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Abstract 

During the design, manufacturing, testing and flying of launch vehicles, there are numerous uncertainties of the 
system and operating environment that affect the design. Uncertain Multidisciplinary Design Optimization 
(UMDO) is an effective method for evaluating these uncertainties, but it can be challenging to apply it in 
engineering problems due to high computational costs and slow convergence. To address this issue, we 
propose a high-fidelity distributed UMDO architecture based on Multiple Discipline Feasibility (MDF). In this 
architecture, surrogate models are used to quickly evaluate off-line aerodynamic forces and loads instead of 
conducting aerodynamic discipline analysis.  Moreover, we propose to construct uncertainty surrogate models 
by combining the Maximum Entropy (MaxEnt) for the aerodynamic, engine and structure disciplines to quickly 
evaluate uncertainties, allowing for efficient solution of the UMDO problems. The proposed UMDO architecture 
is verified with a liquid launch vehicle optimization problem, and the results demonstrate that the distributed 
UMDO architecture based on surrogate models can effectively obtain the optimum solution.  

Keywords: Uncertainty Multidisciplinary Optimization, Uncertainty Quantification, Surrogate model, Launch 
Vehicle Design 

 

1. Introduction 
The design, manufacturing and operating of launch vehicle are greatly impacted by many 

uncertainties stemming from simplified models, material properties and environmental factors, which 
can lead to system failure[1]. In order to ensure the reliability and safety of the system, uncertainty 
multidisciplinary design optimization (UMDO) technologies are used to solve the launch vehicle 
optimization problem under uncertainty[2]. A UMDO process involves multidisciplinary analysis (MDA) 
to obtain the system response, uncertainty analysis (UA) to acquire system uncertainties, and 
optimization (OPT) to achieve the optimal design[3]. There are three UMDO architectures based on 
the loop and the nesting format: the basic architecture OPT-UA-MDA, distributed architecture OPT-
MDA-UA, and decoupled architecture OPT-MDA+UA-MDA. 

In the basic architecture, MDA is nested within UA as a black-box, of which the state variables are 
deterministic. This architecture does not introduce additional constraints or errors, but it has the highest 
computational cost[4]. The decoupled architecture decouples the UMDO as a loop of Multidisciplinary 
Optimization (MDO) [5] of OPT-MDA and an uncertainty analysis of UA-MDA [6][7]. The uncertainty 
indicator or standard deviation is propagated between the MDO and UA. Additional constraints are only 
satisfied in the optimal solution to ensure its feasibility. 

In the distributed architecture, the UA is carried out for each discipline, and the uncertainties of 
state variables are propagated through MDA[8][9]. During uncertainty propagation, the sampling of 
design and state variables are independent for each discipline. This architecture does not introduce 
additional constraints, and it shows lower computational cost than the basic architecture[10]. The 
architecture has more potential in industrial applications because it would not change the existing 
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design process and specifications. However, since it requires tens of thousands of calls to time-
consuming high-fidelity discipline models in each uncertainty analysis, the UMDO problem cannot be 
directly solved based on expensive high-fidelity discipline models. 

The use of surrogate models is an efficient method to reduce computational cost in solving 
uncertainty analysis and optimization problem[11][12]. In the distributed UMDO architecture,  surrogate 
models can be used to replace the discipline analysis and discipline uncertainty analysis with 
parametric inputs and outputs. Such technique is coined surrogate-based UMDO, in which the 
uncertainty quantification of design and state variables usually adopts a Gaussian distribution or 3-σ
criterion[13][14]. Hence, accurate uncertainty quantification methods are needed for solving nonlinear 
problems and problems with high-dimensional state variables such as distributed aerodynamics 
coefficients. 

