
Exploration of Efficient Hyperparameters Adaption of Support Vector Regression for Aerodynamic Design

EXPLORATION OF EFFICIENT HYPERPARAMETERS ADAPTION OF
SUPPORT VECTOR REGRESSION FOR AERODYNAMIC DESIGN

Ke-Shi Zhang1,2, Hai-Long Qiao1,2, Peng-Hui Wang1,2, You-Quan Du1,2 & Zhong-Hua Han1,2

1School of Aeronautics, Northwestern Polytechnical University, Xi’an, 710072, P.R.China
2National Key Laboratory of Aircraft Configuration Design, Xi’an, 710072, P.R.China

Abstract

Support vector regression (SVR), due to good generalization capability that has been validated in machine

learning and pattern recognition, was introduced into aerodynamic design to build surrogate models based on

the training data with numerical noise in our former work. However, hyperparameters tuning is still a key

problem to solve because it not only has critical impact on the prediction accuracy but also brings high

computational cost. Therefore, the hyperparameter optimization model and algorithms are investigated in this

work. The objective of the hyperparameter optimization model, generalization error (GE), is obtained via the

popular cross validation (CV) method, and compared with the leave-one-out bound (LooB) method due to its

high efficiency. The hyperparameter design spaces are plotted and it is found that the curves of GE w.r.t the

hyperparameters (the insensitive factor, penalty factor and kernel parameter) are commonly characteristic of

multi-modal, large “flat” region and non-smoothness. Therefore, the gradient optimization is not recommended

because of its local-search attribute. Three popular global optimization algorithms, including the Genetic

Algorithm (GA), Bayesian Optimization (BO) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES),

are applied to hyperparameters adaption and compared via a set of benchmark problems to evaluate its

training efficiency and prediction accuracy for analytical problems of low/high nonlinearity, based on the

samples with low/medium/high intensity noise. The results show that, 1) the design space of hyperparameters

tunning is characteristic of multi-modal, large “flat” region and non-smoothness; 2) In terms of accuracy, CMA-

ES behaves well for almost all the test cases, while BO is better in the low-dimensional (≤ 10) cases and is

still comparable in the higher-dimensional cases when the noise is not too strong but becomes slightly worse

when the noise becomes stronger; 2) In the high-dimensional (>10) cases, the BO algorithm has apparent

superiority of efficiency; 3) the parallel CV can not only enable higher mode accuracy but also has high

efficiency even faster than LooB. Finally, it is applied in modeling based on the computational aerothermal

data and the wind-tunnel experimental data respectively, in which the reasonable results are obtained.

Keywords: support vector regression; hyperparameters adaption; cross validation; leave-one-out bound; global
optimization algorithm

1. Introduction

It is well known that all numerical simulations are not “clean”: numerical noises always exist, as they

are based on discretization. In the computational fluid dynamics (CFD) simulations, coarse grid,

strong shock wave, apparent flow separation, … may have convergence problems so that incur

numerical noises. Numerical noises, the numerically induced oscillations with small wavelengths,

was sometimes particularly troublesome, which can lead to problems in identifying optimum designs

and will become a hindrance for the further applications of the aerodynamic optimization.

A regression surrogate model can inherently filter numerical noises, in addition, surrogate-based

optimization (SBO) is an efficient global-optimization (EGO) method that is widely used in the design

optimizations associated with different areas of aerospace science and engineering. When these

methods are applied, it is hopeful that the numerical noises can be filtered so that the subsequent

optimization will be less affected.

SVR[1] is usually considered as a special case of support vector machines[2] (SVMs) that is popular

Exploration of Efficient Hyperparameters Adaption of Support Vector Regression for Aerodynamic Design

in machine learning and pattern recognition. SVR has been proven to have good generalization

capability and robustness in data regression[15], i.e., approximating highly nonlinear functions well

and not so sensitive to numerical noises. However, for SVR, the predictive performance is critically

affected by the hyperparameters values used to train them, like most of the machine learning

algorithms. Inappropriate setting can lead to overfitting or underfitting. Then, selecting an optimal

model that minimizes error and generalizes well to the unseen data derives a problem of tuning or

optimizing these parameters. It is called hyperparameters adaption. Hyperparameters adaption

usually accompanies with high computational cost, especially on larger datasets, while the tuning

settings do not always significantly outperform the default values. So, the manual setting is preferred

in many real problems and popular SVR codes like [LibSVM][3], and efficient and effective adaption

of the hyperparameters is still an ongoing extremely important issue of the SVR-related researches.

Despite the advances, hyperparameter tuning on large datasets remains challenging.

For the classical ε-SVR, we have the insensitive factor ε to control the width of the ε-tube, the penalty

factor C to determine the tradeoff between training accuracy and model complexity, and the kernel

parameter σ when introducing nonlinearity by the radial basis function (RBF). Traditionally, grid

search was employed to search the optimal parameters by varying them with a fixed step size

through the parameter space and evaluate each parameter combination. Undoubtfully, it’s time-

consuming and not suitable for the engineering problems with computational-expensive analysis.

The random search runs faster, but probably miss the optimum. The gradient optimization algorithms

perform fast search in the parameter space but may trap in a local optimum. Then, various heuristic

(or so-called nature-inspired) algorithms that are not relying on the gradients were introduced for

tuning parameters, including GA[4][5], particle swarm optimization[6][7] (PSO), Harris Hawks

optimization[8] (HHO), grasshopper optimization algorithm[9] (GOA), grey wolf optimizer[10]19

(GWO), etc. The CMA-ES[11], as an Evolutionary Strategy (ES) algorithm, is also used for this

purpose due to its good capabilities of fast, global search through the non-convex parameter space.

In addition, the BO has emerged as an efficient method for tuning hyperparameters in variety of

surrogate models including SVR. It offers robust solutions for optimizing expensive black-box

functions, using a Gaussian Process as a probabilistic measure to model the unknown function and

guides the search focusing on the region including the global optimum in a short time. Due to its

robustness and high efficiency, BO[12] is becoming popular for hyperparameters adaption in variety

of machine learning algorithms.

This paper aims to explore the most efficient method of hyperparameters adaption by comparing two

optimization models and several popular optimization algorithms, in order to make the SVR model

applicable to the aerodynamic design problems and the other time-consuming engineering design

problems. This paper is organized as following. Section 2 gives a brief introduction to the SVR theory.

In Section 3 and Section 4, the hyperparameter-adaption models are established based on the CV

method and the LooB method respectively. The hyperparameters design space, modeling error and

computational cost are analyzed. Section 5 explains process of the hyperparameters adaption and

briefly introduces the optimization algorithms. In Section 6, the modeling methods and optimization

algorithms are systematically investigated and compared via series of numerical examples and then

preliminarily applied in the aerodynamic design.

2. Background: support vector regression

The ε-SVR is one of the most popular SVR methods. All the investigations on the hyperparameter-

adaption methods will be performed based on it.

Given is a training data set 𝑫 = (𝑿S, 𝒀S) = {(𝒙(𝑖), 𝑦(𝑖))|𝑖 = 1,2,⋯ , n}, where 𝒙(𝑖) ∈ ℝ𝑚 denotes the

input vector and 𝑦(𝑖) is its corresponding response (𝑦(𝑖) = 𝑓(𝒙(𝑖))). In ε-SVR, 𝒙 is first mapped to 𝒛 =

𝜓(𝒙) in a feature space via a nonlinear map 𝜓 that is often called kernel function. Then a regression

function 𝑓(𝒙) = 〈𝒘 ∙ 𝜓(𝒙)〉 + 𝑏 is constructed so that it deviates least from the training set according

to Vapnik’s ε-insensitive loss function

 ()
()

()

ˆ0 if

ˆ otherwise

f x - y < ε
L x =
1

f x - y - ε







 (1)

Exploration of Efficient Hyperparameters Adaption of Support Vector Regression for Aerodynamic Design

while at the same time is as “flat” as possible (i.e., ‖𝒘‖ is as small as possible). Mathematically, this

means

()
1

min
2

s.t. i

i

x

x

2 *

i i

i i

*

i i

*

i i

n

i=1

w ξ +ξ

y - w - b ε+ξ

w +b - y ε+ξ

ξ ,ξ

C

0

+









 (2)

A key assumption of this formulation is that there exists a function 𝑓(𝒙) that can approximate all pairs

of (𝒙𝑖, 𝑦𝑖) in ε precision by a so-called “ε-tube” or “ε-insensitive zone”. In a linear case, it is shown in

Figure 1. The constant C>0 controls the tradeoff between complexity of model and the deviations

larger than ε.

 a) ε-tube in the sample space b) ε-insensitive loss

Figure 1 – ε-tube and error allowance of the ε-SVR (samples in a red circle: support vectors)

Nonlinear regression can be achieved by simply processing the training data by mapping into some

feature space and then applying the linear SVR algorithm, i.e. replacing the dot product of input

vectors with a nonlinear transformation on the input vectors. This transformation is achieved by the

so-called kernel function, 𝑘(𝒙, 𝒙′). Table 1 lists some common kernel functions. Gaussian radial

basis function (RBF)[13], as the most commonly used kernel function, will be adopted in all of the

examples in this paper.

