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Abstract 

Support vector regression (SVR), due to good generalization capability that has been validated in machine 

learning and pattern recognition, was introduced into aerodynamic design to build surrogate models based on 

the training data with numerical noise in our former work. However, hyperparameters tuning is still a key 

problem to solve because it not only has critical impact on the prediction accuracy but also brings high 

computational cost. Therefore, the hyperparameter optimization model and algorithms are investigated in this 

work. The objective of the hyperparameter optimization model, generalization error (GE), is obtained via the 

popular cross validation (CV) method, and compared with the leave-one-out bound (LooB) method due to its 

high efficiency. The hyperparameter design spaces are plotted and it is found that the curves of GE w.r.t the 

hyperparameters (the insensitive factor, penalty factor and kernel parameter) are commonly characteristic of 

multi-modal, large “flat” region and non-smoothness. Therefore, the gradient optimization is not recommended 

because of its local-search attribute. Three popular global optimization algorithms, including the Genetic 

Algorithm (GA), Bayesian Optimization (BO) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES), 

are applied to hyperparameters adaption and compared via a set of benchmark problems to evaluate its 

training efficiency and prediction accuracy for analytical problems of low/high nonlinearity, based on the 

samples with low/medium/high intensity noise. The results show that, 1) the design space of hyperparameters 

tunning is characteristic of multi-modal, large “flat” region and non-smoothness; 2) In terms of accuracy, CMA-

ES behaves well for almost all the test cases, while BO is better in the low-dimensional (≤ 10) cases and is 

still comparable in the higher-dimensional cases when the noise is not too strong but becomes slightly worse 

when the noise becomes stronger; 2) In the high-dimensional (>10) cases, the BO algorithm has apparent 

superiority of efficiency; 3) the parallel CV can not only enable higher mode accuracy but also has high 

efficiency even faster than LooB. Finally, it is applied in modeling based on the computational aerothermal 

data and the wind-tunnel experimental data respectively, in which the reasonable results are obtained. 

Keywords: support vector regression; hyperparameters adaption; cross validation; leave-one-out bound; global 
optimization algorithm 

 

1. Introduction 

It is well known that all numerical simulations are not “clean”: numerical noises always exist, as they 

are based on discretization. In the computational fluid dynamics (CFD) simulations, coarse grid, 

strong shock wave, apparent flow separation, … may have convergence problems so that incur 

numerical noises. Numerical noises, the numerically induced oscillations with small wavelengths, 

was sometimes particularly troublesome, which can lead to problems in identifying optimum designs 

and will become a hindrance for the further applications of the aerodynamic optimization. 

A regression surrogate model can inherently filter numerical noises, in addition, surrogate-based 

optimization (SBO) is an efficient global-optimization (EGO) method that is widely used in the design 

optimizations associated with different areas of aerospace science and engineering. When these 

methods are applied, it is hopeful that the numerical noises can be filtered so that the subsequent 

optimization will be less affected. 

SVR[1] is usually considered as a special case of support vector machines[2] (SVMs) that is popular 
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in machine learning and pattern recognition. SVR has been proven to have good generalization 

capability and robustness in data regression[15], i.e., approximating highly nonlinear functions well 

and not so sensitive to numerical noises. However, for SVR, the predictive performance is critically 

affected by the hyperparameters values used to train them, like most of the machine learning 

algorithms. Inappropriate setting can lead to overfitting or underfitting. Then, selecting an optimal 

model that minimizes error and generalizes well to the unseen data derives a problem of tuning or 

optimizing these parameters. It is called hyperparameters adaption. Hyperparameters adaption 

usually accompanies with high computational cost, especially on larger datasets, while the tuning 

settings do not always significantly outperform the default values. So, the manual setting is preferred 

in many real problems and popular SVR codes like [LibSVM][3], and efficient and effective adaption 

of the hyperparameters is still an ongoing extremely important issue of the SVR-related researches. 

Despite the advances, hyperparameter tuning on large datasets remains challenging. 

For the classical ε-SVR, we have the insensitive factor ε to control the width of the ε-tube, the penalty 

factor C to determine the tradeoff between training accuracy and model complexity, and the kernel 

parameter σ when introducing nonlinearity by the radial basis function (RBF). Traditionally, grid 

search was employed to search the optimal parameters by varying them with a fixed step size 

through the parameter space and evaluate each parameter combination. Undoubtfully, it’s time-

consuming and not suitable for the engineering problems with computational-expensive analysis. 

