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Abstract

During the design, manufacturing, testing and flying of launch vehicles, there are numerous uncertainties of the
system and operating environment that affect the design. Uncertain Multidisciplinary Design Optimization
(UMDO) is an effective method for evaluating these uncertainties, but it can be challenging to apply it in
engineering problems due to high computational costs and slow convergence. To address this issue, we
propose a high-fidelity distributed UMDO architecture based on Multiple Discipline Feasibility (MDF). In this
architecture, surrogate models are used to quickly evaluate off-line aerodynamic forces and loads instead of
conducting aerodynamic discipline analysis. Moreover, we propose to construct uncertainty surrogate models
by combining the Maximum Entropy (MaxEnt) for the aerodynamic, engine and structure disciplines to quickly
evaluate uncertainties, allowing for efficient solution of the UMDO problems. The proposed UMDO architecture
is verified with a liquid launch vehicle optimization problem, and the results demonstrate that the distributed
UMDO architecture based on surrogate models can effectively obtain the optimum solution.

Keywords: Uncertainty Multidisciplinary Optimization, Uncertainty Quantification, Surrogate model, Launch
Vehicle Design

1. Introduction

The design, manufacturing and operating of launch vehicle are greatly impacted by many
uncertainties stemming from simplified models, material properties and environmental factors, which
can lead to system failure[1]. In order to ensure the reliability and safety of the system, uncertainty
multidisciplinary design optimization (UMDO) technologies are used to solve the launch vehicle
optimization problem under uncertainty[2]. A UMDO process involves multidisciplinary analysis (MDA)
to obtain the system response, uncertainty analysis (UA) to acquire system uncertainties, and
optimization (OPT) to achieve the optimal design[3]. There are three UMDO architectures based on
the loop and the nesting format: the basic architecture OPT-UA-MDA, distributed architecture OPT-
MDA-UA, and decoupled architecture OPT-MDA+UA-MDA.

In the basic architecture, MDA is nested within UA as a black-box, of which the state variables are
deterministic. This architecture does not introduce additional constraints or errors, but it has the highest
computational cost[4]. The decoupled architecture decouples the UMDO as a loop of Multidisciplinary
Optimization (MDO) [5] of OPT-MDA and an uncertainty analysis of UA-MDA [6][7]. The uncertainty
indicator or standard deviation is propagated between the MDO and UA. Additional constraints are only
satisfied in the optimal solution to ensure its feasibility.

In the distributed architecture, the UA is carried out for each discipline, and the uncertainties of
state variables are propagated through MDA[8][9]. During uncertainty propagation, the sampling of
design and state variables are independent for each discipline. This architecture does not introduce
additional constraints, and it shows lower computational cost than the basic architecture[10]. The
architecture has more potential in industrial applications because it would not change the existing
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design process and specifications. However, since it requires tens of thousands of calls to time-
consuming high-fidelity discipline models in each uncertainty analysis, the UMDO problem cannot be
directly solved based on expensive high-fidelity discipline models.

The use of surrogate models is an efficient method to reduce computational cost in solving
uncertainty analysis and optimization problem[11][12]. In the distributed UMDO architecture, surrogate
models can be used to replace the discipline analysis and discipline uncertainty analysis with
parametric inputs and outputs. Such technique is coined surrogate-based UMDO, in which the
uncertainty quantification of design and state variables usually adopts a Gaussian distribution or 3-0
criterion[13][14]. Hence, accurate uncertainty quantification methods are needed for solving nonlinear
problems and problems with high-dimensional state variables such as distributed aerodynamics
coefficients.

In order to address the above problem, this paper proposes a unified parametric distributed UMDO
architecture based on surrogate models. The MDF is selected as the basic form of the distributed
UMDO architecture, whose discipline analysis and discipline uncertainty analysis are approximated by
the surrogate models. Then we first use the POD to transform the uncertain high-dimensional data to
independent variables, and the statistical moments of those independent parameters, solved by
MaxEnt, are used as the unified parameters for quantifying uncertain high-dimensional data. Thus we
can build surrogate models with the unified parameters for replacing the discipline analysis and
discipline uncertainty analyses. The proposed architecture is validated on a liquid launch vehicle using
high-fidelity discipline analysis models, and it demonstrates effective capabilities for solving UMDO
problems.