Table 1 – Common kernel functions

Kernel function Expression

Linear 𝑘(𝒙, 𝒙′) = 〈𝒙, 𝒙′〉
Polynomial 𝑘(𝒙, 𝒙′) = 〈𝒙, 𝒙′〉𝑑

Gaussian RBF 𝑘(𝒙, 𝒙′) = exp(−
‖𝒙 − 𝒙′‖2

2σ2
)

Exponential RBF 𝑘(𝒙, 𝒙′) = exp(−
‖𝒙 − 𝒙′‖

2σ2)

Multi-layer perceptron 𝑘(𝒙, 𝒙′) = tanh(𝛽〈𝒙, 𝒙′〉 + θ)

Applying the kernel function into the dot product of input vectors, the following optimization problem

is obtained.

()() ()

() ()

()

 

max

s.t.

n
* *

i i j j i j

i, j=1

n n
* *

i i i i i

i=1 i=1

n
*

i i

i=1

*

i i

1
- α - α α - α k x ,x

2

-ε α +α + y α - α

α - α = 0

α ,α Î0,C










 

 (3)

Then the regression formulation becomes

 () () ()*ˆ -
n

i i

i 1

f x k b 
=

= + ix x, (4)

-

+

0
(xi, yi)

𝑓(𝒙)

ε-tube

− 

*


*



Exploration of Efficient Hyperparameters Adaption of Support Vector Regression for Aerodynamic Design

3. Hyperparameter adaption modeling

3.1 Optimization problem

The hyperparameters critically affect the predictive performance of the model. As such, selecting an

optimal model that minimizes error and generalizes well to unseen data becomes a problem of tuning

or optimizing these hyperparameters. The error can be approximately taken as the sum of bias and

variance[14], neglecting a random error that is unavailable in the data of learning process,

variance bias

ˆ ˆ ˆ[() - ()] [()] [()]
2

2

0 0 0 0f x f x Var f x Bias f x= + (5)

Bias is the error introduced by approximating a real-world phenomenon, while variance measures

the sensitivity of 𝑓 to the training dataset and how much its fit would change if estimated using

different data. Figure 2 illustrates the bias and variance trade-off with respect to model complexity.

In general, as a model becomes more complicated or flexible, bias decreases and variance increases.

In other words, a flexible 𝑓 fits closer to given training dataset but is more sensitive to training data

variability. Too much variance leads to 𝑓 overfitting the data, and too much bias leads to 𝑓

underfitting the data. Therefore, selecting an optimal 𝑓, ranging in complexity from simple linear to

highly nonlinear, involves balancing the bias and variance trade-off. Possessing both low bias and

low variance gives the learned model a higher probability of generalizing well to unseen data during

model training and predict more accurately.

Figure 2 – Bias and variance trade-off w.r.t. model complexity

The hyperparameters of 𝜀-SVR include (𝜀, 𝐶, 𝜎). The parameter ε controls the width of the ε-tube;

the parameter C penalizes any deviation beyond the tube and determines the tradeoff between

training accuracy and model complexity; and the kernel parameter σ affects flexibility of the

approximation function: a very small σ means the function is more localized, while a large σ makes

it less flexible. The hyperparameter adaption is an optimization process in essence, which is to

search for the optimal hyperparameters combination that minimizes an estimate of the generalization

error (GE):

 min lgGE(ε,C,σ) (6)

We set the design range of (𝜀, 𝐶, 𝜎) as listed in Table 2 by experience. Although the value of ε is

proportional to noise variance, such a setting is proven to be appropriate for our test cases.

Table 2 – Design region of the hyperparameters

Logarithm of the hyperparameters lg𝜀 lg𝐶 lg𝜎

Design range [-7,1] [-1,7] [-2,2]

3.2 GE estimation methods

For solving the optimization problem of hyperparameters adaption in Eq.(6), one of the key problems

is how to evaluate GE. Taking both accuracy and efficiency into consideration, the cross-validation

method and leave-one-out bound method will be compared for this purpose.

3.2.1 CV method

CV method[15]-[17] is the most common method for tuning hyperparameters for variety of surrogate

models. The advantages of CV are that, in most cases, it captures the actual test error that balances

bias and variance well enough[18].

Error

Model

complexity

Bias

Variance Generalization error

min(GE)

Exploration of Efficient Hyperparameters Adaption of Support Vector Regression for Aerodynamic Design

The procedure of CV randomly and evenly divides the given dataset D into k subsets (𝐷1 ∪ 𝐷2 ∪⋯∪

𝐷𝑘 = 𝐷;𝐷𝑖 ∩ 𝐷𝑗 = ∅, 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2,⋯ , 𝑘), and uses k-1 subsets for training and the remaining one

for testing, which is called k-fold CV. This process is repeated k times by changing the remaining

subset. Then the GE is evaluated by the MSE (mean squared error), over all test results, as following

 ()CV
ˆ

isk
2

t t

i=1 t=1i

1 1
MSE = y - y

k s

 
 
 

  (7)

where 𝑠𝑖 is number of the samples in the 𝑖th subset. The k-fold CV is the most popular way of

performing cross validation. Theoretically the result of CV gets closer to unbiased estimate of the

modeling error when increasing k, however its computational cost might be unacceptable, which

often happens in engineering designs, as model training must be repeated k times in each objective

evaluation. Typical choice of k is between 5 and 10. From the consideration of efficiency, k=5 is

applied in this work, the basic principle of which is shown in Figure 3.

Figure 3 – An overview of 5-fold CV

3.2.2 LooB method

The leave-one-out (LOO) method is the extreme case of CV, in which a single sample is excluded

from the training set and used for evaluating the model. The LOO error is defined as

 ˆ
n

t t

t=1

1
LOO = y - y

n
 (8)

LOO provides an unbiased estimate of the true GE, however, is highly time consuming. Therefore,

a more popular approach is to approximate the error by its upper bound that is a function of the

hyperparameters. Then we search for parameters so that this bound is minimized, which must lead

to minimization of the GE.

The LooB is computationally efficient, so that it’s used in this work as the alternative method for

approximating the GE, to explore an efficient method of hyperparameters adaption. The LOO bounds,

such as radius margin bound and span bound for L2-SVR, and the bound for L1-SVR, were derived

in Ref.[19]. Here we use the bound for L1-SVR that matches the SVR optimization model in Eq.(3)

and is a commonly used form for regression, as following:

 () ()
n n

* 2 *

i i t i i

t=1 t=1

LooB = α +α S + ξ +ξ + nε  (9)

It is obvious that the LooB value obtained via Eq.(9) will vary within a wide range for large-scale

sample problems (i.e. n is large), which is not easy for observation. So, we divide it by the number

of samples, n, then get a varied form:

 () ()
n n

* 2 *

i i t i i

t=1 t=1

1
LooB = α +α S + ξ +ξ + ε

n

 
 
 
  (10)

𝑆𝑡
2 is not a continuous function, so a modified item is proposed:

()

2

t tt-1

tt

1
S = - D

M
 (11)

in which

SV SV SV

T

SV

K + D 1
M =

1 0

 
 
 

 and tt *

i i

η
D =

α +α

where 𝜂 is a user defined positive constant for smoothing regularization and is set to 0.01 in current

1

All Sample Data: ሼ(𝒙𝑖 , 𝑦𝑖)|𝑖 = 1,2,⋯ , nሽ

5

4

3

2

Fold #1:

Fold #2:

Training Set

Test Set

Fold #3:

Fold #4:

Fold #5: 1

Exploration of Efficient Hyperparameters Adaption of Support Vector Regression for Aerodynamic Design

work. SV is number of free support vectors that are the samples lying on the bounds of 𝜀-tube.

