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Abstract

This paper presents an application of data-driven modeling and control for the dynamics of a fixed-wing aircraft.
Sparse identification of nonlinear dynamics (SINDy) and least square method (LSM) are used to obtain a data-
driven aircraft model. Using the data-driven model, attitude control simulations are performed using nonlinear
model predictive control (NMPC). Simulation results demonstrate that the data-driven model using SINDy can
represent aerodynamic nonlinearities compared to the model using LSM. This difference leads to significant
performance improvements in the NMPC.
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1. Introduction

Uncertainty in models due to nonlinearities remains an unresolved challenge in the field of aeronau-
tics. This is because the nature of aircraft model uncertainty results from unexpected or unpredictable
conditions caused by various features. Those small model uncertainties can even cause serious fa-
tigue to pilots in flight control, and if combined with human errors, such as unskilled pilots, catastrophic
disasters can occur. The aerodynamic model, one of the sources of uncertainty, significantly impacts
aircraft. Therefore, in conventional aircraft, it is common to define the stall envelope based on the
angle of attack, where nonlinear aerodynamics occurs. In addition, multiple safety mechanisms are
implemented to avoid reaching the stall angle of attack regions [1].

Special aircraft that require high-performance need to make steep maneuvers, such as entering the
stall envelope. Therefore, knowing exactly the aerodynamic force in the stall envelope is a highly
important task in terms of flight stability. Consequently, it can affect the margin design of the flight
control system [2, [3]. However, there have been wind tunnel tests and computational fluid dynamics
to determine the aerodynamic characteristics of aircraft, all of which have a gap with the aerodynamic
characteristics of the full model of the aircraft just before the actual flight. [4] 5].

As a solution to these problems, there is a system identification technique using data, which is a
rapidly evolving field called data-driven modeling [6} [7]. In particular, the method is useful for discov-
ering the dynamics of nonlinear systems that are difficult to model in advance through engineering
schemes.

Neural networks are implemented using massive connections among processing units with variable
strengths, and it is attractive for applications in system identification and control [8]. Gaussian pro-
cess (GP) is widely used in system modeling and control of dynamic systems because of its non-
parametric characteristic and the advantage that it works properly in noisy, uncertain situations [9,[10].
Koopman operator theory, which is the principal linear embedding of nonlinear dynamics, has recently
emerged as the leading framework to identify nonlinear dynamical systems from data [11].

The least square method (LSM) is a parameter estimation method based on minimizing the sum of
the squares of the residuals from the results of each individual equation in a regression analysis.
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LSM is a powerful tool for handling big data for regression and fitting to linear models. These char-
acteristics lead to the usage of LSM in an estimation of aircraft coefficients [12] through flight data. It
shows that LSM can estimate the aerodynamic coefficients in every axis, assuming the structure of
the aerodynamic model is known.

Sparse identification for nonlinear dynamics (SINDy) is a data-driven model discovery framework,
one of the emerging system identification methods using sparse regression [13, 14, [15]. This method,
which extracts only the key state of the nonlinear model from the candidate function through sparsity-
promoting optimization, can estimate the governing equation of the nonlinear target model [16]. Also,
SINDy is implemented in the quadrotor system, including the gyroscopic and aerodynamic effect to
find a governing equation [17]. For the convenience of SINDy, it is chosen as the data-driven method
for this research. LSM is also used to compare with SINDy and to validate itself. Therefore, the aim
of this paper is to compare two data-driven methods for aircraft and implement a nonlinear model
predictive control (NMPC) by data-driven models to improve flight performance.

The remainder of the paper is arranged as follows: Section 2 introduces aircraft dynamics and model
configurations. Section 3 explains the methodology for applying data-driven methods to the discov-
ery of aircraft dynamics. Section 4 presents a process and results of data-driven modeling with LSM
and SINDy. Furthermore, Section 5 shows flight simulation results using the discovered model with
NMPC. Finally, Section 6 gives the conclusions.

