑛(𝐶𝐿)

𝑔2 =
∑ |𝐶𝐷

′
𝑖−𝐶𝐷𝑖|

𝑟
𝑖=1

𝑚𝑎𝑥(𝐶𝐷)−𝑚𝑖𝑛(𝐶𝐷)

𝑔3 =
∑ |𝐶𝑀

′
𝑖−𝐶𝑀𝑖|

𝑟
𝑖=1

𝑚𝑎𝑥(𝐶𝑀)−𝑚𝑖𝑛(𝐶𝑀)

 (10) 

where, 𝑔0, 𝑔1, 𝑔2, and 𝑔4 are normalized objective function for 𝑪𝑝, 𝐶𝐿, 𝐶𝐷, and 𝐶𝑀, respectively; 𝛽 is 

the common weight of 𝐶𝐿, 𝐶𝐷, and 𝐶𝑀 in objective function. 

Subsequently, the population is updated using the DE algorithm, which possesses global optimization 

capability, and the objective function is reevaluated. Upon meeting the optimization termination 

criterion, the optimization concludes, and the optimum sensor locations 𝒙∗ are determined. 

The final sparse reconstruction model is expressed as equation (11). 

 𝑪𝑝 = 𝑓SR (𝑪𝑝(𝒙
∗)) (11) 

3. Basic methods 

3.1 Proper orthogonal decomposition 

In this work, POD is employed to extract modes from high-dimensional distributed data of various 

flow properties, such as surface pressure coefficients and surface temperature. The POD modeling 

process can be described as follows. 
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A sampled snapshot sequence from flow properties for various conditions by computational fluid 

dynamics (CFD) simulation is described as 𝑫 = [𝑫1, 𝑫2, ⋯ ,𝑫𝑟], where 𝑟 is the number of sampled 

conditions, 𝑫𝑖(𝑖 = 1,2,⋯ , 𝑟)  is an 𝑛-dimensional column vector. Generally, 𝑛 ≫ 𝑟. We define the 

mean flow data as 𝑫̅, which represents the mean of 𝑫𝑖 and is calculated by equation (12). 

 𝑫̅ = ∑ 𝑫𝑖
𝑟
𝑖=1 𝑟⁄  (12) 

The standardized flow data 𝒅 = [𝒅1, 𝒅2, ⋯ , 𝒅𝑟] can be obtained by subtracting 𝑫̅ from 𝑫. To improve 

computational efficiency, snapshot-POD [21] algorithm is adopted. We define the correlation matrix 

of 𝑑 as 𝑪 ∈ ℝ𝑟×𝑟, which is computed by equation (13). 

 𝑪 = 𝒅T𝒅 (13) 

Through feature decomposition of 𝑪 , the eigenvector matrix 𝑸 = [𝒒1, 𝒒2, ⋯ , 𝒒𝑟] ∈ ℝ𝑟×𝑟  and the 

eigenvalue matrix 𝝀 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, ⋯ , 𝜆𝑟)(𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑟)  are obtained, which satisfies as 

equation (14). 

 𝑪𝑸 =  𝝀𝑸 (14) 

where 𝝃𝑖  is POD mode and eigenvalue 𝜆𝑖  represents the energy of 𝝓𝑖 ; we define the energy 

proportion of 𝝃𝑖  as 𝑘𝑖 = 𝜆𝑖 ∑ 𝜆𝑖
𝑟
𝑖=1⁄ , which is used to evaluate the contribution of 𝝓𝑖 to the flow data.  

The POD mode matrix 𝚽 = [𝝓1, 𝝓2, ⋯ ,𝝓𝑟] ∈ ℝ𝑛×𝑟 can be computed by equation (15). 

 𝝓𝑖 = 𝒅𝒒𝑖 √𝜆𝑖⁄  (15) 

We define the POD mode coefficients as 𝒂, which is calculated as equation (16). 

 𝒂 = [𝒂1, 𝒂2, ⋯ , 𝒂𝑟] = [
𝑎1
1 ⋯ 𝑎𝑟

1

⋮ ⋱ ⋮
𝑎1
𝑟 ⋯ 𝑎𝑟

𝑟
] = 𝜱T𝒅 (16) 

where 𝒂𝑖 = [𝑎𝑖
1, 𝑎𝑖

2, ⋯ , 𝑎𝑖
𝑟]
T
(𝑖 = 1,2,⋯ , 𝑟) represents the mode coefficient vector corresponding to 𝑑. 

We select the first 𝑚 modes to build the ROM. Correspondingly, the first 𝑚 coefficients of  𝒂𝑖 are 

retained: 𝒂𝑖 = [𝑎𝑖
1, 𝑎𝑖

2, ⋯ , 𝑎𝑖
𝑚]

T
. Then, 𝑫𝑖 can be approximately expressed as equation (17). 

 𝑫𝑖 ≈ 𝑫𝑖
′ = [𝝓1, 𝝓2, ⋯ ,𝝓𝑚] ∙ 𝒂𝑖 + 𝑫̅ (17) 

where 𝑫𝑖
′ is the reconstructed version of the original data 𝑫𝑖. 