In order to address the above problem, this paper proposes a unified parametric distributed UMDO 
architecture  based on surrogate models. The MDF is selected as the basic form of the distributed 
UMDO architecture, whose discipline analysis and discipline uncertainty analysis are approximated by 
the surrogate models. Then we first use the POD  to transform the uncertain high-dimensional data to 
independent variables, and the statistical moments of those independent parameters, solved by 
MaxEnt, are used as the unified parameters for quantifying uncertain high-dimensional data. Thus we 
can build surrogate models with the unified parameters for replacing the discipline analysis and  
discipline uncertainty analyses. The proposed architecture is validated on a liquid launch vehicle using 
high-fidelity discipline analysis models, and it demonstrates effective capabilities for solving UMDO 
problems. 

2. Proposed Distributed UMDO Architecture 

2.1 General Form of the Distributed UMDO Architecture 
The MDO of the launch vehicle is a loosely-coupled problem. The thi  discipline model of the 

system can be expressed as ( , , )i i i i if −=y x y d , where ix  is a vector of design variables, 
( ) ( )[ , ..., , , ...]1 1 1i i i− − − − +=y y y y  is a vector of state variables, and id  is a vector of parameters. We use the 

subscripts D to represent determinacy and U to represent uncertainty, thus the general form of the 
UMDO problem can be written as: 
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where k  is the number of disciplines and g  is the vector of constraints. The general distributed UMDO 
architecture consists of a three-layer loop consisting of optimization, uncertain multidisciplinary analysis 
(UMDA), and uncertain disciplinary analysis, as is shown in Figure 1. In terms of the architecture, the 
distributed UMDO architecture involves uncertainty analysis of the multiple disciplines and uncertainty 
propagation of the state variables in the MDA. The keys to solve the problem in Equation (1) are the 
uncertainty quantification and propagation.  
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Figure 1 Schematic diagram of the general distributed UMDO architecture. 

2.2 Parametric Uncertainty Quantification 
The parametric uncertainty quantification is used to describe the probability distribution with 

several parameters. The procedure of the parametric uncertainty quantification is shown in Figure 2. 
The input of the uncertainty quantification is a sample set Z  of a random variable z , and the output is 
a matrix μ  of quantified parameters. Details of the process are described as follows. 

 
Figure 2 Procedure of the parametric uncertainty quantification. 

Step 1. If variable z  is a high-dimensional data, it is necessary to transform z  to an independent 
variable vector by Proper Orthogonal Decomposition (POD). Let ×= ∈1 2[ , ,..., ]m n mZ z z z   be a sample 
set of z , where m  is the number of samples, and n  is the number of dimensions. When ( ) n∈z   is 
the mathematical expectation of z , the covariance matrix cov

n n×∈U   can be obtained by 
( ) ( )
( ) ( ) ( )
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By solving the characteristic equations of the covariance matrix, we can obtain the eigenvalue 
vector χ χ χ T

1 2=[ , , ..., ]nχ  and ×= ∈1 2[ , , ..., ] n n
nξ ξ ξΞ  of covU . Then χ =( 1, ..., )i i n  are sorted in a 

descending order, and ( )1, ...,i i n=ξ  are sorted accordingly. The truncated order s , which is also the 
dimension of the parameters after reduction, is selected by energy proportion ec : 
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where  ε ∈ [0.95, 0.9999] . The s eigenvectors form the mode matrix ×= ∈m 1 2[ , , ..., ] n s
sU ξ ξ ξ . Then the 

according  model coefficients matrix V  can be obtained by 
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The n-dimensional high-dimensional data z  can be expressed by a s-dimensional independent 
uncertain vector v  with the sample set V . If z  is numerical value, v  can be obtained by ×= ∈ 1nv z . 

