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Abstract

Surface loads based on the measurements from sensors in wind tunnel test or during flight are crucial
for aerodynamic design, health monitoring and flight control. However, obtaining the complete surface
loads in real-time is challenging due to the limitations of available measurements. To handle this
problem, we propose a sparse reconstruction modeling method based on proper orthogonal
decomposition (POD) and radial basis function neural network (RBFNN). This method leverages the
dimensionality reduction capabilities of POD to extract the dominant modes of surface loads, and
then use RBFNN to accurately predict the mode coefficients based on sparse measurements.
Furthermore, to improve the accuracy of sparse reconstruction, we have developed an objective
function that integrates the surface loads in optimizing the sensor locations. The case study of the
DLR-F6 aircraft shows that a weight of 0.25 for the objective function provides the best reconstruction
performance. Additionally, a minimum of 240 modeling samples is required to ensure the accuracy
of the sparse reconstruction model. Specifically, with just 37 sensors, we can achieve real-time
sparse reconstruction of surface pressure coefficients.

Keywords: Sparse reconstruction; Surface loads; Proper orthogonal decomposition; Sensor locations
optimization; Aircraft

1. Introduction

In the aerospace field, sparse reconstruction is widely applied for acquiring aerodynamic loads on
aircraft surfaces both in wind tunnel testing and actual flight conditions. [1-3]. And a comprehensive
sparse reconstruction process for surface loads includes two main components: constructing the
sparse reconstruction model and optimizing sensor locations [4].

The sparse reconstruction model directly affects the efficiency and accuracy of the sparse
reconstruction. In general, sparse reconstruction models can be divided into three types: compressed
sensing, neural network and surrogate model based on reduced-order model (ROM). Compressed
sensing, originally developed as a signal processing theory, reconstructs signals from minimal
observations by utilizing their sparse characteristics [5]. This model finds widespread application in
fields such image processing, communications, and fluid dynamics. Bai et al. reconstructed particle
image velocimetry flow data via compressed sensing [6]; Sha et al. utilized compressed sensing to
reconstruct the pressure field of cavitation hydrofoils [7]. However, compressed sensing imposes
stringent requirements on data sparsity and involves high computational complexity for reconstructing
high-dimensional data. The neural network-based model utilizes intelligent algorithms [8], such as
deep neural network, to directly establish a mapping model from sparse measurements to high-
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dimensional system data. Santos et al proposed an encoder—decoder architecture and reconstructed
nonlinear flow fields using limited sensor measurements [9]. This model demonstrates high
reconstruction accuracy, particularly for nonlinear systems. However, training neural networks with
complex architectures leads to low problem-solving efficiency, especially when optimizing sensor
locations. The surrogate model based on ROM is a composite model that reduces high-dimensional
system data to low-dimensional mode coefficients using ROM [10] and establishes a mapping
relationship from sparse measurements to mode coefficients using surrogate models with simple
architecture. Zhang et al. proposed a sparse reconstruction model based on Dynamic mode
decomposition and long short-term memory, enabling the prediction of unsteady flow around a
cylinder from sparse sensor measurements [11]. This model effectively tackles the problem of low
modeling efficiency and thereby achieving widespread adoption.

In summary, taking into account the accuracy and efficiency of the aforementioned three types of
sparse reconstruction models, this paper adopts the surrogate model based on ROM.

The sensor locations are also crucial for the accuracy of sparse reconstruction [12-13], highlighting
the need for their optimization. Heuristic optimization algorithms [14] are commonly employed to
ensure global optimization. Zhao et al. utilized the particle swarm optimization algorithm to obtain the
best sensor locations for sparse reconstruction of airfoil surface pressure [4]. Additionally, genetic
algorithm [15], Differential evolution (DE) [16] and NSGA-II [17] have also been successfully applied
to sensor location optimization in various sparse reconstruction problems. However, in existing
sensor location optimization problems, the objective function typically includes only the system data
to be reconstructed, without incorporating additional physical qualities.

Recent data-driven modeling studies indicate that incorporating additional physical quantities as
constraints or objective functions can improve the modeling accuracy of the original physical
quantities [18-19]. Therefore, in sensor location optimization problem for sparse reconstruction of
surface loads, the integral quantities of surface loads can be included in the objective function to
enhance reconstruction accuracy.