2. Problem Formulation
2.1 Aircraft Dynamics
2.1.1 Motion & Kinematic Equation Modeling

Aerodynamic forces and moments in the body-fixed coordinate are expressed as [Fy acro, Fy.ero, Fz Acro)
and [Laero, Maero, Naero), respectively. On the same axis, velocity and angular velocity are described
as [U,V,W] and [p,q,r]. ¢ and 6 represent roll angle and pitch angle, which refers to the angle of
attitude of the aircraft defined as the difference between the body-fixed coordinate and the earth-
fixed coordinate. T means the thrust of the engine assumed to be parallel to the x-axis in body-fixed
coordinate. Finally, m and [I., 1y, I;;] represent the mass and moment of inertia of aircraft. Assuming
a conventional symmetrical configuration, 6-DOF motion equations of fixed-wing aircraft [14, (15, 18]

are given in (1) to (6),
1

2
F; pero =m(W —Uq+V p— gcosdpcos0), 3

Fypero =m(U —Vr+Wgq+ gsind) — T, (1)
(2)

(3)

Laero = Lep + (I; — Ly)qr, (4)

(5)

(6)

Fypero =m(V +Ur—Wp — gsingcos0),

Maero = Lyyg + (Ixx - Izz)pra 3
NAero = Izzf+ (Iyy - Ixx)pq~ 6

And kinematic equations are as follows:

¢ = p+gsindrand + rcosprand, (7)

0 = gcos¢ — rsing. (8)

Aerodynamic models consist of variables with a, B which describe angle of attack and angle of
sideslip in the wind axis coordinate. These can replace V and W in (1) to (3) below:

a:tarfl(%) < W =Utana, (9)
LV

B =tan (E)HV:Utanﬁ. (10)
W = Udsec’a, (11)
V = UPBsec?P. (12)

2
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Therefore, (1) to (3) become as:

Fy pero = m(U — rUtanf + qUtana. + gsin€) — T, (13)
Fypero = m(U Bsec* B +Ur — pUtana — gsingcosh), (14)
F, pero = m(Udasec? o — Uq + pUtanB — gcosdcos8). (15)

2.1.2 Aerodynamic Equation Modeling

The aerodynamic force and moment can be explained as the sum of stability derivative terms and
control derivative terms. Each term is gathered from aerodynamic analysis methods such as wind
tunnel tests and computational fluid dynamics simulations.

The aerodynamic data utilized in this research originates from internal sources via wind tunnel testing.
The initial raw data is presented as a look-up table containing numerous data points. The look-up table
format is reorganized to a non-linear function format in order to focus on the identification of non-linear
dynamics as the main topic of this research. Therefore, the aerodynamic force and moment equation
is expressed as the linear combination of various non-linear state terms as follows:

Fy Aero = (éLsina — C‘Dcosa)chw, Fyhero = CyqS,, F, pero = (—éLcosa — C‘Dsina)qu, (16)
Laero = (Crcosat — Cusina)GSywb, Mpero = CugSué, Naero = (Cpsina +C,cosa)gsS,,b, 17)
where,
éD = f(lva’azaﬁzaa37a47a576€leaaaeleaSzudvﬁsid)a (18)
A b
Cr =1 (BB, B BB Sua Bdua) +Ci 5y (19)
Cu= (1, 0,0, B 0, 0B, Buse, 88use) +Cry - (20)
T
A 2 3 dp 203 bp br
Cr:f(ﬁaaﬁ7ﬁ ,OCB & Bva ﬁ 75ai17B5ail76rud7ﬁ5rud)+Crp7+cr,77 (21)
2Vr 2Vr
Co= f(1,a, 02,0, a2, a, 2B, B, Sote, 0Bt +Cmq%, (22)
T
A 2 23 R3 p4 RS 2 bp br
Cn:f(ﬁ7aB7B 7[3 ,(Xﬁ 7ﬁ 7[3 78ai1735a1.l750ﬂ’6rud7ﬁ5rud)+Cnp7+Cnr77 (23)
2Vr 2Vr
with
_ 1 V2
q= 2p T> (24)

Vr = VU +V2+W2,

Co refers to the non-linear aerodynamic coefficients for brevity. [Cp,Cy,C;] and [C,,C,,,C,] are force
and moment coefficients of X,Y,Z axis defined in stability coordinate. Each of p, S, ¢, b represents
the air density, reference wing area, mean aerodynamic chord length, and wing span of the aircraft.