Step 2. If v  is an uncertain vector, the statistical moments of v  are computed as the quantified 
parameters. Let ( )μ = v  be the mathematical expectation of v , the thk  central moment 

( 2, 3, ...)kμ k =  can be obtained by sample set V :  



A Distributed UMDO Architecture Based on Surrogate Models for Launch Vehicle Design 

4 

 

 

( )
1

1 m ki
k

i
μ v μ

m =

= −∑       (5) 

Then the vector of the moments is [ ]2, , ... k
kμ μ μ= ∈μ  . Since v  consists of s-independent 

variables, 1μ  to sμ  are computed independently.  
Step 3. Form the parameters matrix  ×= ∈T
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The 1st  column represents the expectation vector ( )v , and the others represent the moments. 
If z  is a deterministic value, 1s k= = , and  = 1[ ]μμ . If z  is an uncertain value, 1s = , 1k > ,  and 
= 1 1, 2 1,[ , , ... ]kμ μ μμ . If z  is a deterministic high-dimensional data, 1s > , 1k = , and = T

1 2[ , , ... ]sμ μ μμ . If 
z  is an uncertain high-dimensional data, 1s > , 1k > . 

By the above way,  a set of samples of the state variables can be parameterized as μ . Then the 
inverse parameterization for obtaining a set of samples under the given μ  is shown in Figure 3. The 
inverse parameterization procedure also consists of three steps. 

 
Figure 3 Procedure of the inverse parameterization. 

Step 1. If 1k > , μ  represents an uncertain variable. For each row of μ , the probability density 
function (PDF) ( )p x  is calculated via Maximum Entropy that builds an analytical function of: 
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where ( )0, ...,iλ i k=  are the coefficients of the Lagrange Multiplier Method. Then [ ]T1,... kλ λ=λ  can be 
obtained by solving an optimization problem: 
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The Differential Evolution (DE) is used to search for suitable initial values of λ , and then the SD 
algorithm is used to solve the above optimization problem in Equation(8). Then with the optimal 
coefficients, the ( )p x  can be computed by Equation (7). If 1k = , go directly to step 3. 

Step 2. Generate a set of s-dimensional q samples s q×∈V   according to obtained PDFs. Then if 
1s > , the sample set of the uncertain high-dimensional data n q×∈Z   can be calculated by: 

 ( )m= +Z U V z       (9) 
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If 1s = , the sample set of the uncertain value is 1 q×= ∈Z V  . 
Step 3. If 1k =  and 1s = , μ  represents a deterministic value 1 1

1
×= ∈Z µ . If 1k =  and 1s > , μ  

represents the expectation of the s modes T 1s×= ∈V μ  . Then the deterministic numerical value
1n×∈Z   can be obtained by Equation (9). 

2.3 Distributed UMDO Architecture Based on Surrogate models 
Using the parametric uncertainty quantification method, Dx , Ux , Dy , Uy , Cd  and Ud  can be all 

quantified by μ . For ease of differentiation, we use notation 

 [ , , ]x y d  to replace μ . Since high-fidelity 
discipline analyses cannot be directly employed in the UMDO solution process due to expensive 
computational cost, surrogate models are usually used to approximate the discipline analyses and the 
uncertainty propagation. The above two kinds of surrogates are used as black-box models, and they 
can be uniformly expressed as: 
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      (10) 

where ŷ  is predicted y , ε  is allowed error of prediction. We use a two-layer nested analysis to build 
surrogate models, as is shown in Figure 4. The outer-layer is to generate the mathematic expression 
of ix , i−y  within the design space. If ix , i−y  and id are uncertain, the inner-layer is uncertainty 
analysis of each ( )x  . If they are deterministic, the inner-layer is discipline analysis. Then parametric 
uncertainty quantification is carried out to obtain iy . Then the surrogate models ( )ˆˆ ,i i if −=y x y   is 
trained based on the input [ , ]i i−x y   and output iy . 

 
Figure 4 Surrogate modeling process. 

The surrogate models for uncertainty propagation must be built sequentially, as the design space 
is determined by the previous discipline analysis. Besides, the surrogate modeling process should be 
offline to taking advantage of high-fidelity analyses by high performance computations in parallel. We 
apply the proposed parametric uncertainty quantification and surrogate modelling methods in the 
distributed UMDO, and the mathematical expression of the UMDO problem can be expressed as: 
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     (11) 

Since all the elements of 

 [ , , ]x y d  are independent, the distributed UMDO problem has the same 
mathematical representation as the MDO problem. Therefore, the general MDO architectures can still 
be used in the distributed UMDO architecture, such as Individual Discipline Feasible (IDF), MDF, 
BLISS-2000. For an engineering optimization problem, improving the feasibility and convergence of 
the optimization problem is the primary issue. Therefore, we recommend the MDF-class architecture 
to solve the problem in Equation(11).  