Eq.(10) will be used for objective evaluation for the hyperparameter optimization in Eq.(6). Obviously,

its computational cost will usually be much lower than that of the CV method because model training

is implemented only once in each objective evaluation. However, Eq.(11) indicates that inverse of

matrix 𝑀̃ will incur computational burden when applying the LooB method if SV is large.

The LooB in Eq.(10) was derived under the assumption that the set of support vectors remains the

same during the leave-one-out procedure. This assumption is valid in condition that the function is

smooth because most of the samples are always free support vectors. However, when there are

numerical noises, only few samples are free support vectors and most samples are inside and some

are outside 𝜀-tube, and the set of free support vectors varies a lot in the process of hyperparameters

adaption. That’s why the LooB method becomes not so accurate as the CV method when numerical

noises exist.

4. Some observations on the hyperparameter adaption model

In this section, we aim to know more about the hyperparameter adaption model, by observing what

the design space looks like and how the computational cost is to measure the GE. This work will be

done based on the classical sinc function in Eq.(12). Besides the smooth function, the Gaussian

noises subject to normal distribution, 𝑁(0, 𝜎𝑛
2), are also added to simulate the noisy function for

investigating the related attributes.

 () = asin , [-10,10]f x x x x (12)

Firstly, from 100 evenly and smoothly distributed samples, the hyperparameters are set to get the

baseline prediction model in Figure 4. Then the remained research in this sub-section will be done

based on this baseline model by adjusting one of the hyperparameters while keeping the others

constant.

Table 3 – Empirical hyperparameter setting for the sinc function without and with numerical noises

Function N 𝜎𝑛 𝜀 𝐶 𝜎

Sinc (noise free) 100 0 1e-6 1e5 0.09

Sinc (with noise) 100 2 1e-4 300 0.14

Figure 4 – SVR predictions of the sinc function (left: noise free, right: with noise)

To show how the change of the hyperparameters affects the GE of the prediction model, the design

spaces of them are illustrated, so that an appropriate optimization algorithm would be applied

subsequently.

(1) insensitive factor ε

Parameter ε controls the width of the ε-insensitive tube, which is proportional to noise variance. A

very thin ε-tube does not provide enough margin to tolerate the numerical noise in data points, so

SVR function tends to interpolate the data, while a thick ε-tube has enough margin, having a

tendency to get flat to generate a regression fit. For a given dataset (smoothly distributed or with

numerical noise), the influence of ε on accuracy of the prediction model is illustrated in Figure 5,

estimating GE by CV method via Eq.(7) or LooB method via Eq.(10). It is found that, 1) the minimal

x

y

-10 -5 0 5 10
-40

-20

0

20

40

60

80

100

120

Samples

True function

SVR

x

y

-10 -5 0 5 10
-40

-20

0

20

40

60

80

100

120

Samples

True function

SVR

Exploration of Efficient Hyperparameters Adaption of Support Vector Regression for Aerodynamic Design

GE can be obtained by changing ε; 2) the curve near the optimal ε seems relatively “flat”, where the

GE is not sensitive with change of ε, and the empirical value of ε in Table 3 lies in this region; 3) the

ε curve behaves not smooth that might be caused by the numerical error that happened in SVR

model training. The attributes 2) and 3) of the ε curve present a challenge to the optimization

algorithms and indicate that a global optimization not dependent upon gradients should be adopted.

The results in Figure 5 also prove the statement[20] that ε is proportional to noise variance.

(a) GE estimation by CV method

(b) GE estimation by LooB method

Figure 5 – Design space of the insensitive factor ε (left: noise free, right: with noise)

(2) penalty factor C

Parameter C determines the tradeoff between the model complexity (flatness) and the degree to

which deviations larger than ε are tolerated. If C is too large (infinity), the objective in the SVR

optimization formulation is to minimize the empirical risk only. If C is small, the penalty tends

negligible and the SVR function gets flat. As shown in Figure 6, the design space of C behaves

similar to that of ε, i.e. large “flat” region and oscillated curve, which indicates a gradient optimization

method is not appropriate due to local search and gradient-dependent. Furthermore, it’s proven that

a relatively large value of C is preferred to punish any deviation out of the ε-tube to get a good

prediction function when numerical noises don’t exist. But in case of noisy samples, C should be

carefully valued.

log
10


lo
g
1
0
M
S
E
C
V

-7 -6 -5 -4 -3 -2 -1 0 1
-7

-6

-5

-4

-3

-2

-1

0

1

2 noiseless sample
C=1E5
=0.09

empirical value

log
10


lo
g
1
0
M
S
E
C
V

-7 -6 -5 -4 -3 -2 -1 0 1
1.98

2

2.02

2.04

2.06 noise sample
C=300
=0.14

empirical value

log
10


lo
g
1
0
lo
o
b
o
u
n
d

-7 -6 -5 -4 -3 -2 -1 0 1
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

empirical value

noiseless sample
C=1E5
=0.09

log
10


lo
o
b
o
u
n
d

-7 -6 -5 -4 -3 -2 -1 0 1
6

7

8

9

10

11

12

13

14

15
noise sample
C=300
=0.14

empirical value

Exploration of Efficient Hyperparameters Adaption of Support Vector Regression for Aerodynamic Design

(a) GE estimation by CV method

(b) GE estimation by LooB method

Figure 6 – Design space of the penalty factor C (left: noise free, right: with noise)

(3) kernel parameter σ

σ is the width parameter of RBF kernel function. A very small σ means the kernel is more localized,

thus, the SVR function tends to overfit, while a large σ makes the SVR function less flexible. The

influence of σ on the GE can be observed via Figure 7. Different from the curves of ε and C in Figure

5 and Figure 6, the GE is very sensitive to the change of σ near the optimum, which implies that we

should be more cautious in valuing σ to prevent exacerbation of model accuracy.

a) GE estimation by CV method

log
10
C

lo
g
1
0
M
S
E
C
V

-1 0 1 2 3 4 5 6 7
-8

-6

-4

-2

0

2

4 noiseless sample
=1E-6
=0.09

empirical value

log
10
C

lo
g
1
0
M
S
E
C
V

-1 0 1 2 3 4 5 6 7
1.5

2

2.5

3

3.5

4

4.5 noise sample
=1E-4
=0.14

empirical value

log
10
C

lo
g
1
0
lo
o
b
o
u
n
d

-1 0 1 2 3 4 5 6 7
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
noiseless sample
=1E-6
=0.09

empirical value

log
10
C

lo
o
b
o
u
n
d

-1 0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

empirical value

noise sample
=1E-4
=0.14

log
10


lo
g
1
0
M
S
E
C
V

-2 -1 0 1 2
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

empirical value

noiseless sample
=1E-6
C=1E5

log
10


lo
g
1
0
M
S
E
C
V

-2 -1 0 1 2
1.8

2

2.2

2.4

2.6

2.8

3

3.2

noise sample
=1E-4
C=300

empirical value

Exploration of Efficient Hyperparameters Adaption of Support Vector Regression for Aerodynamic Design

b) GE estimation by LooB method

Figure 7 – Design space of kernel function parameter (left: noise free, right: with noise)

5. Optimization algorithms for hyperparameters adaption

In this section, we aim to evaluate effectiveness and efficiency of different optimization algorithms to

search for the optimal hyperparameters. based on the numerical examples of low- and high-

dimensional benchmarks. Due to local flatness, multimodality and non-smoothness of the design

space observed in the last section, some popular global optimization algorithms for training

hyperparameters will be applied and compared in this work, including GA, BO and CMA-ES.