Substituting and (17), the dynamic model can have a form of the differential equation like to

(30).

- Gsina—C T
U= Lsino Dcosaqsw —gsin@ + — — gW —rV, (25)
m
; Cyas,, 2
B= (& + gcosOsing —rU — pW) cos”3 7 (26)
" U
_C a — Crsino »
o= ( LCOS psin GSw + gcosOcosd — pV — qU) co;] ’ -
m
= (Greostt = Cusina)qSyb — (I~ Ly)qr. (28)
Ixx
CnGSé — Iy — 1.
q- — mq wC I( X Zz)rp’ (29)
yy
o (Gysinot+ Cucos0)qSub — (hy — L) Pg. (30)

I Z
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2.2 Aircraft Model Configuration
In this study, a Korean single-turboprop two-seat trainer aircraft, KT-1 in Figure [1]is selected as the

model for simulation and analysis. The specifications and configurations of this aircraft [19] are as
follows in Table[dl

Figure 1 — KT-1 prototype in Korea war-memorial organization exhibition.

Length [m] 10.26
Wingspan [m] 10.59
Aspect ratio 7
Wing area [m?] 16.01
Gross weight [kg] 2,450
Powerplant Pratt & Whitney Canada PT6A-62 turboprop engine

Table 1 — Detail characteristics of KT-1.

There are some advantages to choosing a conventional trainer aircraft as the target model. First, it is
possible to prove the validity of the estimated model from system identification. Both precise dynamic
models and flight data are essential for reliable system identification. If you select a small fixed-wing
UAV as the target aircraft, it might be easy to measure flight data through a real flight test. However,
it would be hard to validate the reliability of the estimated model because of the lack of a ground
truth model as a comparison model. With trainer aircraft, almost true flight data can be gathered
through sophisticated simulation models via an accurate aerodynamic model from numerous wind
tunnel tests. Additionally, it is appropriate for testing non-linear coupled flight phases like a high-
maneuver since the performance of the identification method is determined by how robust they are in
the non-linear region.

3. Data Driven Model Discovery Methods

3.1 Sparse Identification of Nonlinear Dynamics

In recent times, while machine learning modeling techniques have found extensive applications
across various engineering domains, they often fail to offer a significant representation of the sys-
tem and require substantial data to train the model. The SINDy method, however, has the benefit of
deriving governing equations for target systems with less data compared to traditional deep neural
networks. The main concept is to identify a sparse model from a set of candidate functions, under
the assumption that a few functions with dominant system characteristics. Then, to obtain the sparse
model, we consider the continuous-time nonlinear system

X =0(X,U)z, (31)

where Z is the coefficient of the model, ® is the library of the candidate functions and X is the time
derivative of the state.
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Figure 2 — Concept of SINDy.

To find the sparse model, we collect the sequential data of state to make the snapshots of state and
control input as:

xi(t) x(t) - x(fh)

A (@2)
$iltn) 3(tn) - i) |
ur(ty) waty) - up(tr) |

yo | 0 el e mle) (33)
waltn) wltn) - ) |

If we do not measure this value directly by the sensor, we should use a numerical differential method
to obtain the state’s time derivative.

Xl(tl) Xz(l‘l) Xn(tl)
O e (34)
xX1(tw) X2(tm) -+ Jn(tm)

The library of candidate functions is designed including any type of function such as polynomial,
trigonometric, and exponential functions. If we know the prior information of the system, some func-
tions are utilized in the library of candidate functions to enhance the model accuracy.

I | | |
OX,U)=|1 X U X®X - sin(X) - |. (35)
I

where x ® y defines the vector of all product combinations of the components in x and y.