We define the POD reconstruction error as 𝑒, which serves to compare the discrepancy between the 

original and reconstructed data, assessing the degree of information loss in the POD process. This 

is calculated as equation (18). 

 𝑒 =
1

𝑟
∑ (

1

𝑛
‖𝑫𝑖

′ − 𝑫𝑖‖1)
𝑟
𝑖=1  (18) 

where ‖∙‖1 represents the 1-norm. Generally, specifying the error threshold 𝑒0 allows the value of 𝑚 

to be determined when 𝑒 ≤ 𝑒0. Besides, the value of 𝑚 can also be determined by energy proportion 

analysis [22]. 

3.2 Radial basis function neural network 

RBFNN is widely used in classification and regression due to its simple network structure, strong 

nonlinear mapping ability and high modeling efficiency. As shown in Figure 4, a typical RBFNN model 

includes an input layer, a hidden layer, and an output layer. Specifically, the input and output 

dimension are 𝑝 and 𝑚, respectively. In the hidden layer, the number of neurons is 𝑤 , and the 

activation function can be selected from RBFs such as the Gaussian function and the Multiquadric 

function. The RBFNN model 𝑓RBFNN is defined as equation (19). 

 𝒚 = 𝑓RBFNN(𝒄) (19) 
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where, 𝒄 = [𝑐1, 𝑐2, ⋯ , 𝑐𝑝]
T
, 𝒚 = [𝑦1, 𝑦2, ⋯ , 𝑦𝑚]

T. 

 

Figure 4 – The architecture of RBFNN 

4. Test case 

4.1 Description of test case 

The proposed method is applied to the DLR-F6 benchmark geometry, which includes the fuselage, 

wing, and tail. The surface pressure coefficients are obtained by CFD simulation, and the sparse 

measurements are extracted from these coefficients. The computational grid is generated using 3-D 

hybrid mesh. The numbers of the volume meshes and surface meshes are 3.08×106 and 1.18×105, 

respectively.  

The flight condition extends for reconstruction modeling are: 𝑀𝑎 ∈ [0.78, 0.85], and 𝛼 ∈ [2°, 5°]. Then 

300 samples are generated using the random LHS. The density-based compressible Reynolds-

averaged Navier-Stokes solver with SST k-omega turbulent model is employed to achieve accurate 

numerical simulations.  

4.2 POD modeling 

The dimension of the surface pressure coefficients is 88,210. Based on the characteristics of the 

aircraft components, the surface pressure coefficients are divided into five groups, illustrated by five 

different colors in Figure 5. Then, a POD model is established for each group, and the POD 

reconstruction analysis is performed, resulting in the POD reconstruction errors corresponding to 

different numbers of modes, as shown in Figure 6. The number of POD modes of each group is 

determined through POD reconstruction error analysis, with the results presented in Table 1. The 

results include the recommended range for the number of modes and the number of modes used in 

this work. The group of wing requires more POD modes due to the strong nonlinear flow properties 

caused by shock wave [23]. Through POD modeling, the flow characteristics of high-dimensional 

surface pressure coefficients can be accurately described by 43 mode coefficients. 

 

Figure 5 – Five groups based on aircraft components 
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(a) Group Ⅰ 

 

(b) Group Ⅱ 

 

(c) Group Ⅲ 

 

(d) Group Ⅳ 

 

(e) Group Ⅴ 

Figure 6 – The POD reconstruction error for each group 

Table 1 - The dimension and number of POD modes for each group 

Group      

Dimension 8882 11093 8536 20474 39225 

Number of POD modes 5(≥ 2) 12(≥ 3) 6(≥ 2) 10(≥ 4) 20(≥ 16) 

 

4.3 Parameter analysis 

This section introduces parameter analysis about the effect of weight in the objective function and 

modeling sample size on the accuracy of sparse reconstruction method. 

We first analyzed the impact of weight 𝛽 on the sparse reconstruction accuracy. With the sample size 

𝑟 set to 270, six different weights were set, specifically 0, 0.125, 0.25, 0.5, 1, and 2. Notably, when 

𝛽 = 0, the objective function reduces to considering only surface pressure coefficients. The sparse 

reconstruction model with different 𝛽 was repeated modeling 20 times. The reconstructed errors of 

𝑪𝑝 under different 𝛽 are shown in Figure 7. The average value 𝐸 and variance 𝛿 of reconstructed 

errors are presented in Table 2. For comparison purposes, all results were normalized based on the 

results with 𝛽 = 0. 