In this work, we researched the sparse reconstruction of surface aerodynamic loads on aircraft. To
ensure modeling efficiency, we constructed a sparse reconstruction model based on proper
orthogonal decomposition (POD) and radial basis function neural network (RBFNN). To improve
reconstruction accuracy, we devised an enhanced objective function for sensor location optimization
by fusing distributed and concentrated forces. The proposed method is applied to the sparse
reconstruction of surface pressure coefficients on the DLR-F6 aircraft.

2. Sparse reconstruction method

The proposed sparse reconstruction method is introduced in this section. Taking the sparse
reconstruction of surface pressure coefficients of the aircraft as an example, Figure 1 shows the
architecture of the sparse reconstruction method. The whole modeling process consists of two parts:
constructing the sparse reconstruction model and optimizing the sensor locations. The purpose of
the sparse reconstruction model is to map sparse measurements to surface distributed loads and
solve the objective function in sensor locations optimization. Sensor locations optimization aims to
provide new sensor locations during optimization, update the sparse reconstruction model, and obtain
optimum sensor locations through iterative convergence. The specific processes of the sparse
reconstruction model and sensor optimization are outlined below. It is worth noting that both the
sparse measurements and the surface pressure coefficients in this work are derived from numerical
simulations.
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Figure 1 — The architecture of the proposed sparse reconstruction method

2.1 Sparse reconstruction model based on POD and RBFNN
The modeling and reconstructing process of the sparse reconstruction model are shown in Figure 2.
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Figure 2 — The schematic diagram of modeling and reconstructing process of the sparse
reconstruction model

In the modeling stage, the database of surface pressure coefficients C,

J— T nxr
_[cpl,cp2 C,,k] € R

under various flow conditions is first generated through numerical simulation. Divide C, into several
groups based on the components of the aircraft, as shown in equation (1). For each group, the
dimension and complexity are less than the whole surface pressure coefficients, which is helpful to
improve the modeling accuracy of the ROM [20].
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€, ={C, € R™T,C,2 € R™, o €, € R™) (0 <y, my, oo, m <) (1)
Where, 0 < nq,ny,-,n <nandn; +n, +--+n, =n.
Then, the POD model (as described in section 3.1) for each group is established, thus the modes
& = {®!, d?, ..., ¥} and corresponding mode coefficients a = [a',a?,---,a*]T € R™" can be
obtained. The built POD models can be expressed by equation (2).
[al,d)l] — fPOD—l(Cpl) (a1 € lexr’(pl € ]RanTfh)
[az"pz] — fPOD—z(CpZ) (az € Rmzxr’ P2 e anxmz) (2)

k[ak,tbk] — fPOD—k(Cpk) (ak € ]Rmer’ bk € Rnkxmk)
where, 0 < my,my,--,m <mandm; + my, + -+ my, = m.
Define a comprehensive POD model as fpop = {frob-1, frop—2,***» frop-k},» €quation (2) can be

simplified into equation (3).
[a,®] = fpop(Cp) (3)
Meanwhile, given a set of installed sensors x € RP*1, the sparse measurements CpS € RP*" are
obtained by equation (4).
C,° =C,(x) (4)
Furthermore, an RBFNN model (as described in section 3.2) is built to map the sparse measurements
CpS to the mode coefficients a, as shown in equation (5).

a= fRBFNN(CpS) (%)
So far, the sparse reconstruction model fsg has been built by combing the POD and RBFNN model,
which is given by equation (6).

Cp = fsr(Cp°) (6)
where, €,S 22 g £ ¢

In the reconstructing stage, given the sparse measurements Cpsl € RP*1 under a new flow condition,
the mode coefficients a’ € R™*! are first predicted by the RBFNN model, as shown in equation (7).

li ! ! T !
a' = [al ,a?, -, ak ] = fRBFNN (Cps ) (7)
Then, the surface pressure coefficients Cp’ € R™! are reconstructed by the POD model fpop, as
shown in equation (8).