2. Proposed Distributed UMDO Architecture

2.1 General Form of the Distributed UMDO Architecture
The MDO of the launch vehicle is a loosely-coupled problem. The i™ discipline model of the
system can be expressed as y =f'(x',y",d), where x’ is a vector of design variables,
y' =[y', ...,y """,y ] is a vector of state variables, and d' is a vector of parameters. We use the
subscripts D to represent determinacy and U to represent uncertainty, thus the general form of the
UMDO problem can be written as:
min  J =f(Xp, Xy, Yo, Yy, Ao, dyy)
w.rt. X, =[x0, ..., X§]
X, =X}, 0 X[
Yo =[¥p - Yol (1)
Yo =Yy YO
y =f (xg,xb,yg’, y[,’,dg,d[,)
st g(x,y)<0
where k is the number of disciplines and g is the vector of constraints. The general distributed UMDO
architecture consists of a three-layer loop consisting of optimization, uncertain multidisciplinary analysis
(UMDA), and uncertain disciplinary analysis, as is shown in Figure 1. In terms of the architecture, the
distributed UMDO architecture involves uncertainty analysis of the multiple disciplines and uncertainty

propagation of the state variables in the MDA. The keys to solve the problem in Equation (1) are the
uncertainty quantification and propagation.
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Figure 1 Schematic diagram of the general distributed UMDO architecture.
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2.2 Parametric Uncertainty Quantification

The parametric uncertainty quantification is used to describe the probability distribution with
several parameters. The procedure of the parametric uncertainty quantification is shown in Figure 2.
The input of the uncertainty quantification is a sample set Z of a random variable z, and the output is
a matrix y of quantified parameters. Details of the process are described as follows.

— . ) No No - —
Sample sot Z Fiigh-dimensiona] p—Oroortainty? ,| Transform to /Matrix p of quantlfled/

Data? a matrix. parameters
Yeslv

Yes
Quantify A by Calculate statistical
using POD. moment.

A Y

/ Sample set of s f /s vectors of length k/—

independent variable v

Figure 2 Procedure of the parametric uncertainty quantification.

Step 1. If variable z is a high-dimensional data, it is necessary to transform z to an independent
variable vector by Proper Orthogonal Decomposition (POD). Let Z =[2',2°,...,2"] € R™™ be a sample
set of z, where m is the number of samples, and n is the number of dimensions. When E(z)e]R” is
the mathematical expectation of z, the covariance matrix U_, € R™ can be obtained by

U,,=(2-2)(2-2)

cov

z=[E(z),E(2),...E(z)]eR™" @

By solving the characteristic equations of the covariance matrix, we can obtain the eigenvalue
vector x=[x, 1o, 2,1 and E=[§,&,,....§, ]eR™ of U_, . Then y,(i=1,..,n) are sorted in a
descending order, and §; (i =1..., n) are sorted accordingly. The truncated order s, which is also the
dimension of the parameters after reduction, is selected by energy proportion c,:

S

C, = L>g 3

20, 9
where ¢ €[0.95,0.9999]. The s eigenvectors form the mode matrix U, =[§,,§,, ..., §, 1€ R™*. Then the
according model coefficients matrix V can be obtained by

v,=U_ "z, eR® i=12..,m

V=[v1,v2,...,v’"]eRsx”’ @

The n-dimensional high-dimensional data z can be expressed by a s-dimensional independent
uncertain vector v with the sample set V. If z is numerical value, v can be obtained by v=2z e R™.
Step 2. If v is an uncertain vector, the statistical moments of v are computed as the quantified

parameters. Let ;J:]E(v) be the mathematical expectation of v , the k"™ central moment
Y, (k=2,3,...) can be obtained by sample set V:
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i k
b= 2V ~b) (5)
Then the vector of the moments is p=[y, ..., ] R“ . Since v consists of s-independent
variables, p, to p, are computed independently.
Step 3. Form the parameters matrix p=[p,,...,4,]" € R**, which is detailed as:
u1 l‘l1,2 l"1,k

= Hy Hzp - Hag (6)

“s IJS,Z us,k

The 15t column represents the expectation vector E(v) and the others represent the moments.
If z is a deterministic value, s=k=1, and p=[u,]. If z is an uncertain value, s=1, k>1, and
M=[l, Uy 5, .My ] If 2 is a deterministic high-dimensional data, s >1, k=1, and p=[u,, y,, ...,us]T. If
z is an uncertain high-dimensional data, s >1, k >1.