3. Study Case of a Launch Vehicle Optimization 
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3.1 Discipline models of the Launch Vehicle 
The studied launch vehicle is a one-and-a half-stage rocket with four boosters. Both the core stage 

and the booster use 2 identical liquid engines, whose propellants are liquid oxygen (LOX) and methane 
(CH4). The task of the launch vehicle is to deliver a 50,000 kg load to an orbit with a half-length axis of 
6,629,387 m, an eccentricity of 0.012104, and an orbital inclination of 0.723962 rad. The diameters of 
the core stage and the boosters are respectively 5m and 3.35m. Each booster has a fixed wing with a 
fixed size. 

The disciplines of the launch vehicle involve aerodynamics, engine, structure, mass, trajectory and 
guidance and control. Computational Fuild Dynamics (CFD) is used as  the discipline analysis model 
in the aerodynamics discipline, which is used to calculate the drag coefficients DC , lift coefficients LC , 
and distributed pressure coefficient PC for different aerodynamic shapes and flight conditions. The 
parameters of the aerodynamic shape are the lengths of the core stage and boosters, whose variation 
ranges are shown in Figure 7. 

The analysis model of the engine is CEA, which computes the specific impulse SI based on 
oxygen-fuel ratio Pr , expansion ratio of the nozzle Nr , and pressure of the combustor Cp . Then the 
thrust can be obtained by P S E PF I r m= ⋅ ⋅  , where Er  is efficiency of the nozzle, and Pm  is total mass 
flow of the LOX and CH4. The parameters of the 10 identical engines are the same in the analysis 
model, but the uncertainty is calculated independently for each engine.  

The structure discipline is built to calculate the structure mass Sm  under the given loads while 
ensuing the structural reliability. The loads include aerodynamic load PC , axial and normal forces of 
engine PF . The structural reliability for the thi  component is *( )i iσ σ< , where iσ  is the maximum 
stress of the thi  component, and *

iσ  is allowed yield strength of the thi  component. Then the total 
reliability can be expressed as: 

    * *( ) ( )S S
1

N

i i
i

σ σ
=

< = <∏σ σ       (12) 

where N is the number of components. The maximum stress is computed by the Finite Element Method 
(FEM), which was carried out individually for each component in bottom-to-top order. The loads at the 
interfaces of different components are calculated by interpolation to ensure the accuracy. The lengths 
and diameters of the components are fixed parameters, and the thicknesses St  of the tanks, fairing 
and interstages are design variables. Structure mass Sm  is obtained by solving an optimization 
problem: 
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S

S

S S

min
w.r.t.
s.t. 0 999

m

< ≥
t

σ σ
     (13) 

The mass discipline calculates the propellant mass Pm , total mass Tm , and centroid CX . The 
liquid propellant height are design variables. The length of the tank is calculated based on the liquid 
propellant height, and the ellipsoidal ratios of the tanks are fixed parameters. 

The trajectory discipline plans a standard trajectory with deterministic inputs. Then the guidance 
and control disciplines track the standard trajectory and the orbit with uncertain inputs. The three-
degree kinetic equations are used as the trajectory model, then a pseudo-spectral approach with the 
objective of minimizing the remaining propellant mass Rm  is employed to optimize the trajectory. For 
the guidance discipline, the perturbation guidance is applied before separation of boosters to track the 
standard trajectory, and iterative guidance is used after the separation to track the orbit. Finally, PID is 
applied as control model to calculate the angle of nozzle. The reliability of the mission M  is the 
probability of successful orbit, where the failure of the mission n happens when the launch vehicle 
cannot satisfy the parameters of the orbit after consuming all the propellant. 