In the regression problem, L; regularization promotes a sparse solution in the coefficient £, which is
an element of E. We use a sequential threshold least square algorithm (STLS) [13] to obtain a sparse
aircraft parameter. The sparse regression problem is formulated as follows:

_ . . -~ 112 —_
ak:argmlnHXk—®(X,U):k ‘2+7L\|ak||1, (36)

where A is the regularization parameter that induces sparsity as L; penalty.
5
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3.2 Least Square Method

Assuming that the true structure of a dynamic model is known, the general least square method (LSM)
can be applied to estimate the uncertain parameters. Although the actual aerodynamic model of an
aircraft is highly nonlinear and complicated, a simplified aerodynamic model has been widely used
by control engineers because of its utility. With these concepts, a simplified model can be considered
as the basis of a known structure with LSM.

Simplified aerodynamic model is defined as:

Fx7Aero = C‘XqSW7 Fy7Aero = €YqSWa Fz,Aero = éZqSW7 (37)
Laero = élq_wa7 Mpero = CquwC_7 Naero = quswba (38)
where
Cx = Cx, +Cx,00+Cx , 0’ + Cx;, Oelvs (39)
~ ~ ~ ~ bp br
Cy = Cyb,ﬁ + CY%'I Ouil + CYam Orud + Cyp v, + Cyr v, (40)
CZ = CZO +Czaa+éza2 az_i_ézée[ 5elv+CZq 2V (41)
S =C.B+C), Su+Ci & bp ¢, br 42
Cl - Cl/jB + Cl&ail ail + Cl(;m rud + C]’) 2V + Clr 2V ( )
CNvm = Cmg + Cma o+ é);léel 5elv + Cmq 2‘3 (43)
Co=Co B4Co St +Cor Sraa+Co 2216, 2 (44)
n — “ng ng. ail ng.. rud np 2V ny 2V

[Cx,Cy,C7] and [C;,C,,, C,] are simplified force and moment coefficients of X,Y,Z axis defined in body-
fixed coordinate.

To determine the simplified pitching moment coefficients C,, using LSM, proceed as follows.
Equation and Equation can be rewritten as follows:

1=X0+e¢, (45)
where
— Lyg(t)+(La—L)r(t)p(t1)  Lyq(t2)+la—1)r(t2) p(t2) Lyyq(tm)+ (Lex— I ) (t) P (tm) r
z—{ oA G(1)Swe s e 7(1)Swe PR TS . ; (46)
1 a(t)  Oev(t) 2%;(81))
eq(t2)
e |1 w | .

1 a(ty) Ger(tm) zcxgr(?t")) i

6=[Cu Cuu Cy, Cn, }T, (48)

« ely
e=[et) en) - en)' ] (49)
The vector z and the matrix X are constructed using the measured data. Especially, the derivative
term, ¢ in z is computed with a numerical differentiation of measured angular rates, ¢. From an LSM
perspective, the most reliable estimate of 6 is obtained by minimizing the sum of the squared differ-

ences between the measured output z and the model output y = X 8. Accordingly, an optimal least-
squares solution that minimizes the cost function:

J(6)=-(z—X6)T(z—X6), (50)

can be calculated with
6=x"x)"'x"z. (51)
The same methodology can be applied to the estimation of other aerodynamic coefficients.
6
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4. Data-Driven Model Discovery
4.1 Trim Point Design
The take-off and landing phases are not considered in this paper since flight simulation starts at the

steady-level flight trimmed state. Through Equations (7)), (8) and to (30), trim point is computed
in conditions: U =B = &= ¢ = 8 = p = g = r = 0. Results of the trimmed condition of aircraft are given

by Table 2|

Parameters Values | Units
Altitude(h) 10,000 ft
Air Density(p) 0.9105 | kg/m’
Thrust(T") 2090 N
Airspeed(Vr') 105 m/s
Angle of Attack(ca) 2.395 | deg
Pitch Angle(6") 2.395 | deg
Elevator Deflection Angle(d,;,") 1.1 deg

Table 2 — Trimmed condition on steady-level flight.