5.1 Steady GA algorithm

Genetic algorithm, a type of heuristic algorithm, search for the optimal solution by simulating the

natural evolutionary process. According to the different population generation mechanisms, Galib[21],

a genetic algorithm program library based on C++, includes three basic types: Incremental GA, Simple

GA and Steady GA. This paper adopts Steady GA to optimize hyperparameters because of its faster

convergence speed and stability[22]. The Steady GA directly passes excellent individuals to the next

generation in a proportion controlled by nReplacement. Meanwhile, only the individuals with low

fitness undergo crossover and mutation operations. The Steady GA algorithm can be summarized

below:
Algorithms 1 – Steady GA algorithm

Input: population size 𝜆， crossover probability 𝑃𝑐, mutation probability 𝑃𝑚, nReplacement

Output: 𝑃𝑡+1

1: Initialize Population 𝑃0 = (𝑥1, . . . , 𝑥𝜆); t=0
2: repeat
3: for (i=1 to 𝜆) do
4: Evaluate fitness 𝑓(𝑥𝑖)
5: end for
6: Sort fitness in a descending order and its result is 𝑓(𝑥1:𝜆) ≥. . . ≥ 𝑓(𝑥𝜆:𝜆), in which 𝑥𝑖:𝜆 means the 𝑖 -th best

individual
7: 𝑃𝑡+1 = (𝑥1:𝜆, . . . , 𝑥𝜆(1−𝑛Replacement):𝜆)

8: repeat
9: Get 𝑥parents by roulette wheel selection operation to 𝐶𝑡 = (𝑥𝜆(1−𝑛Replacement)+1:𝜆, . . . , 𝑥𝜆:𝜆)

10: if 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) < 𝑃𝑐 then
11: Crossover to generate offspring individuals 𝑥children
12: if 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) < 𝑃𝑚 then
13: Mutation to 𝑥children
14: Evaluate fitness 𝑓(𝑥children)
15: if 𝑓(𝑥children) ≥ 𝑓(𝑥parents) then

16: Add 𝑥children to 𝑃𝑡+1
17: else
18: Add 𝑥parents to 𝑃𝑡+1

19: until (the length of 𝑃𝑡+1 is )

20: 1t t= +

21: until stop condition met

log
10


lo
g
1
0
lo
o
b
o
u
n
d

-2 -1 0 1 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
noiseless samples
=1E-6
C=1E5

empirical value

log
10


lo
o
b
o
u
n
d

-2 -1 0 1 2
5

10

15

20

25

30

35
noise sample
 =1E-4
C=300

empirical value

Exploration of Efficient Hyperparameters Adaption of Support Vector Regression for Aerodynamic Design

5.2 CMA-ES algorithm

CMA-ES is an evolution algorithm for non-linear non-convex optimization problems in continuous

domain [23]. Its core idea is to adjust the search direction by adjusting the covariance matrix,

increasing the probability of generating good solutions. The algorithm can be divided into four aspects:

sampling, updating the mean, updating the covariance matrix, and controlling the step size.

Algorithms 2 – CMA-ES algorithm

Input: population size 𝜆, step size 𝜎(0)

Output: 𝑥1:𝜆
(𝑡+1)

1: Initialize 𝑐𝑐 , 𝑐1, 𝑐𝜎 , 𝑑𝜎 , 𝜇𝜔, 𝜇

2: Initialize mean vectors 𝑚(0); 𝐶(0) = 𝐼; 𝑝𝜎
(0)

= 0; 𝑝𝑐
(0)

= 0; t=0

3: repeat

4: 𝑥𝑖
(𝑡+1)

= 𝑚(𝑡) + 𝜎(𝑡)𝑁(0, 𝐶(𝑡)), 𝑖 = 1, . . . , 𝜆

5: Evaluate fitness 𝑓(𝑥𝑖
(𝑡+1)

), 𝑖 = 1, . . . , 𝜆

6:
Sort fitness in a descending order and its result is 𝑓(𝑥1:𝜆

(𝑡+1)
) ≥. . . ≥ 𝑓(𝑥𝜆:𝜆

(𝑡+1)
), in which 𝑥𝑖:𝜆 means the 𝑖 -th best

individual;

7: 𝑚(𝑡+1) ←∑𝜔𝑖𝑥𝑖:𝜆
(𝑡+1)

𝜇

𝑖=1

8: 𝑝𝜎
(𝑡+1)

← (1 − 𝑐𝜎)𝑝𝜎
(𝑡)

+√𝑐𝜎(2 − 𝑐𝜎)𝜇𝜔𝐶
(𝑡)−

1
2 𝑚

(𝑔+1)−𝑚(𝑔)

𝜎(𝑔)

9: 𝜎(𝑡+1) ← 𝜎(𝑡) 𝑒𝑥𝑝(
𝑐𝜎
𝑑𝜎

(
‖𝑝𝜎

(𝑔+1)
‖

𝐸‖𝑁(0, 𝐼)‖
− 1))

10: 𝑝𝑐
(𝑡+1)

← (1 − 𝑐𝑐)𝑝𝑐
(𝑡)

+√𝑐𝑐(2 − 𝑐𝑐)𝜇𝜔𝐶
(𝑡)

−
1
2
𝑚(𝑔+1) −𝑚(𝑔)

𝜎(𝑔)

11: 𝐶(𝑡+1) ← (1 − 𝑐𝜎 − 𝑐𝜇)𝐶
(𝑡) + 𝑐1𝑝𝑐

(𝑡+1)
𝑝𝑐
(𝑡+1)𝛵

+ 𝑐𝜇∑𝜔𝑖

𝜇

𝑖=1

(
𝑥𝑖:𝜆
(𝑔+1)

−𝑚(𝑔)

𝜎(𝑔)
)(

𝑥𝑖:𝜆
(𝑔+1)

−𝑚(𝑔)

𝜎(𝑔)
)

𝛵

12: 𝑡 = 𝑡 + 1
13: until stop condition met

5.3 Bayesian optimization algorithm

Bayesian optimization is one of the most advanced and promising techniques in the fields of

probabilistic machine learning and artificial intelligence, capable of obtaining an approximate optimal

solution at a low cost of evaluations. It can be concluded as follows:

Algorithms 3 – BO algorithm

Input: black-box function 𝑓, hyperparameter search space 𝜒, max iterations T

Output: best result

1: Initialize 𝐷0 ← ((𝑥1, 𝑦1), . . . , (𝑥𝑛 , 𝑦𝑛)), in which 𝑦𝑖 = 𝑓(𝑥𝑖)

2: t=0;

3: repeat

4: 𝑝(𝑦|𝑥, 𝐷𝑡) ← 𝐹𝑖𝑡𝑀𝑜𝑑𝑒𝑙(𝐷𝑡)

5: 𝑥𝑖 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∈𝜒 𝛼 (𝑥, 𝑝(𝑦|𝑥, 𝐷𝑡)), in which 𝛼 is Acquisition Function

6: 𝑦𝑖 ← 𝑓(𝑥𝑖)

7: 𝐷𝑡+1 ← 𝐷𝑡 ∪ (𝑥𝑖 , 𝑦𝑖)

8: 𝑡 = 𝑡 + 1

9: until t=T

6. Analytical benchmark test cases

In this section, different hyperparameters adaption schemes, i.e. different optimization algorithms

applied to search for the minimal GE estimated by the CV or LooB method, will be evaluated in terms

of modeling accuracy and efficiency. We employ seven analytical benchmark functions (listed in Table

4) and the Gaussian noise is added to model noisy responses. The test functions are chosen to cover

variety of problem properties and dimensions. Rosenbrock is a unimodal function that is characteristic

of a narrow valley like banana that makes it difficult to be modeled. Branin-Hoo, Hartman and

Griewank are multimodal functions. Ellipsoid is a separable function. G07 is a non-separable function

so that the interrelation among the variables makes it more difficult to model than a separable function.