(Cp, = [Cpll’ szl’ T Cpk’]T

Cp1, = fPOD—lI(allrd)l)

szl = fPOD—ZI(aZIIG’Z) ®)

\ Cvk’ = fPOD-k,(ak,'q)k)

where, fpop_; (i = 1,2,+, k) represents the POD reconstruction for fpop_;-

2.2 Sensor locations optimization with an enhanced objective function
The sensor locations optimization problem can be expressed as



SPARSE RECONSTRUCTION OF SURFACE LOADS ON AIRCRAFT USING POD AND RBFNN

find x
. 9
min  g(x) = |st (Cp(x)) — Cp|1 ©)
where, |-|,represents the 1-norm.
Detailed optimization procedure of the sensor locations is shown in Figure 3.
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Figure 3 - Flowchart of sensor location optimization with an enhanced objective function

First, an initial set of sensor locations X € RP*VN (N represents the population size in optimization) are
generated by Latin hypercube sampling (LHS) method.

Then, the steps for solving the objective function are performed. Specifically, vx € X, the sparse
measurements CpS are obtained, and the surface pressure coefficients C," are predicted by the
sparse reconstruction model. To enhance the sparse reconstruction accuracy, relevant quantities of
surface pressure coefficients are introduced into the objective function, including the lift coefficient
C,', pressure drag coefficient C,’, and moment coefficient C,,'. These three coefficients are alll
obtained through the integration of C,". Thus, the novel objective function for optimizing the best
sensor locations is modified as equation (10).

(9=go+ B (g1+92+93)

_ 1T=1|CP,i_CPi|1
90 = Tmax(c,)-min(cy)],
Xi=alCL'=CL
191 = max(:;“lL)L—minL((‘l“L) (10)
g, = Yi-alCp’i=Cp/
2= max(Cp)—min(Cp)
_ Ihalem'i=cmy
K‘g3 - max(Cp)—min(Cpp)

where, gy, g1, 92, and g, are normalized objective function for C,, C,, Cp, and Cy, respectively; g is
the common weight of C;, Cp, and C,, in objective function.

Subsequently, the population is updated using the DE algorithm, which possesses global optimization
capability, and the objective function is reevaluated. Upon meeting the optimization termination
criterion, the optimization concludes, and the optimum sensor locations x* are determined.

The final sparse reconstruction model is expressed as equation (11).
Cp = fir (€, (x") (11)
3. Basic methods

3.1 Proper orthogonal decomposition

In this work, POD is employed to extract modes from high-dimensional distributed data of various
flow properties, such as surface pressure coefficients and surface temperature. The POD modeling
process can be described as follows.
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A sampled snhapshot sequence from flow properties for various conditions by computational fluid
dynamics (CFD) simulation is described as D = [D4, D5, -+, D,.], where r is the number of sampled
conditions, D;(i = 1,2,---,r) is an n-dimensional column vector. Generally, n > r. We define the
mean flow data as D, which represents the mean of D; and is calculated by equation (12).

D=Y_,D;/r (12)
The standardized flow data d = [d,,d,, -+, d,] can be obtained by subtracting D from D. To improve
computational efficiency, snapshot-POD [21] algorithm is adopted. We define the correlation matrix
of d as € € R™", which is computed by equation (13).

c=d'd (13)
Through feature decomposition of €, the eigenvector matrix Q = [q4,9,,**,q,] € R™*" and the
eigenvalue matrix 4 =diag(14,4,,-+,4,)(4; =1, >+ > 1,) are obtained, which satisfies as
equation (14).

CQ= 2Q (14)
where §&; is POD mode and eigenvalue A; represents the energy of ¢;; we define the energy
proportion of §&; as k; = A;/X.7_, A;, which is used to evaluate the contribution of ¢; to the flow data.

The POD mode matrix ® = [¢4, P, -, P, ] € R™*" can be computed by equation (15).

¢ =dq;/ 4 (15)

We define the POD mode coefficients as a, which is calculated as equation (16).

. g
a=[a;,a,,a]=|: =~ i|=aTd (16)
a{ 'E a;

where a; = [a},aiz, ---,a{]T(i =1,2,---,r) represents the mode coefficient vector corresponding to d.
We select the first m modes to build the ROM. Correspondingly, the first m coefficients of a; are

retained: a; = [a},aiz, ---,a{”]T. Then, D; can be approximately expressed as equation (17).

DizDgz[¢1'¢2"”'¢m]'ai+l_) (17)
where D; is the reconstructed version of the original data D;.