By the above way, a set of samples of the state variables can be parameterized as g. Then the
inverse parameterization for obtaining a set of samples under the given p is shown in Figure 3. The
inverse parameterization procedure also consists of three steps.

I_Sample Set :
No No | — I
i W ,’ > k>1? p<5> 1" I Deterministic value / |
l Yes | Yes : :
Solve the optimization of MaxEnt. | Deterministic |
- | Reconstruct by POD. [ ] high-dimensional data/l
/ PDF of each variable / : :
v I /" Uncertain High- I
| Sampling according to the PDF. | | Reconstruct by POD. I dimensional data / :
Yes N | |

w O I
Samples of independent Uncertain value / |
variables !

Figure 3 Procedure of the inverse parameterization.

Step 1. If kK >1, Y represents an uncertain variable. For each row of y, the probability density
function (PDF) p(x) is calculated via Maximum Entropy that builds an analytical function of:

¥ A (e-w)
p(x)=e= (7)

where A (i =0,..., k) are the coefficients of the Lagrange Multiplier Method. Then A = [/\1,...)\,( ]T can be
obtained by solving an optimization problem:
given M

min  J=Y" r?
wrt. A=[A.A ]
where r, =J._+:(x—u)i p(x, N)dx — p,

The Differential Evolution (DE) is used to search for suitable initial values of A, and then the SD
algorithm is used to solve the above optimization problem in Equation(8). Then with the optimal
coefficients, the p(x) can be computed by Equation (7). If k =1, go directly to step 3.

Step 2. Generate a set of s-dimensional g samples V € R*“ according to obtained PDFs. Then if
s >1, the sample set of the uncertain high-dimensional data Z e R™ can be calculated by:

Z=UmV+E(z) 9)
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If s =1, the sample set of the uncertain value is Z=V e R*?.

Step 3. If k=1and s=1, p represents a deterministic value Z=y, e R*. If k=1and s>1, 4
represents the expectation of the s modes V=p" e R*'. Then the deterministic numerical value
Z < R™ can be obtained by Equation (9).

2.3 Distributed UMDO Architecture Based on Surrogate models

Using the parametric uncertainty quantification method, x,, X, Y5, ¥,, d. and d; can be all
quantified by p. For ease of differentiation, we use notation [Xx, y, d] to replace p. Since high-fidelity
discipline analyses cannot be directly employed in the UMDO solution process due to expensive
computational cost, surrogate models are usually used to approximate the discipline analyses and the
uncertainty propagation. The above two kinds of surrogates are used as black-box models, and they
can be uniformly expressed as:

9:‘ _ f(ii, 9-:’)
-9

where vy is predicted y, ¢ is allowed error of prediction. We use a two-layer nested analysis to build
surrogate models, as is shown in Figure 4. The outer-layer is to generate the mathematic expression
of X', y' within the design space. If X', y' and d’ are uncertain, the inner-layer is uncertainty
analysis of each £(x). If they are deterministic, the inner-layer is discipline analysis. Then parametric
uncertainty quantification is carried out to obtain y'. Then the surrogate models y’ =f()~(",9”') is

trained based on the input [x', y'] and output y'.

(10)

|
[ v
Problem Definition. :/ x\y~ / » Sampling in Design space. / y' = f(i’, f{’l) / > Surrogate models.
1 i ? Modeling
Uncertainty Analysis.
Uncertainty analysis o e . i . .
of other discipline. Y y Obtain sample set of y. » Uncertainty quantification.
Input Analysis Output

Figure 4 Surrogate modeling process.