Exploration of Efficient Hyperparameters Adaption of Support Vector Regression for Aerodynamic Design

Table 4 – Formulation of the benchmark functions

No. Range m Function Formulation

1 [−10,10] 1 Sinc () sin() /y x x x=

2 [0,1] 2 Branin-Hoo

2
2

1 1
2 12

1 5.1 5 10
() 6 10 cos() 44.81

51.95 4 8

x x
y x x x

  

    
 = − + − + − −   

    

where
1 1 2 215 5, 15x x x x= − =

3 [0,1] 4 Rosenbrock
() ()()

3
2 22 5

15
1

1
() 100 1 3.827 10

3.755 10
i i i

i

y x x x x+

=

 
= − + − −  

  


where 15 5= −x x

4 [0,1] 6 Hartman
4 6

2

1 1

1
() 2.58 exp ()

1.94 10
i ji j ji

i j

y x C a x p
= =

  −
= + − −  

    
 

where 1.0 1.2 3.0 .2]3[=C ,

10.00 0.05 3.00 17.00

3.00 10.00 3.50 8.00

17.00 17.00 1.70 0.05

3.50 0.10 10.00 10.00

1.70 8.00 17.00 0.10

8.00 14.00 8.00 14.00

 
 
 
 

=  
 
 
 
  

a

0.1312 0.2329 0.2348 0.4047

0.1696 0.4135 0.1451 0.8828

0.5569 0.8307 0.3522 0.8732

0.0124 0.3736 0.2883 0.5743

0.8283 0.1004 0.3047 0.1091

0.5886 0.9991 0.6650 0.0381

 
 
 
 

=  
 
 

 

p




5 [−10,10] 10 G07

2 2 2 2 2

1 2 1 2 1 2 3 4 5

2 2 2 2 2 4

6 7 8 9 10

() (14 16 (10) 4(3) (3)

2(1) 5 7(11) 2(10) (7) 45) 10

f x x x x x x x x x x

x x x x x −

= + + − − − − + − + −

+ − + + − + − + − + 

6 [−5, 5] 20 Ellipsoid

20
4 2

1

() 10 i

i

f x ix−

=

= 

7 [−600,600] 60 Griewank

2 6060
4

1 1

() (cos() 1) 10
4000

i i

i i

x x
f x

i

−

= =

= − +  

The definition of the test cases is explained in Table 5. The observation noise is added artificially

using Gaussian random variables based on the deterministic functions in Table 4. The noise variance

is formulated proportional to the function standard-variance. The noise intensity varies from low- to

high-level. Three optimization algorithms respectively combined with two GE-estimation methods for

SVR hyperparameters tunning will be investigated. The parameter setting of the optimization

algorithms is listed in Table 6. As the optimization algorithms have different convergence rate, for fair

comparison and acceptable time cost consideration, the termination condition of the hyperparameter

optimization is set as number of the GE-evaluation times no more than 50.

Table 5 – Definition of the test cases

Factor Division Explanation

Training dataset 40×𝑚 Number of the training samples

Test dataset 1000 Number of the test samples

Noise intensity

Low level Noise variance is 5% of the function standard variance.

Medium level Noise variance is 20% of the function standard variance.

High level Noise variance is 50% of the function standard variance.

Table 6 – Parameter setting of the optimization algorithms

Algorithm
population

size
generation

Crossover
probability

Mutation
probability

Initial
step size

Number of
GE times

GA 10 5 0.6 0.05 50

CMA-ES 10 5 2.4 50

BO 50

Exploration of Efficient Hyperparameters Adaption of Support Vector Regression for Aerodynamic Design

6.1 Comparison of hyperparameter optimization algorithms

6.1.1 One-dimensional test case

Based on the Sinc function, the Gaussian noise is added to the 40 samples generated by Latin

hypercube sampling (LHS) and the noise variance is 20% of the function standard-variance. Figure 8

shows the SVR models in case of different hyperparameter optimization algorithms. The SVR models

optimized by BO and CMA-ES matches better with the true function. To check the optimization results

and figure out why BO and CMA-ES obtains the hyperparameters that enables better modeling,

changes of MSE w.r.t. the hyperparameters are given at the location of the optimal hyperparameters

of each optimization algorithm, as shown in Figure 9. It is found that, with the same computational

cost (i.e. same number of GE-evaluation times), BO successfully finds the global optimums of all the

three hyperparameters and achieves the minimal value of MSE (6.37e-4). CMA-ES and GA

optimizations have not completely converged, so the optimal MSE of CMA-ES is slightly worse (7.74e-

4) but at the same level and that of GA is the worst. If more iterations are allowed, CMA-ES and GA

optimization may further reduce GE, however, computational cost must be higher.

Figure 8 – SVR models of the Sinc function in case of different hyperparameter optimization algorithms

(a) GA

(b) CMA-ES

X

Y

-10 -5 0 5 10

-0.2

0

0.2

0.4

0.6

0.8

1

1.2 True function

Samples

GA

X

Y

-10 -5 0 5 10

-0.2

0

0.2

0.4

0.6

0.8

1

1.2 True function

Samples

CMA-ES

X
Y

-10 -5 0 5 10

-0.2

0

0.2

0.4

0.6

0.8

1

1.2 True function

Samples

BO

log
10
()

lo
g
1
0
(M
S
E
)

-10 -8 -6 -4 -2 0
-4

-3

-2

-1

0
MSE

MSE*_GA

=4.3181e-05

MSE*=1.52e-03

log
10
(C)

lo
g
1
0
(M
S
E
)

0 1 2 3 4 5 6 7
-4

-3

-2

-1

0

C=6.7246



lo
g
1
0
(M
S
E
)

0 0.05 0.1 0.15 0.2
-4

-3

-2

-1

0

=0.1208

log
10
()

lo
g
1
0
(M
S
E
)

-10 -8 -6 -4 -2 0
-4

-3

-2

-1

0
MSE

MSE*_CMA-ES

=2.4624e-05

MSE*=7.74e-04

log
10
(C)

lo
g
1
0
(M
S
E
)

0 1 2 3 4 5 6 7
-4

-3

-2

-1

0

C=2.0872



lo
g
1
0
(M
S
E
)

0 0.05 0.1 0.15 0.2
-4

-3

-2

-1

0

=0.1194

Exploration of Efficient Hyperparameters Adaption of Support Vector Regression for Aerodynamic Design

(c) BO

Figure 9 – Modeling error varies with the hyperparameters (Sinc function)

To further understand the convergence rate, for each optimization algorithm, the hyperparameter

tuning is repeated 50 times based on the same data set, take the average at each convergence step

and the convergence history is shown in Figure 10. It explains the results above again as the BO and

CMA-ES converges fast and the GA converges slowly.

Figure 10 – Convergence history of hyperparameter optimization (Sinc function)

6.1.2 Two-dimensional test case

For further validation and comparison purpose, the surrogate model of the Branin-Hoo function is built

based on the samples generated by LHS, in which the Gaussian noise variance is 20% of the function

standard-variance. Figure 11(a) shows the SVR models based on 80 samples in case of different

hyperparameter optimization algorithms, however, all the three surrogate models do not predict the

function well although it seems that the optimizer has already found the global optimum. So we

increase the sample number to 300 and regenerate the surrogate model. As shown in Figure 11(b)

and Figure 12, when the samples are sufficient, accuracy of the surrogate models is highly improved.

Figure 12 gives changes of MSE w.r.t. the hyperparameters at the location of the optimal

hyperparameters of each optimization algorithm, in which the results of the optimizations are marked

by the symbols. It is found that, in the limited GE evaluations, CMA-ES and BO successfully find the

global optimum which GA still need more iterations to improve its results.

(a) 80 samples

log
10
()

lo
g
1
0
(M
S
E
)

-10 -8 -6 -4 -2 0
-4

-3

-2

-1
MSE

MSE*_BO

=0.0776

MSE*=6.37e-04

log
10
(C)

lo
g
1
0
(M
S
E
)

0 1 2 3 4 5 6 7
-4

-3

-2

-1

C=10.0627



lo
g
1
0
(M
S
E
)

0 0.05 0.1 0.15 0.2
-4

-3

-2

-1

=0.1325

10 20 30 40 50

-2.5

-2.0

-1.5

-1.0

-0.5

Iteration

lo
g

1
0
(M

S
E

C
V
)

 GA CMA-ES BO

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

x
2

x1

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

C

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

x
2

x1

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

x
2

x1

Exploration of Efficient Hyperparameters Adaption of Support Vector Regression for Aerodynamic Design

(b) 300 samples

Figure 11 – SVR models of the Branin-Hoo function in case of different hyperparameter optimization

algorithms (from left to right: GA, CMA-ES and BO)

(a) GA

(b) CMA-ES

(c) BO

Figure 12 – Modeling error varies with the hyperparameters (Branin-Hoo function)

The hyperparameter tuning is repeated 50 times based on the same data set, take the average at

each convergence step and the convergence history is shown in Figure 13. Similar to the last test

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

x
2

x1

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

x
2

x1

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

x
2

x1

log
10
()

lo
g
1
0
(M
S
E
)