Equation to Equation can be rearranged by considering «, 6, 8., as the sum of trimmed
states(o/, ', §,;,') and perturbations:

a=o + &7 6=0 + é7 Selv = elvt + Selv- (52)

Using perturbations as the states instead of true states makes constant terms of (20), (22), and
to (30) cleared. This form of rearrangement can help to reduce the steady-state error.

4.2 Control Input Scenario Design

Appropriate control inputs play a key role in improving the performance of system identification. Es-
pecially, it has a significant impact on data-driven modeling due to its requirement for huge amount
of data. In this study, we explore the optimal control input that maximally stimulates multiple atti-
tude states while preventing the aircraft from stall. Through heuristic trial and error, the control input
scenario takes the form of Figure 3

1 | I 1
20 40 60 80 100 120 140 160 180

10F T T T T T T T 3
<
> oF =
GJ
b u

_ I I I I I 1

0 20 40 60 80 100 120 140 160 180

10 T T T T T T

| ¥ 1 1
0 20 40 60 80 100 120 140 160 180
time (sec)

Figure 3 — Control surface deflection scenario over time for system identification.
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4.3 Model Discovery with SINDy
With logged time-series data about states of [U, B, a,p,q,r, ¢, 0] by control input in Figure 3| SINDy
algorithm is defined as follows:

X:[U7B7&7p.7q.7’;‘7¢7é]7
X= [Ua ﬁa &7 P, 4,7, (Pa é]v U= [Saila 6elva 6rud]a (53)
OX, U) =1, X1, .., Xg, U1, U2, U3, X125 X1XD erey XIXy wovy XU, oy U3Z, crey XDy erey XG°y oony U]

The fidelity of the SINDy method is demonstrated by the comparison of X data between the discov-
ered model from SINDy and the true model. The results are given in Figure [4]

‘—True model —---- Discovered model from SINDy‘
10 F 9
10+ ]
o 20¢ 1
o 0
ay 20 |

100 |
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-200 [
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P /5)
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o 507 1 % 20¢
< o o 0
20 ¢
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Figure 4 — State derivatives comparison between the model from SINDy and the true model.

The coefficient matrix(Z) results that obtained by SINDy are shown in and Table [4] in Appendix
A. The truncated functions are omitted from the total number of 364 candidate function terms in
In the process of choosing the magnitude of the regularization parameter, A, the number of active
terms is considered to be around 15. Each size of component in lambda is set manually to optimize
for each state variable. The regularization parameters finally decided are as follows:

A =1[90, 0.62, 5, 9.8, 12, 6, 1.8, 0.4]. (54)

4.4 Model Discovery with Least Square Method

The aerodynamic coefficients of [Cy,Cy,Cz] and [C;,C,,,C,] are identified by using LSM as given fol-
lowing Table 3]

[Cx,. Cx,. Cx,o, Cx,, | [0.0208, 0.0013, 3.98e-04, -4.688e—04]
[Cy,. Cr,.. O, . G, Cy]1 | [0.0161,0.0011, 0.0011, -0.2118, 1.9244]
[C, Cz. Cz,0. Cz,, . Cz,] | [0.0496, 0.0915, -4.09¢-04, 0.0375, 65.66]
[C,. Gy, G, . Gy, G,] | [-0.001,0.0014, -1.37e-04, -0.4959, 0.0412]

[Coy> C Cng,» o] [0.0523, -0.0139, -0.0176, -15.57]

[C‘nﬁ, Cas, > G Gy, G,,] | [0.0019, 1.49e-05, -0.0018, -0.0568, -0.2943]

n5ru11 ’

Table 3 — Estimated simplified aerodynamic coefficients from LSM.

8
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In Figure [B] there is an estimation error between the true model and LSM driven model. That error
is inevitable, caused by the lack of coupling terms in to (44). Generally, those minor errors are
considered model uncertainty and covered with the marginal design of the control system.

|—True model

0.01F

G

-0.01 1

0 50 100 150 0 50 100 150
time (sec) time (sec)

Figure 5 — Comparison of aerodynamic model between the model from LSM and the true model.