The surrogate models for uncertainty propagation must be built sequentially, as the design space
is determined by the previous discipline analysis. Besides, the surrogate modeling process should be
offline to taking advantage of high-fidelity analyses by high performance computations in parallel. We
apply the proposed parametric uncertainty quantification and surrogate modelling methods in the
distributed UMDO, and the mathematical expression of the UMDO problem can be expressed as:

min  J =f(f(, 9,&)

w.rt. X
. ol i (11)
yl zf;(x/’y—l,d)

st g(x,y)<0

Since all the elements of [x, Yy, a] are independent, the distributed UMDO problem has the same
mathematical representation as the MDO problem. Therefore, the general MDO architectures can still
be used in the distributed UMDO architecture, such as Individual Discipline Feasible (IDF), MDF,
BLISS-2000. For an engineering optimization problem, improving the feasibility and convergence of
the optimization problem is the primary issue. Therefore, we recommend the MDF-class architecture
to solve the problem in Equation(11).

3. Study Case of a Launch Vehicle Optimization
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3.1 Discipline models of the Launch Vehicle

The studied launch vehicle is a one-and-a half-stage rocket with four boosters. Both the core stage
and the booster use 2 identical liquid engines, whose propellants are liquid oxygen (LOX) and methane
(CH4). The task of the launch vehicle is to deliver a 50,000 kg load to an orbit with a half-length axis of
6,629,387 m, an eccentricity of 0.012104, and an orbital inclination of 0.723962 rad. The diameters of
the core stage and the boosters are respectively 5m and 3.35m. Each booster has a fixed wing with a
fixed size.

The disciplines of the launch vehicle involve aerodynamics, engine, structure, mass, trajectory and
guidance and control. Computational Fuild Dynamics (CFD) is used as the discipline analysis model
in the aerodynamics discipline, which is used to calculate the drag coefficients C,, lift coefficients C,
and distributed pressure coefficient C for different aerodynamic shapes and flight conditions. The
parameters of the aerodynamic shape are the lengths of the core stage and boosters, whose variation
ranges are shown in Figure 7.

The analysis model of the engine is CEA, which computes the specific impulse /¢ based on
oxygen-fuel ratio r,, expansion ratio of the nozzle r, and pressure of the combustor p.. Then the
thrust can be obtained by F, =/ -r.-m,, where r¢ is efficiency of the nozzle, and m, is total mass
flow of the LOX and CH4. The parameters of the 10 identical engines are the same in the analysis
model, but the uncertainty is calculated independently for each engine.

The structure discipline is built to calculate the structure mass mg under the given loads while
ensuing the structural reliability. The loads include aerodynamic load C,, axial and normal forces of
engine F,. The structural reliability for the /" component is P(c, <o;), where o, is the maximum
stress of the i component, and o is allowed yield strength of the i” component. Then the total
reliability can be expressed as:

N
Py(@s <o) =] [P0, <0)) (12)
i=1
where N is the number of components. The maximum stress is computed by the Finite Element Method
(FEM), which was carried out individually for each component in bottom-to-top order. The loads at the
interfaces of different components are calculated by interpolation to ensure the accuracy. The lengths
and diameters of the components are fixed parameters, and the thicknesses t ¢ of the tanks, fairing
and interstages are design variables. Structure mass mg is obtained by solving an optimization
problem:
min  mg
w.rt. tg (13)
st Py(og<0')>0.999

The mass discipline calculates the propellant mass m, , total mass m;, and centroid X.. The
liquid propellant height are design variables. The length of the tank is calculated based on the liquid
propellant height, and the ellipsoidal ratios of the tanks are fixed parameters.

The trajectory discipline plans a standard trajectory with deterministic inputs. Then the guidance
and control disciplines track the standard trajectory and the orbit with uncertain inputs. The three-
degree kinetic equations are used as the trajectory model, then a pseudo-spectral approach with the
objective of minimizing the remaining propellant mass my is employed to optimize the trajectory. For
the guidance discipline, the perturbation guidance is applied before separation of boosters to track the
standard trajectory, and iterative guidance is used after the separation to track the orbit. Finally, PID is
applied as control model to calculate the angle of nozzle. The reliability of the mission P, is the
probability of successful orbit, where the failure of the mission n happens when the launch vehicle
cannot satisfy the parameters of the orbit after consuming all the propellant.