It can be observed that introducing concentrated force coefficients into the objective function affects 

the reconstruction accuracy of distributed force. When 𝛽 = 0.25, 𝐸  and 𝛿  for 𝑪𝑝  are smaller than 

those for 𝛽 = 0, indicating the advantage of the devised objective function. As 𝛽  increases, the 

proportion of 𝑪𝑝 in the objective function decreases, leading to an upward trend in the reconstruction 

error of 𝑪𝑝. Therefore, a weight of 0.25 is reasonable for this problem. 
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Figure 7 – Reconstruction errors of surface pressure coefficients with different weights  

Table 2 - The reconstruction performance with different weights 

Weight 0 0.125 0.25 0.5 1 2 

𝐸 1.00 1.0034 0.9967 1.0100 1.0074 1.0206 

𝛿 1.00 1.5842 0.3335 1.4477 0.6958 3.6002 

 

Next, we analyzed the impact of sample size 𝑟 on model accuracy. With the weight 𝛽 set to 0.25, the 

sample sizes were 150, 180, 210, 240, and 270. Each value's corresponding model was trained 

repeatedly 20 times. The error distribution of 𝑪𝑝 is shown in Figure 8. For comparison purposes, all 

results were normalized based on the results with 𝑟 = 270. 

The results indicate that when the sample size decreases to 240, there is no significant change in 

prediction accuracy. However, as the sample size further decreases, modeling errors gradually 

increase, and the range of errors expands, suggesting a decrease in both model accuracy and 

robustness. Therefore, for this problem, a sample size of 240 is deemed reasonable. 

 

Figure 8 – Variation of sparse reconstruction accuracy with the number of training samples 

4.4 Sparse reconstruction results 

We use 240 samples for constructing the sparse reconstruction model and 30 samples for 

performance validation.  

In the optimization of sensor locations, the initial number of sensors is set to 50, with each sensor 

located at the center of a mesh element on the aircraft. Thus, there could be 88,210 possible locations 

for each sensor. During optimization, if multiple sensors have overlapping locations, only one sensor 

is retained. The control parameters in optimization are set as: the scaling factor is 0.8, crossover 

probability is 0.4, the population size is 100, the generation is 200, and the maximum allowed 

iterations without improvement is 50. Additionally, the weight 𝛽 in objective function is set to 0.25 

based on the analysis results in section 4.3.  

The optimum number of sensors is 37, and their distribution is illustrated in Figure 9. The optimized 

number of sensors in each group is presented in Table 3. It can be seen that the number of sensors 

for each group is basically consistent with the number of POD modes obtained in Section 4.2, 

matching the sensor number confirmation theory based on system observability and linear 

independence [24-25]. 



10 

SPARSE RECONSTRUCTION OF SURFACE LOADS ON AIRCRAFT USING POD AND RBFNN 
 

 

  

Figure 9 – Optimum sensor locations (red points on the surface) 

Table 3 - The number of POD modes and the optimum number of sensors for each group 

Group      

Optimum number of sensors 3 5 5 6 18 

 

 

(a) Reference 

 

(b) Reconstructed 

 

(c) Reconstruction error 

Figure 10 – Sparse reconstruction results of a test sample (𝑀𝑎 = 0.7672, 𝛼 = 3.34°) 

 

(a) Reference 

 

(b) Reconstructed 

 

(c) Reconstruction error 

Figure 11 – Sparse reconstruction results of a test sample (𝑀𝑎 = 0.8338, 𝛼 = 4.47°) 

The final sparse reconstruction model for surface pressure coefficients can be built based on the 

optimum sensor number and locations. Figure 10 and Figure 11 illustrate the reconstruction results 

for two test samples with various flight conditions. It is obvious that the reconstructed surface pressure 

coefficients agree well with the reference values in most regions, but there are noticeable errors in 

the central region of the upper surface of the wing. These errors are attributed to the linear 

assumption in POD [23], resulting in higher POD reconstruction error in the region with shock waves.  

As the region with large prediction error only occupies a small portion of the entire aircraft surface, 

the lift, drag, and moment coefficients obtained by integrating the predicted pressure coefficients, 

have small prediction errors, as shown in Figure 12. The maximum relative error for the lift, drag and 

moment coefficients are respectively 0.16%, 0.18% and 0.09% of the 30 test samples. The predicted 
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results above indicate the proposed sparse reconstruction model can reconstruct surface loads on 

aircraft in good accuracy, with as few sensors as possible. 

 

(a) 𝐶𝐿 

 

(b) 𝐶𝐷 

 

(c) 𝐶𝑀 

Figure 12 – Predicted results of concentrated forces 

5. Conclusion 

In this work, a sparse reconstruction model was developed based on POD and RBFNN, and an 

enhanced objective function by integrating the distributed force. The proposed model was validated 

by sparse reconstruction of surface pressure coefficients on aircraft DLR-F6. The conclusions can be 

summarized as follows: 

a. For sparse reconstruction problems involving complex shapes, modeling can be performed by 

partitioning based on component types or aerodynamic data characteristics. 

b. Introducing the integral of surface pressure coefficients into the objective function of sensor 

optimization and setting appropriate weight can improve the spare reconstruction accuracy of surface 

pressure coefficients. 

c. Sparse reconstruction errors are mainly concentrated on the upper surface of the wing. This is 

because this region contains strong nonlinear features, and the POD, based on the linearization 

assumption in the model, cannot effectively achieve high-precision reconstruction of pressure 

coefficients. 
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