-10 -8 -6 -4 -2 0
-3

-2

-1

0

1
MSE (80 samples)

MSE (300 samples)

MSE*_GA (80 samples)

MSE*_GA (300 samples)


300
=4.9060e-04MSE

300
*=1.83e-02


80
=8.6877e-04MSE

80
*=2.42e-02

log
10
(C)

lo
g
1
0
(M
S
E
)

0 2 4 6 8
-3

-2

-1

0

1

C
300
=1.8680

C
80
=1163.0911


lo
g
1
0
(M
S
E
)

0 1 2
-3

-2

-1

0

1


300
=0.1653 

80
=0.8731

log
10
()

lo
g
1
0
(M
S
E
)

-10 -8 -6 -4 -2 0
-3

-2

-1

0

1

2
MSE (80 samples)

MSE (300 samples)

MSE*_CMA-ES (80 samples)

MSE*_CMA-ES (300 samples)

MSE
300
*=6.23e-3 

300
=2.6180e-05


80
=4.6987e-05MSE

80
*=2.36e-2

log
10
(C)

lo
g
1
0
(M
S
E
)

0 2 4 6 8
-3

-2

-1

0

1

2

C
80
=2764.9396

C
300
=7.7054



lo
g
1
0
(M
S
E
)

0 1 2
-3

-2

-1

0

1

2


80
=1.101


300
=0.2119

log
10
()

lo
g
1
0
(M
S
E
)

-10 -8 -6 -4 -2 0
-3

-2

-1

0

1
MSE (80 samples)

MSE (300 samples)

MSE*_BO (80 samples)

MSE*_BO (300 samples)


80
=1.8804e-02

MSE
300
*=4.94e-3 

300
=1.4626e-02

MSE
80
*=2.26e-2

log
10
(C)

lo
g
1
0
(M
S
E
)

0 2 4 6 8
-3

-2

-1

0

1

C
300
=57.4216

C
80
=2764.9396



lo
g
1
0
(M
S
E
)

0 1 2
-3

-2

-1

0

1


80
=1.1233


300
=0.3132

Exploration of Efficient Hyperparameters Adaption of Support Vector Regression for Aerodynamic Design

case, CMA-ES and BO still converges faster and achieves higher accuracy, while GA converges

slowly and is not so robust.

Figure 13 – Hyperparameter-tunning convergence history based on 80 samples (Branin-Hoo function)

6.1.3 Comparison based on all the test cases

In this sub-section, all of the test cases defined in Table 4 will be run by the in-house SVR modeling

codes with the hyperparameters tuned respectively by the GA, CMA-ES and BO algorithms. Two

statistical measures, including the relative root mean square error (RRMSE) and the R-Square (R2),

will be used for evaluation of the surrogate models.

2 2

1 1

ˆ ˆ() / () /
N N

i i i

i i

RRMSE y y N y y N
= =

= − −  (13)

2 2 2

1 1

ˆ1 () / ()
N N

i i i

i i

R y y y y
= =

= − − −  (14)

where N is number of the test samples,
iy and ˆ

iy are the true response and its corresponding

predicted value, and y is mean of the true responses. The lower value of RRMSE is, more accurate

the model is. The closer R2 is to 1 indicates better fitting of the model. Due to the heuristic searching

mechanisms, every time we run the hyperparameter tunning by any of the optimization algorithms,

the results would be different even based on the same data set. Therefore, for a trustable comparison,

modeling of the 1st-6th function is repeated 50 times based on the regenerated samples by the LHS

method, while that of the 7th function is repeated 20 times due to higher computational cost, then take

the average. Additional 1000 points are generated by LHS for testing. Note that, all the numerical

experiments are conducted in our in-house SVR code and run on a PC with Intel (R) Core (TM) i9-

13900H @ 3.00 GHz and 128GB RAM.

The box plots of the RRMSE results are shown in Figure 14, in which the median is the mean value

of the results. The mean values of RRMSE and R2 are listed in Table 7, in which the highest-accuracy

values are marked bold. It is found that, when the dimension is low (𝑚 < 10) and the numerical noise

is not too strong, BO is slightly better than CMA-ES, and GA is apparently worse. With the dimension

is higher (𝑚 ≥ 10) or the noise is strong, CMA-ES enables the highest accuracy of the surrogate

models, and the models obtained by BO and GA are almost at the same level. The results of GA are

not so good no matter in terms of accuracy or robustness, as it converges slowly.

(a) Sinc function (𝑚=1) (b) Branin-Hoo function (𝑚=2)

10 20 30 40 50

-1.5

-1.0

-0.5

0.0

Iteration

lo
g

1
0
(M

S
E

C
V
)

 GA CMA-ES BO

Noise 5% Noise 20% Noise 50%

0.0

0.2

0.4

0.6

0.8

1.0

R
R

M
S

E

 GA

 CMA-ES

 BO

Noise 5% Noise 20% Noise 50%

0.0

0.2

0.4

0.6

0.8

1.0

R
R

M
S

E

Exploration of Efficient Hyperparameters Adaption of Support Vector Regression for Aerodynamic Design

(c) Rosenbrock function (𝑚=4) (d) Hartman function (𝑚=6)

(e) G07 function (𝑚=10) (f) Ellipsoid function (𝑚=20)

(g) Griewank function (𝑚=60)

Figure 14 – RRMSE box-plots of model accuracy by different hyperparameter optimization algorithms

Table 7 – GE of GA, CMA-ES and BO (noise intensity: 5%, 20% and 50%)

Functions Dimension
Optimization
Algorithms

5% 20% 50%

RRMSE R2 RRMSE R2 RRMSE R2

Sinc1 1

GA 0.0690 0.9896 0.1702 0.9562 0.3398 0.8809

CMA-ES 0.0396 0.9973 0.1187 0.9848 0.3482 0.8610

BO 0.0377 0.9985 0.1260 0.9830 0.3236 0.8869

Branin-Hoo 2

GA 0.1660 0.9664 0.2644 0.9169 0.3387 0.8703

CMA-ES 0.1144 0.9852 0.2052 0.9558 0.3074 0.8966

BO 0.1041 0.9874 0.1994 0.9593 0.3218 0.8882

Rosenbrock 4
GA 0.1530 0.9748 0.2877 0.9139 0.4065 0.8320
CMA-ES 0.1366 0.9804 0.2330 0.9442 0.3679 0.8629

BO 0.1248 0.9834 0.2214 0.9503 0.3904 0.8461

Hartman 6

GA 0.5407 0.6949 0.5747 0.6601 0.6752 0.5365

CMA-ES 0.4969 0.7490 0.5270 0.7158 0.6252 0.6054

BO 0.5015 0.7448 0.5373 0.7068 0.6461 0.5771

G07 10

GA 0.0519 0.9968 0.1294 0.9827 0.2474 0.9370

CMA-ES 0.0351 0.9987 0.1139 0.9868 0.2276 0.9474

BO 0.0463 0.9976 0.1324 0.9813 0.2385 0.9423

Ellipsoid 20

GA 0.0732 0.9908 0.2056 0.9498 0.3968 0.8404

CMA-ES 0.0476 0.9977 0.1651 0.9725 0.3674 0.8638

BO 0.0544 0.9968 0.1872 0.9640 0.3925 0.8450

Griewank 60
GA 0.0643 0.9958 0.1640 0.9725 0.2872 0.9145
CMA-ES 0.0630 0.9960 0.1497 0.9775 0.2627 0.9306

BO 0.0630 0.9960 0.1590 0.9745 0.2874 0.9162

For the efficiency comparison, the average time of each test case is collected as well and listed in

Table 8 in which the shortest times are marked bold. The results indicates that: GA has a distinct

superiority of efficiency in the low-dimensional cases (𝑚 < 10). But in the higher-dimensional cases

(𝑚 ≥ 10), the BO becomes the most efficient method.