3.2 Definition of the Launch Vehicle UMDO Problem
The design space and uncertainties of the variables and parameters are defined in Table 1.
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N(u, 0) represents Gaussian distribution, and U(u, a) represents uniform distribution, where a is the
half length of the interval. The surrogate models for replacing the aerodynamic and engine discipline
analyses, as well as the structure discipline uncertainty analysis, are built within the design space.
Surrogate models for C, and C| are built with the inputs of the lengths of the core stage and boosters,
the Mach number Ma and the angle of attack a . The distributed aerodynamic loads C, are modeled
with BPNN combined with POD. The maximum errors of C, and C, are both less than 5%, and the
maximum error of C,, is less than 3%. For structure discipline, the uncertainties of maximum stress o,
of each component are also modeled by Back Propagation Neural Network (BPNN) combined with
POD. The average prediction error of the LOX tank is 0.89%, and the error of the predicted variance is
2.45%. |4 is modeled by Kriging, and the maximum error of the expectation is 0.03%, while the error
of the variance is 1.15%.
Table 1 Design space and uncertainties of the variables and parameters.

Parameters Notation  Units Design Space  Uncertainty
Mass flow of CH4 Moo ko/s [120,150] N(~2)
Mass flow of LOX Meox  kg/s [573,700] N(~,5)
CH4 level height of the Core he cha m [13,18] U(~,0.1)
LOX level height of the Core P ox m [18,24] U(~,0.1)
CH4 level height of Boosters he cua m [11.5,14.5] U(~,0.1)
LOX level height of Boosters hg ox m [16,21] U(~,0.1)
Pitch angle ® ° [-90,90] -

Sideslip angle Y ° [-30,30] -
Thicknesses of the structure ts m [0.005,0.012] -

Drag coefficients Co - - U(~,10%)
Lift coefficients C. - - U(~,10%)
Distributed pressure coefficients  C» - - U(~,10%)
Atmospheric density Pa kg/m?® - U(~,3%)
Atmospheric pressure Pa Pa - U(~,5%)
Gravity g m/s? - U(~,1%)
Expansion ratio of the nozzle Iy - - N(35,0.1)
Efficiency of the nozzle re - - N(0.95,0.002)
Pressure of combustor Pc MPa - N(10.2,0.15)
Angle of attack and sideslip a,B ° - U( )
Structure Mass ms kg - N(~,0.2%)

Since the analysis model of the mass discipline is analytical, we use Monte Carlo Simulation (MCS)
for uncertainty analysis of the mass discipline. The uncertainty analysis of guidance combined with
control requires a very high accuracy, which is difficult to achieve with surrogate models. Therefore, we
also use MCS for uncertainty analysis of the guidance discipline, which takes more than 70% of
simulation time of MDA.

The optimization problem involves three optimization problems: system optimization, trajectory

7
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optimization, and structure optimization. The mathematical expressions of the problems are expressed
as follows:
System Optimization

min  m;
Wrt X= [mFU rP’ hC,CH4’ hC,LOX’ hB,CH4’ hB,LOX]
st xe[Xy,, X
P, >0.99
Trajectory Optimization

max ]

min  -mg
w.rt. x=[@,y] (14)
s.t. x«s[x mm,xmax]

Eomit <1 0°

Structure Optimization
min  mg
wrt. x=[tg]
st Py(04<0)>0.999

where &, is the relative error of the orbiting. The system optimization is solved by the DE algorithm.
The size of the population is set to 120, and the maximum iteration steps is set to 100. The optimization
is run in parallel using 5 cores. The trajectory optimization is solved by the Sparse Nonlinear Optimizer
algorithm, and the structure optimization is solved by the Sequence Quadratic Programming algorithm.
The design structural matrix of the optimization problem is represented in Figure 5, where q is the
dynamic pressure, and h is the current liquid propellent height.