3.2 Definition of the Launch Vehicle UMDO Problem 
The design space and uncertainties of the variables and parameters are defined in Table 1. 
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( , )N μ σ  represents Gaussian distribution, and ( ),U μ a  represents uniform distribution, where a  is the 
half length of the interval. The surrogate models for replacing the aerodynamic and engine discipline 
analyses, as well as the structure discipline uncertainty analysis, are built within the design space. 
Surrogate models for DC  and LC  are built with the inputs of the lengths of the core stage and boosters, 
the Mach number Ma  and the angle of attack α . The distributed aerodynamic loads PC  are modeled 
with BPNN combined with POD. The maximum errors of  DC  and LC  are both less than 5%, and the 
maximum error of PC  is less than 3%. For structure discipline, the uncertainties of maximum stress iσ  
of each component are also modeled by Back Propagation Neural Network (BPNN) combined with 
POD. The average prediction error of the LOX tank is 0.89%, and the error of the predicted variance is 
2.45%. SI  is modeled by Kriging, and the maximum error of the expectation is 0.03%, while the error 
of the variance is 1.15%. 

Table 1 Design space and uncertainties of the variables and parameters. 

Parameters Notation Units Design Space Uncertainty 
Mass flow of CH4 P CH4m ，  kg s  [ ],120 150  ( )N 2～，  

Mass flow of LOX P LOXm ，  kg s  [ ],573 700  ( )N 5～，  

CH4 level height of the Core C, CH4h  m  [ ],13 18  ( ), .U 0 1～  

LOX level height of the Core C,LOXh  m  [ ],18 24  ( ), .U 0 1～  

CH4 level height of Boosters B, CH4h  m  [ ]. , .11 5 14 5  ( ), .U 0 1～  

LOX level height of Boosters B,LOXh  m  [ ],16 21  ( ), .U 0 1～  

Pitch angle φ  °  [ ],90 90−  - 

Sideslip angle ψ  °  [ ],30 30−  - 

Thicknesses of the structure St  m  [ ]. , .0 005 0 012  - 

Drag coefficients DC  - - ( ), %U 10～  

Lift coefficients LC  - - ( ), %U 10～  

Distributed pressure coefficients PC  - - ( ), %U 10～  

Atmospheric density Aρ  3kg m  - ( ), %U 3～  

Atmospheric pressure Ap  Pa  - ( ), %U 5～  

Gravity g  2m s  - ( ), %U 1～  

Expansion ratio of the nozzle Nr  - - ( ), .N 35 0 1  

Efficiency of the nozzle Er  - - ( ). , .N 0 95 0 002  

Pressure of combustor Cp  MPa  - ( ). , .N 10 2 0 15  

Angle of attack and sideslip ,α β  °  - ( ), .U 0 2～  

Structure Mass Sm  kg  - ( ), . %N 0 2～  

Since the analysis model of the mass discipline is analytical, we use Monte Carlo Simulation (MCS) 
for uncertainty analysis of the mass discipline. The uncertainty analysis of guidance combined with 
control requires a very high accuracy, which is difficult to achieve with surrogate models. Therefore, we 
also use MCS for uncertainty analysis of the guidance discipline, which takes more than 70% of 
simulation time of MDA.  

The optimization problem involves three optimization problems: system optimization, trajectory 
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optimization, and structure optimization. The mathematical expressions of the problems are expressed 
as follows:  

[ ]min max
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where Orbitε  is the relative error of the orbiting. The system optimization is solved by the DE algorithm. 
The size of the population is set to 120, and the maximum iteration steps is set to 100. The optimization 
is run in parallel using 5 cores. The  trajectory optimization is solved by the Sparse Nonlinear Optimizer 
algorithm, and the structure optimization is solved by the Sequence Quadratic Programming algorithm. 
The design structural matrix of the optimization problem is represented in Figure 5, where q  is the 
dynamic pressure, and h  is the current liquid propellent height.  