Noise 5% Noise 20% Noise 50%

0.0

0.2

0.4

0.6

0.8

1.0

R
R

M
S

E

Noise 5% Noise 20% Noise 50%

0.0

0.2

0.4

0.6

0.8

1.0

R
R

M
S

E

Noise 5% Noise 20% Noise 50%

0.0

0.1

0.2

0.3

0.4

0.5

R
R

M
S

E

Noise 5% Noise 20% Noise 50%

0.0

0.2

0.4

0.6

0.8

R
R

M
S

E

Noise 5% Noise 20% Noise 50%

0.0

0.1

0.2

0.3

0.4

0.5

R
R

M
S

E

Exploration of Efficient Hyperparameters Adaption of Support Vector Regression for Aerodynamic Design

Table 8 – Average modeling time (/s) of GA, CMA-ES and BO (noise intensity: 5%, 20% and 50%)

Function Dimension
Optimization

Algorithms
5% 20% 50%

Sinc 1

GA 0.0235 0.0197 0.0155

CMA-ES 0.0343 0.0306 0.0286

BO 0.4339 0.4282 0.4252

Branin-Hoo 2

GA 0.0662 0.0595 0.0432

CMA-ES 0.1098 0.0739 0.0835

BO 0.5274 0.4775 0.4473

Rosenbrock 4

GA 0.3018 0.2122 0.1704

CMA-ES 0.3304 0.3058 0.2503

BO 0.9029 0.7327 0.5835

Hartman 6

GA 0.3457 0.3635 0.2748

CMA-ES 0.5068 0.4780 0.6288

BO 0.6754 0.6642 0.6729

G07 10

GA 1.6248 1.4660 1.0363

CMA-ES 2.7387 2.2779 1.7405

BO 1.3605 1.1101 1.1455

Ellipsoid 20

GA 5.1942 4.7202 4.2082

CMA-ES 7.0025 7.8510 6.3853

BO 3.7529 3.5470 2.8547

Griewank 60

GA 71.0773 67.4167 51.0448

CMA-ES 77.3284 82.9799 80.4204

BO 39.0394 38.7733 46.4693

By the comprehensive comparison of three global optimization algorithms, it can be concluded that:

1) In terms of accuracy, CMA-ES behaves well for almost all the test cases, while BO is better in the

low-dimensional (𝑚 <10) cases and is still comparable in the higher-dimensional cases when the

noise is not too strong. GA is apparently worse than the other two algorithms in the low-dimensional

cases as more iterations are needed but is at the same level with BO when the dimension is higher

(𝑚 ≥ 10). 2) In terms of efficiency, GA has distinct superiority in the low-dimensional cases (𝑚 <10),

but as it needs more iterations to improve the accuracy which would offset its efficiency to some extent.
In contrast, BO is time-consuming in the low-dimensional cases but becomes the most efficient in the

higher-dimensional (𝑚 ≥ 10) cases.

6.2 Comparison of GE-estimation methods

In aerodynamic design and optimization, numerical simulations are time-consuming. Therefore, it

aims to find the appropriate methods that are both efficient and accurate. In order to establish a fast

hyperparameter-tunning process to build a trustable surrogate model, the last section is focused on

the hyperparameter optimization algorithms and this section will compare two GE-estimation methods,

CV and LooB. Due to fast convergence and satisfied accuracy, BO will be used for the following work.

6.2.1 Modeling comparison

The Sinc and Branin-Hoo functions are predicted by SVR based on CV and LooB respectively, as

shown in Figure 15 and Figure 16. Besides, the models are rebuilt based on 300 samples for the

Branin-Hoo function. The results indicate that, 1) the prediction of CV fits better with the true function,

2) when the samples are sufficient and the noise intensity is low, model accuracy of LooB can be

comparable, 3) when the noise is strong, the SVR based on either CV or LooB is not able to give a

trustable prediction.

(a) Case 1: 5% noise intensity (b) Case 2: 20% noise intensity (c) Case 3: 50% noise intensity

Figure 15 – SVR models of the Sinc function in case of different GE-estimation methods

X

Y

-10 -5 0 5 10

-0.2

0

0.2

0.4

0.6

0.8

1

1.2 True function

Samples

CV

LooB

X

Y

-10 -5 0 5 10

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

X

Y

-10 -5 0 5 10

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Exploration of Efficient Hyperparameters Adaption of Support Vector Regression for Aerodynamic Design

(a) 80 samples

(b) 300 samples

Figure 16 – SVR models of the Branin-Hoo function in case of different GE-estimation methods (noise
intensity: 5%, 20% and 50% from left to right)

6.2.2 Comparison based on all the test cases

In principle, LooB sacrifices some accuracy to reduce modeling time. The average modeling time of

each test case is listed in Table 9 verifies it. But can we win on both accuracy and efficiency? The

further work is done on parallelization of the 𝑘-fold CV process, i.e. 𝑘 times of SVR modeling for GE

evaluation are run at the same time instead of in sequence. The results are listed in Table 9 too,

labeled as CV (parallel). It is interesting to find that the parallel CV wins both accuracy and efficiency.

Table 9 – Average modeling time (/s) of CV and LooB (noise intensity: 5%, 20% and 50%)

Function Dimension Noise intensity CV CV (parallel) LooB

Sinc 1

 5% 0.7774 0.4339 0.4200

20% 0.5907 0.4282 0.4142

50% 0.5166 0.4252 0.4054

Branin-Hoo 2

 5% 3.5167 0.5274 0.5123

20% 2.6885 0.4775 0.4769

50% 1.7758 0.4473 0.4502

Rosenbrock 4

 5% 22.3195 0.9029 0.9027

20% 13.5967 0.7327 0.8174

50% 6.0914 0.5835 0.7189

Hartman 6

 5% 7.0938 0.6754 1.1088

20% 8.2261 0.6642 1.0942

50% 8.7837 0.6729 1.0712

G07 10

 5% 26.8963 1.3605 2.4495

20% 23.1536 1.1101 2.3839

50% 17.9062 1.1455 2.2352

Ellipsoid 20

 5% 59.4847 3.7529 8.1366

20% 50.4716 3.5470 8.2945

50% 64.7712 2.8547 7.8739

Griewank 60

 5% 318.4338 39.0394 99.0103

20% 472.0227 38.7733 111.2166

50% 500.1409 46.4693 353.1617

7. Applications to aerodynamic data modeling

Based on the results of numerical examples, BO performs well in terms of both efficiency and

accuracy. Therefore, the BO algorithm will be used in the application examples, and its GE evaluation

X

Y

-10 -5 0 5 10
-0.4

0

0.4

0.8

1.2
True function

Samples

CV

LooB

X

Y

-10 -5 0 5 10
-0.4

0

0.4

0.8

1.2
True function

Samples

CV

LooB

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

x
2

x1

-1.500

-1.000

-0.5000

0.000

0.5000

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

O

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

x
2

x1

-1.500

-1.000

-0.5000

0.000

0.5000

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

O

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

x
2

x1

-1.500

-1.000

-0.5000

0.000

0.5000

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

O

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

x
2

x1

-1.500

-1.000

-0.5000

0.000

0.5000

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

O

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

x
2

x1

-1.500

-1.000

-0.5000

0.000

0.5000

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

O

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

x
2

x1

-1.500

-1.000

-0.5000

0.000

0.5000

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

O

X

Y

-10 -5 0 5 10
-0.4

0

0.4

0.8

1.2
True function

Samples

CV

LooB

X

Y

-10 -5 0 5 10
-0.4

0

0.4

0.8

1.2
True function

Samples

CV

LooB

Exploration of Efficient Hyperparameters Adaption of Support Vector Regression for Aerodynamic Design

number is increased to 100 to achieve better results.

7.1 CFD Aerothermal-data fitting

The aerothermal heat flux of the thermal protection system for a rocket warhead is obtained by CFD

and the contour of the extremely high temperature region is plotted in Figure 17. As shown in the

figure, the contour lines are very rough, which indicates apparent numerical noise. Then based on all

the 5730 samples in this region, the SVR model is built to predict the aerothermal heat flux, as shown

in Figure 17. It is obvious that the contour becomes smooth and its distribution fits the original data.

(a) original data (b) SVR (CV)

Figure 17 - Prediction of the extremely-high temperature region of the rocket warhead

7.2 Wind-tunnel experimental data fitting

The wind-tunnel experimental data is unavoidably accompanied by some physical error due to

unexpected inaccuracy and randomness in the experiment equipment and environment as well as

model quality. The experimental data of the NPU-MWA-250 wind-turbine airfoil[25] at Re=1×106 is

shown in Figure 18 and the SVR model is built. It is found that there is apparent numerical noise in

the data of 𝐶L 𝐶D⁄ when approaching the stall angle of attack. No matter with or without data noise,

the good predictions are obtained by the SVR model.