We define the POD reconstruction error as e, which serves to compare the discrepancy between the
original and reconstructed data, assessing the degree of information loss in the POD process. This
is calculated as equation (18).

e =230, (21D} - Dyly) (18)
where [|-]|; represents the 1-norm. Generally, specifying the error threshold e, allows the value of m
to be determined when e < ¢,. Besides, the value of m can also be determined by energy proportion
analysis [22].

3.2 Radial basis function neural network

RBFNN is widely used in classification and regression due to its simple network structure, strong
nonlinear mapping ability and high modeling efficiency. As shown in Figure 4, a typical RBFNN model
includes an input layer, a hidden layer, and an output layer. Specifically, the input and output
dimension are p and m, respectively. In the hidden layer, the number of neurons is w, and the
activation function can be selected from RBFs such as the Gaussian function and the Multiquadric
function. The RBFNN model frgrnn is defined as equation (19).

¥ = frernn(€) (19)
6
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T
where, ¢ = [c1,¢5,-,¢p] ¥ = V1. Y2+, YT

Input layer Hidden layers ~ Output layer

Figure 4 — The architecture of RBFNN
4. Test case

4.1 Description of test case

The proposed method is applied to the DLR-F6 benchmark geometry, which includes the fuselage,
wing, and tail. The surface pressure coefficients are obtained by CFD simulation, and the sparse
measurements are extracted from these coefficients. The computational grid is generated using 3-D
hybrid mesh. The numbers of the volume meshes and surface meshes are 3.08 X10°% and 1.18 X105,
respectively.

The flight condition extends for reconstruction modeling are: Ma € [0.78,0.85], and a € [2°,5°]. Then
300 samples are generated using the random LHS. The density-based compressible Reynolds-
averaged Navier-Stokes solver with SST k-omega turbulent model is employed to achieve accurate
numerical simulations.

4.2 POD modeling

The dimension of the surface pressure coefficients is 88,210. Based on the characteristics of the
aircraft components, the surface pressure coefficients are divided into five groups, illustrated by five
different colors in Figure 5. Then, a POD model is established for each group, and the POD
reconstruction analysis is performed, resulting in the POD reconstruction errors corresponding to
different numbers of modes, as shown in Figure 6. The number of POD modes of each group is
determined through POD reconstruction error analysis, with the results presented in Table 1. The
results include the recommended range for the number of modes and the number of modes used in
this work. The group of wing requires more POD modes due to the strong nonlinear flow properties
caused by shock wave [23]. Through POD modeling, the flow characteristics of high-dimensional
surface pressure coefficients can be accurately described by 43 mode coefficients.

IV 111

I\/

Figure 5 — Five groups based on aircraft components
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Table 1 - The dimension and number of POD modes for each group

Group
Dimension 8882 11093 8536 20474 39225
Number of POD modes 5(= 2) 12(= 3) 6(=2) 10(= 4) 20(= 16)

4.3 Parameter analysis

This section introduces parameter analysis about the effect of weight in the objective function and
modeling sample size on the accuracy of sparse reconstruction method.

We first analyzed the impact of weight 8 on the sparse reconstruction accuracy. With the sample size
r set to 270, six different weights were set, specifically 0, 0.125, 0.25, 0.5, 1, and 2. Notably, when
B = 0, the objective function reduces to considering only surface pressure coefficients. The sparse
reconstruction model with different g was repeated modeling 20 times. The reconstructed errors of
C, under different g are shown in Figure 7. The average value E and variance § of reconstructed
errors are presented in Table 2. For comparison purposes, all results were normalized based on the
results with g = 0.

It can be observed that introducing concentrated force coefficients into the objective function affects
the reconstruction accuracy of distributed force. When g = 0.25, E and § for C,, are smaller than
those for B = 0, indicating the advantage of the devised objective function. As g increases, the
proportion of C,, in the objective function decreases, leading to an upward trend in the reconstruction
error of C,,. Therefore, a weight of 0.25 is reasonable for this problem.
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Figure 7 — Reconstruction errors of surface pressure coefficients with different weights

Table 2 - The reconstruction performance with different weights

Weight 0 0.125 0.25 0.5 1 2
E 1.00 1.0034 0.9967 1.0100 1.0074 1.0206
é 1.00 1.5842 0.3335 1.4477 0.6958 3.6002

Next, we analyzed the impact of sample size r on model accuracy. With the weight § set to 0.25, the
sample sizes were 150, 180, 210, 240, and 270. Each value's corresponding model was trained
repeatedly 20 times. The error distribution of C,, is shown in Figure 8. For comparison purposes, all
results were normalized based on the results with r = 270.