 
Figure 5 Design matrix of the optimization problem. 

3.3 Results Analysis 
After optimization, UMDA is called 12000 times, and the simulation time is 119.3 hours. The 

convergence history of the objective function and the reliability constraint are shown in Figure 6. In the 
Figure 6, the objective function is normalized with the penalty of the reliability constraint. At the 
beginning of the optimization,  the objective function is very large due to the violation of M . The 
constraint is fully satisfied after the 19th iterations, then the direction of the optimization is to reduce 

Tm . From the th19  to the th100  iteration, Tm  is reduced by 98,379 kg. 
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Figure 6 Iteration of the system optimization. 

The important optimal design variables, state variables and response are presented in Table 2. 
The payload-weight ratio of the launch vehicle is 0.0285, and the launch thrust-weight ratio is 1.277. 
To obtain a larger launch thrust, the Pm  approaches the upper bounds. Since the engine shuts down 
when either LOX or CH4 is consumed, the ratio of propellant mass of LOX and CH4 is close to Pr . The 
optimum shape is middle of the allowed size range, as is shown in Figure 7. 

Table 2 Optimal solution. 

Parameters Value Units Variables Value Units 

Tm  1759706 kg  Pm  694.27 kg s  

Sm  144234 kg  Pr  2.6618 - 

Rm  6758 kg  C, CH4h  15.435 m 

M  0.9903 - C,LOXh  20.986 m 

( )P VacuumF  2387.5 kN B, CH4h  14.279 m 

( )S VacuumI  350.83 s B,LOXh  19.545 m 

 

 
Figure 7 Maximum, minimum and optimum size of the launch vehicle. 

The uncertainties of parameters along the trajectory are shown in Figure 8. At the time of 173.7 s 
after launching, the booster separates at the height of 60 km. The uncertainty in velocity is 
compensated by increasing the flight time to eventually reach the point of orbiting. Therefore, in order 
to satisfy the constraint of M , 6758 kg of Rm  is needed. The uncertainty of the angle of inclination is 
greater than that of angle of deflection because there are more uncertainties in vertical direction, 
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including gravity, atmospheric pressure and altitude. According to Figure 8(c), the deviation of the 
rocket is the largest at the highest point of the trajectory, and then it gradually decreases due to the 
iterative guidance. 

  
                        (a) Velocity                          (b) Angle of inclination and deflection 

 
(c) Trajectory in Launch coordinate system. 

 
Figure 8 Uncertainties of the trajectory. 

The uncertainty distributions of the oxygen-fuel ratio Pr , specific impulse SI , separation time of 
the booster, terminal time of the core, total mass flow Pm  and vacuum thrust PF  are respectively   
shown in Figure 9. The PDFs are acquired by quantifying the uncertainties based on 10,000 samples. 
All the 6 PDFs are not Gaussian. The PDF shapes of Pr ,  PF  and Pm  are close to trapezoidal 
distributions. The skewness of SI  is only 0.016, but the shape of PDF is not symmetrical. The 
separation time of the booster completely depends on the propellant mass and Pm , while the terminal 
time of the core depends on the guidance.  
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Figure 9 Distribution of important parameters. 

4. Conclusion 
To reduce the expensive computational cost by solving the UMDO problem with high-fidelity 

discipline analyses, a parametric distributed UMDO architecture based on surrogate models is 
proposed. We use POD to transform the high-dimensional data to independent parameters, then 
calculate the statistical moments to parameterize the uncertainty of the parameters. The MaxEnt is 
used to obtain the PDF by solving an optimization problem with quantified parameters. Moreover, the 
surrogate-based uncertainty propagation method is developed to approximate the discipline 
uncertainty analysis in the UMDO architecture. Thus, the UMDO problem can be converted to a MDO 
problem, which can be effectively solved by mature MDO architecture. The proposed architecture is 
verified with a liquid launch vehicle optimization problem, and the results indicate that the proposed 
architecture can effectively obtain the optimal solution. 
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