System - - -
b iz (A P
=
Trajectory
Trajectory
- Guidance
at & Control
Structure

Structure

Figure 5 Design matrix of the optimization problem.

3.3 Results Analysis

After optimization, UMDA is called 12000 times, and the simulation time is 119.3 hours. The
convergence history of the objective function and the reliability constraint are shown in Figure 6. In the
Figure 6, the objective function is normalized with the penalty of the reliability constraint. At the
beginning of the optimization, the objective function is very large due to the violation of 7,,. The
constraint is fully satisfied after the 19" iterations, then the direction of the optimization is to reduce
m . From the 19" to the 100" iteration, m, is reduced by 98,379 kg.

8
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Figure 6 Iteration of the system optimization.

The important optimal design variables, state variables and response are presented in Table 2.
The payload-weight ratio of the launch vehicle is 0.0285, and the launch thrust-weight ratio is 1.277.
To obtain a larger launch thrust, the m, approaches the upper bounds. Since the engine shuts down
when either LOX or CH4 is consumed, the ratio of propellant mass of LOX and CH4 is close to r,. The
optimum shape is middle of the allowed size range, as is shown in Figure 7.

Table 2 Optimal solution.

Parameters Value Units Variables Value Units

m 1759706 kg me 694.27  kg/s

mg 144234 kg I'e 2.6618 -

Mg 6758 kg he cna 15435 M

Py 0.9903 - he Lox 20.986 m

Fe (Vacuum) 23875 kN g cna 14279 M

I's (Vacuum)  350.83 s hg ox 19.545 M
Maximum Size — Minimum Size — Optimum Size

G - =
N\

— <

Figure 7 Maximum, minimum and optimum size of the launch vehicle.

The uncertainties of parameters along the trajectory are shown in Figure 8. At the time of 173.7 s
after launching, the booster separates at the height of 60 km. The uncertainty in velocity is
compensated by increasing the flight time to eventually reach the point of orbiting. Therefore, in order
to satisfy the constraint of P,,, 6758 kg of m is needed. The uncertainty of the angle of inclination is
greater than that of angle of deflection because there are more uncertainties in vertical direction,
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including gravity, atmospheric pressure and altitude. According to Figure 8(c), the deviation of the
rocket is the largest at the highest point of the trajectory, and then it gradually decreases due to the

iterative guidance.
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%’ 4000 | D 30r
% <C: Angle of Deflection
© -
2000 | ol
0 1 1 1 1 _30 1 1 1 1
0 100 200 300 400 0 100 200 300 400
Time (s) Time (s)
(a) Velocity (b) Angle of inclination and deflection

600
x (km) 800 1000

(c) Trajectory in Launch coordinate system.

Figure 8 Uncertainties of the trajectory.

The uncertainty distributions of the oxygen-fuel ratio r,, specific impulse /4, separation time of
the booster, terminal time of the core, total mass flow m, and vacuum thrust F, are respectively
shown in Figure 9. The PDFs are acquired by quantifying the uncertainties based on 10,000 samples.
All the 6 PDFs are not Gaussian. The PDF shapes of r,, F, and m, are close to trapezoidal
distributions. The skewness of /4 is only 0.016, but the shape of PDF is not symmetrical. The
separation time of the booster completely depends on the propellant mass and m , while the terminal
time of the core depends on the guidance.

10
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Figure 9 Distribution of important parameters.

4. Conclusion

To reduce the expensive computational cost by solving the UMDO problem with high-fidelity
discipline analyses, a parametric distributed UMDO architecture based on surrogate models is
proposed. We use POD to transform the high-dimensional data to independent parameters, then
calculate the statistical moments to parameterize the uncertainty of the parameters. The MaxEnt is
used to obtain the PDF by solving an optimization problem with quantified parameters. Moreover, the
surrogate-based uncertainty propagation method is developed to approximate the discipline
uncertainty analysis in the UMDO architecture. Thus, the UMDO problem can be converted to a MDO
problem, which can be effectively solved by mature MDO architecture. The proposed architecture is
verified with a liquid launch vehicle optimization problem, and the results indicate that the proposed
architecture can effectively obtain the optimal solution.
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