The results indicate that when the sample size decreases to 240, there is no significant change in
prediction accuracy. However, as the sample size further decreases, modeling errors gradually
increase, and the range of errors expands, suggesting a decrease in both model accuracy and
robustness. Therefore, for this problem, a sample size of 240 is deemed reasonable.

1.8

| oz ﬁ_ S iil.‘)‘) . il.(m B

150 180 210 240 270

Figure 8 — Variation of sparse reconstruction accuracy with the number of training samples

4.4 Sparse reconstruction results
We use 240 samples for constructing the sparse reconstruction model and 30 samples for
performance validation.

In the optimization of sensor locations, the initial number of sensors is set to 50, with each sensor
located at the center of a mesh element on the aircraft. Thus, there could be 88,210 possible locations
for each sensor. During optimization, if multiple sensors have overlapping locations, only one sensor
is retained. The control parameters in optimization are set as: the scaling factor is 0.8, crossover
probability is 0.4, the population size is 100, the generation is 200, and the maximum allowed
iterations without improvement is 50. Additionally, the weight § in objective function is set to 0.25
based on the analysis results in section 4.3.

The optimum number of sensors is 37, and their distribution is illustrated in Figure 9. The optimized
number of sensors in each group is presented in Table 3. It can be seen that the number of sensors
for each group is basically consistent with the number of POD modes obtained in Section 4.2,
matching the sensor number confirmation theory based on system observability and linear
independence [24-25].
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Figure 9 — Optimum sensor locations (red points on the surface)

Table 3 - The number of POD modes and the optimum number of sensors for each group

Group
Optimum number of sensors 3 5 5 6 18
#
i [ £
- i
—
PR
(a) Reference (b) Reconstructed (c) Reconstruction error

Figure 10 — Sparse reconstruction results of a test sample (Ma = 0.7672, a = 3.34°)
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Figure 11 — Sparse reconstruction results of a test sample (Ma = 0.8338, a = 4.47")

The final sparse reconstruction model for surface pressure coefficients can be built based on the
optimum sensor number and locations. Figure 10 and Figure 11 illustrate the reconstruction results
for two test samples with various flight conditions. It is obvious that the reconstructed surface pressure
coefficients agree well with the reference values in most regions, but there are noticeable errors in
the central region of the upper surface of the wing. These errors are attributed to the linear
assumption in POD [23], resulting in higher POD reconstruction error in the region with shock waves.
As the region with large prediction error only occupies a small portion of the entire aircraft surface,
the lift, drag, and moment coefficients obtained by integrating the predicted pressure coefficients,
have small prediction errors, as shown in Figure 12. The maximum relative error for the lift, drag and
moment coefficients are respectively 0.16%, 0.18% and 0.09% of the 30 test samples. The predicted

10



SPARSE RECONSTRUCTION OF SURFACE LOADS ON AIRCRAFT USING POD AND RBFNN

results above indicate the proposed sparse reconstruction model can reconstruct surface loads on
aircraft in good accuracy, with as few sensors as possible.
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Figure 12 — Predicted results of concentrated forces

5. Conclusion

In this work, a sparse reconstruction model was developed based on POD and RBFNN, and an
enhanced objective function by integrating the distributed force. The proposed model was validated
by sparse reconstruction of surface pressure coefficients on aircraft DLR-F6. The conclusions can be
summarized as follows:

a. For sparse reconstruction problems involving complex shapes, modeling can be performed by
partitioning based on component types or aerodynamic data characteristics.

b. Introducing the integral of surface pressure coefficients into the objective function of sensor
optimization and setting appropriate weight can improve the spare reconstruction accuracy of surface
pressure coefficients.

c. Sparse reconstruction errors are mainly concentrated on the upper surface of the wing. This is
because this region contains strong nonlinear features, and the POD, based on the linearization
assumption in the model, cannot effectively achieve high-precision reconstruction of pressure
coefficients.
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