4.5 Discovered Model Validation with Control Input

Final Validation of each discovered model is performed to check the damping performance compared
to the true model. The serial doublet signals are input to each control surface to check the responses
of each axis. The control inputs of each surface and the results of model validation are shown in
Figure [6|and Figure[7]in each.
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Figure 6 — Control doublet inputs for model validation.

In Figure 7], the discovered models show proper damping responses after doublet input. It is demon-
strated that the discovered models from both SINDy and LSM have a high enough model fidelity to
be used for control system design.
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Figure 7 — States comparison of true and discovered models after doublet input.

5. Model Predictive Control

Model predictive control (MPC) has become a prominent control theory that anticipates the reference
state and output within future time windows, known as the prediction horizon. In real-time implemen-
tation, finite-horizon optimization is conducted on the dynamics model to ensure the convergence of
the future predicted output to the reference trajectory as follows in Figure [8. The key objective is to
minimize the objective function, resulting in an optimal sequence of control inputs that consistently
adhere to constraints at each time point [20, 21].

|-+ Reference Trajectory
——Measured Output
|=——Predicted Control Input
|= -Constraints

A
PAST FUTURE
| —p

v

Prediction Horizon
K K+1 K+2 e K+p

Figure 8 — Concept of model predictive control.

The combination of SINDy, which can discover the dynamics model of the system with minimal
prior information, and MPC, which provides stable constraints, will show strong control performance
against the uncertainties mentioned above [22, 23, 24].

5.1 Numerical Simulation

Control via NMPC is performed to verify the performance of data-driven modeling. In particular, the
true model, SINDy model, and LSM model are each used for NMPC under the same conditions. The
optimized inputs generated from them are fed into a simulation environment configured based on
the true model to compare the fidelity between the models. The concept diagram of NMPC with the

10
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data-driven models is shown in Figure [9]

Measured States

Nonlinear MPC

e

Discovered Model \
( 0 True A/C Model
I; 2
itk oy, Ytk é SINDy-Driven Model

input True A/C output

3 L u; Simulation i
‘o~ LSM-Driven Model
\ Control Optimizer J

Figure 9 — Diagram of nonlinear model predictive control for data-driven model validation.

reference
—_—

Ty

The optimal control inputs by NMPC are computed over a prediction horizon to minimize a cost
function J defined as:

mp_l 5 me—1 )
=@ 8yl RS (55
k=0 k=1

subject to the discrete-time dynamics and constraints with time step Ar, prediction horizon T, = m,At,
and control horizon T. = m.At. The cost function aims to minimize gaps between the predicted states
% and the reference trajectory r, and the size of the rate of control surface deflection Au. Both of terms
are weighted by Q, Ry, matrices each.

The detailed parameters for NMPC are set as follows:

X= [U7 Ba &7 p, 49,71 ¢7 é]Tvu: [aaila Selw 5rud]Tamp: 157 me = 157 AIZO.IS,
Q = diag(0, 0, 0, 0, 0, 0, 3, 3), Rau = diag(0.002, 0.002, 0.002),
lor] <20°, |B] < 10°, |6] < 45°

Constraints = . R R
|6git] < 25°, |Oerv] < 25°, |Spua| < 25

with an initial condition as the trimmed condition in Table 2|

The reference trajectory is designed to reflect the target aircraft’'s high-maneuver characteristics ap-
propriately. The optimized control inputs of each surface and the output states through NMPC are
shown in Figures [T0]and [T1]
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Figure 10 — Optimized control inputs for nonlinear model predictive control.
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In Figure [T1] both of the models from SINDy and LSM perform well enough to be used as a target
model for NMPC compared to the true model. Nonetheless, due to the absence of coupling terms,
the SINDy model performs more like the true model case in the region where the model is highly
nonlinear. This leads to a difference in settling time in the longitudinal axis between the SINDy model
and the LSM model. The difference of overshoot percentage in the lateral axis is observed either.
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Figure 11 — Output states through nonlinear model predictive control with true model, SINDy driven
model, and LSM driven model.