Figure 18 – Predictions of 𝐶L 𝐶D⁄ and 𝐶L based on the wind-tunnel experimental data

8. Conclusion and Outlook

SVR is one of most popular regression modeling method in machine learning. Due to its good

generalization ability and good adaptability to high-dimensional problem, we are always striving to

introduce it into aerodynamic design and analysis as the data noise dramatically deteriorate the

training efficiency and prediction accuracy. However, for SVR modeling, the hyperparameters have

critical impact on model accuracy, and the hyperparameters adaption may be accompanied with high

computational cost as well. To build a trustable SVR model in an efficient way, the hyperparameters

adaption is investigated.

1) The hyperparameters design spaces are plotted and it is found that the generalization error curves

of all the three hyperparameters are characteristic of multi-modal, large “flat” region and non-

smoothness. So the global optimization algorithms are necessary for hyperparameter optimization.

Angle of Attack(°)

C
L
/C

D

-10 0 10 20 30
-100

-50

0

50

100

Samples

SVR (CV)

Angle of Attack(°)

C
L

-10 0 10 20 30
-1

0

1

2

Exploration of Efficient Hyperparameters Adaption of Support Vector Regression for Aerodynamic Design

2) The comparisons of three popular global optimization algorithms for hyperparameters-tuning are

performed and some conclusions can be drawn as follows:

In terms of accuracy, CMA-ES behaves well for almost all the test cases, while BO is better in the

low-dimensional (𝑚 <10) cases and is still comparable in the higher-dimensional cases when the

noise is not too strong. GA is apparently worse than the other two algorithms in the low-dimensional

cases as more iterations are needed but is at the same level with BO when the dimension is higher

(𝑚 ≥ 10).

In terms of efficiency, GA has distinct superiority in the low-dimensional cases (𝑚 <10), but as it

needs more iterations to improve the accuracy which would offset its efficiency to some extent. In

contrast, BO is time-consuming in the low-dimensional cases but becomes the most efficient in the

higher-dimensional (𝑚 ≥ 10) cases.

3) The comparison of two GE-estimation methods is performed as well. It is found that the parallel CV

can not only enable higher mode accuracy but also has high efficiency even faster than LooB.

9. Acknowledgment

This research was sponsored by the Aeronautical Science Fund under Grant No.20230014053006,

the National Key Research and Development Program of China under Grant No. 2023YFB3002800,

the National Natural Science Foundation under Grant No.U20B2007. The authors are members of

The Youth Innovation Team of Shaanxi Universities.

10. Contact Author Email Address

Keshi Zhang: zhangkeshi@nwpu.edu.cn

Hailong Qiao: qiaohailong@mail.nwpu.edu.cn

Penghui Wang: 1971891864@qq.com

Youquan Du: duyq@mail.nwpu.edu.cn

Zhonghua Han: hanzh@nwpu.edu.cn

11. Copyright Statement

The authors confirm that they, and/or their company or organization, hold copyright on all of the original material

included in this paper. The authors also confirm that they have obtained permission, from the copyright holder

of any third party material included in this paper, to publish it as part of their paper. The authors confirm that

they give permission, or have obtained permission from the copyright holder of this paper, for the publication

and distribution of this paper as part of the ICAS proceedings or as individual off-prints from the proceedings.

References
[1] Vapnik V. The nature of Statistical Learning Theory. Springer, New York, 1995.

[2] Smola A J, Schölkopf B. A tutorial on support vector regression. Statistics and computing, Vol. 14, pp 199-
222, 2004.

[3] Tharwat A and Hassanien A E. Chaotic antlion algorithm for parameter optimization of support vector
machine, Appl Intell, No. 48, pp 670-686, 2018.

[4] Chen K Y. Forecasting systems reliability based on support vector regression with genetic algorithms.
Reliability Engineering & System Safety, Vol. 92, No. 4, pp 423-432, 2007.

[5] Hong W C, Dong Y, Chen L Y, et al. SVR with hybrid chaotic genetic algorithms for tourism demand
forecasting. Applied Soft Computing, Vol. 11, No. 2, pp 1881-1890, 2011.

[6] Lin S W, Ying K C, Chen S C, et al. Particle swarm optimization for parameter determination and feature
selection of support vector machines. Expert systems with applications, Vol. 35, No. 4, pp 1817-1824,
2008.

[7] Lins I D, Moura M D C, Zio E, et al. A particle swarm - optimized support vector machine for reliability
prediction. Quality and Reliability Engineering International, Vol. 28, No. 2, pp 141-158, 2012.

[8] Heidari A A, Mirjalili S, Faris H, et al. Harris hawks optimization: Algorithm and applications. Future
generation computer systems, Vol. 97, pp 849-872, 2019.

[9] Saremi S, Mirjalili S and Lewis A. Grasshopper optimisation algorithm: theory and application. Advances

mailto:zhangkeshi@nwpu.edu.cn
mailto:qiaohailong@mail.nwpu.edu.cn
mailto:duyq@mail.nwpu.edu.cn
mailto:hanzh@nwpu.edu.cn

Exploration of Efficient Hyperparameters Adaption of Support Vector Regression for Aerodynamic Design

in engineering software, Vol. 105, pp 30-47, 2017.

[10] Mirjalili S, Mirjalili S M and Lewis A. Grey wolf optimizer. Advances in engineering software, Vol. 69, pp
46-61, 2014.

[11] Friedrichs F and Igel C. Evolutionary tuning of multiple SVM parameters. Neurocomputing, Vol. 64, pp
107-117, 2005.

[12] Alade I O, Abd Rahman M A and Saleh T A. Predicting the specific heat capacity of alumina/ethylene
glycol nanofluids using support vector regression model optimized with Bayesian algorithm. Solar Energy,
Vol. 183, pp 74-82, 2019.

[13] Smola A J, Schölkopf B and Müller KR. The Connection between Regularization Operators and Support
Vector Kernels. Neural Networks, Vol. 11, No. 4, pp 637-649, 1998.

[14] James G, Witten D, Hastie T and Tibshirani R. An introduction to statistical learning, New York: Springer,
2013.

[15] Gunn S R. Support vector machines for classification and regression. ISIS technical report, Vol. 14, No. 1,
pp 5-16, 1998.

[16] Wang J, Li C, Xu G, et al. Efficient structural reliability analysis based on adaptive Bayesian support vector
regression. Computer Methods in Applied Mechanics and Engineering, Vol. 387, 2021.

[17] Alade I O, Rahman M A A and Hassan A. Modeling the viscosity of nanofluids using artificial neural network
and Bayesian support vector regression. Journal of Applied Physics, Vol. 128, No. 8, 2020.

[18] Chen Y, Liao Y, Hu B, et al. A Novel Model for Electromagnetic Properties of Complex Microstructure
Composites Based on Support Vector Regression. IEEE MTT-S International Conference on Numerical
Electromagnetic and Multiphysics Modeling and Optimization, pp 1-4, 2020.

[19] Santos C E D S., Sampaio R C, Coelho L D S, Bestard G A and Llanos C H. Multi-objective adaptive
differential evolution for SVM/SVR hyperparameters selection, Pattern Recognition, No. 110, 2021.

[20] Mantovani R G, Rossi A L. A meta-learning recommender system for hyperparameter tuning: Predicting
when tuning improves SVM classifiers. Information Sciences, No. 501, pp 193-221, 2019.

[21] M. Wall. GAlib: A C++ Library of Genetic Algorithm Components. MIT, http://lancet.mit.edu/ga/, 1996.

[22] Vavak F and Fogany T. Comparison of Steady State and Generational Genertic Algorithms for use in
Nonstationary Environments. Pmc of the 1996 IEEE Conference on Evolutionary Computation, Nagoya,
Japan, pp 192-195, 1996.

[23] N. Hansen, The CMA Evolution Strategy: A Tutorial, 2016.

[24] Biedrzycki R. Handling bound constraints in CMA-ES: An experimental study. Swarm and Evolutionary
Computation, No. 52, pp 100627, 2020.

[25] Han Z H and Görtz S. Hierarchical kriging model for variable-fidelity surrogate modeling. AIAA journal, Vol.
50, No. 9, pp 1885-1896, 2012.