6. Conclusions

The methodology for discovering nonlinear dynamics of aircraft using SINDy and LSM with measured
state variable data is proposed to implement NMPC. By comparing SINDy and LSM, SINDy shows
good prediction performance by considering the nonlinear coupling effect so that SINDy shows im-
provement in control performance. This demonstrates that SINDy is a proper method of modeling
nonlinear near-stall envelopes for fixed-wing aircraft, especially for high-performance trainer aircraft.
Only, all the above research was performed without consideration of system dynamics such as model
delay, measurement noise, and native sensor errors. Therefore, a follow-up study could be done to
obtain similar simulation results with a system model and noise.
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9. APPENDIX A

O(a) = d? q, Selva Uza Ua7 Ugelw BP7 a(pa f]¢7 ¢S€ZV7 U37 Uzdv U2617 U2S€l\)7 U(Nx¢7 UCI(ba U¢Selv]7
®(]9 = Bv 5aila Uﬁ» Up, U5aila ﬁ&, &Sruda U2ﬁ7 Uzsaily Uzsrud’ Uﬁ&> U&Sruda ﬁaza qSeZVSruda Sezlvsrud]a
O(q

[
[
[
[
=&, q, 6, U, Uqg, UB, Ub,y,, Uq, U*B, U*b,p,, &3, &*8.1, 053],
[
[
[

®(¢ = 1P, 6tlil7 U(Suila ﬁzv Barmb 6”'7 ré, 6rud27 U26uila Uﬁza Uﬁ(sruda U&I’, U6rud2a CI‘Pé],
®(é =19, Selw Ugelw 556], (ngelvv 6127 qSelw rq)a U2q7 UzSelv: U(NXQ7 Uagelv; U6127 UqSelva qd)Z]‘
(57)
E=1[8 & & &4 & & &7 &3

&1 & &3 G4 S S6 &7 S8
Eo(1) -8.551 0.049 3.5577 1.6878 11.0379 1.8315 0.9996 0.9753
&o(2) 0.227 -0.9799 0.4714 -0.0592 -2.6068 -0.071 -0.0079 | 9.29e-04
Eo(3) 0.153 0.3573 0.0436 -0.0303 -1.1706 0.022 1.45e-04 | -5.31e-05
Eo(4) -0.041 -0.0022 1.27e-05 -0.043 -0.1816 -0.0126 -3.8856 0.2737
&o(5) -0.201 -0.0047 -0.0906 0.0014 0.0256 -0.037 0.1257 0.0178
Eo(6) | -0.0046 0.974 -0.0015 15.598 0.0246 0.0015 -1.4878 -0.0425
Eo(7) 1.205 -0.0035 -0.9527 -0.1873 | -5.49e-04 | -1.52e-04 | 0.9331 -0.0027
Eo(8) 0.0011 0.0058 1.4075 -6.75e-04 | -2.2e-04 0.2324 | -8.25e-04 -0.93
Eo(9) | 2.25e-05 | -2.48e-04 1.067 1.83e-05 | -1.28e-04 0.01 -6.42e-07 | 2.08e-06
Eo(10) 1.086 -2.41e-04 0.0799 -4.74e-06 | -2.34e-05 | 6.92e-04 0.0397 4.23e-07
Eo(11) 0.734 1.917e-05 | -1.21e-07 | -0.4947 -110.5 1.693e-04 | -0.0014 -0.0023
Eo(12) | -1.042 4.59e-05 | 3.96e-04 0.0038 -1.007 -6.88e-05 0.0156 | -1.69e-04
Eo(13) | -0.0172 | -6.01e-05 | 3.671e-05 | -56.65 -0.023 -7.04e-06 | 9.89e-06 | 4.99e-04
Eo(14) - -3.27e-06 | 9.35e-06 -0.009 - -1.04e-05 1.0095 | 3.46e-05
Eo(15) - 3.08e-06 -0.014 -4.84e-04 - -0.0016 - -0.479
£o(16) - - -0.01 - - -4.02e-05 - -
Eo(17) - - -7.57e-04 - - 21.99 - -

Table 4 — Sparse coefficient matrix.
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