The random search runs faster, but probably miss the optimum. The gradient optimization algorithms 

perform fast search in the parameter space but may trap in a local optimum. Then, various heuristic 

(or so-called nature-inspired) algorithms that are not relying on the gradients were introduced for 

tuning parameters, including GA[4][5], particle swarm optimization[6][7] (PSO), Harris Hawks 

optimization[8] (HHO), grasshopper optimization algorithm[9] (GOA), grey wolf optimizer[10]19 

(GWO), etc. The CMA-ES[11], as an Evolutionary Strategy (ES) algorithm, is also used for this 

purpose due to its good capabilities of fast, global search through the non-convex parameter space. 

In addition, the BO has emerged as an efficient method for tuning hyperparameters in variety of 

surrogate models including SVR. It offers robust solutions for optimizing expensive black-box 

functions, using a Gaussian Process as a probabilistic measure to model the unknown function and 

guides the search focusing on the region including the global optimum in a short time. Due to its 

robustness and high efficiency, BO[12] is becoming popular for hyperparameters adaption in variety 

of machine learning algorithms.  

This paper aims to explore the most efficient method of hyperparameters adaption by comparing two 

optimization models and several popular optimization algorithms, in order to make the SVR model 

applicable to the aerodynamic design problems and the other time-consuming engineering design 

problems. This paper is organized as following. Section 2 gives a brief introduction to the SVR theory. 

In Section 3 and Section 4, the hyperparameter-adaption models are established based on the CV 

method and the LooB method respectively. The hyperparameters design space, modeling error and 

computational cost are analyzed. Section 5 explains process of the hyperparameters adaption and 

briefly introduces the optimization algorithms. In Section 6, the modeling methods and optimization 

algorithms are systematically investigated and compared via series of numerical examples and then 

preliminarily applied in the aerodynamic design. 

2. Background: support vector regression 

The ε-SVR is one of the most popular SVR methods. All the investigations on the hyperparameter-

adaption methods will be performed based on it. 

Given is a training data set 𝑫 = (𝑿S, 𝒀S) = {(𝒙(𝑖), 𝑦(𝑖))|𝑖 = 1,2,⋯ , n}, where 𝒙(𝑖) ∈ ℝ𝑚 denotes the 

input vector and 𝑦(𝑖) is its corresponding response (𝑦(𝑖) = 𝑓(𝒙(𝑖))). In ε-SVR, 𝒙 is first mapped to 𝒛 =

𝜓(𝒙) in a feature space via a nonlinear map 𝜓 that is often called kernel function. Then a regression 

function 𝑓(𝒙) = 〈𝒘 ∙ 𝜓(𝒙)〉 + 𝑏 is constructed so that it deviates least from the training set according 

to Vapnik’s ε-insensitive loss function 

 ( )
( )

( )

ˆ0 if

ˆ otherwise

f x - y < ε
L x =
1

f x - y - ε   







  (1) 
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while at the same time is as “flat” as possible (i.e., ‖𝒘‖ is as small as possible). Mathematically, this 

means 
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A key assumption of this formulation is that there exists a function 𝑓(𝒙) that can approximate all pairs 

of (𝒙𝑖, 𝑦𝑖) in ε precision by a so-called “ε-tube” or “ε-insensitive zone”. In a linear case, it is shown in 

Figure 1. The constant C>0 controls the tradeoff between complexity of model and the deviations 

larger than ε. 

 

                   a) ε-tube in the sample space b) ε-insensitive loss 

Figure 1 – ε-tube and error allowance of the ε-SVR (samples in a red circle: support vectors) 

Nonlinear regression can be achieved by simply processing the training data by mapping into some 

feature space and then applying the linear SVR algorithm, i.e. replacing the dot product of input 

vectors with a nonlinear transformation on the input vectors. This transformation is achieved by the 

so-called kernel function, 𝑘(𝒙, 𝒙′). Table 1 lists some common kernel functions. Gaussian radial 

basis function (RBF)[13], as the most commonly used kernel function, will be adopted in all of the 

examples in this paper. 

Table 1 – Common kernel functions 

Kernel function Expression 

Linear 𝑘(𝒙, 𝒙′) = 〈𝒙, 𝒙′〉 
Polynomial 𝑘(𝒙, 𝒙′) = 〈𝒙, 𝒙′〉𝑑 

Gaussian RBF 𝑘(𝒙, 𝒙′) = exp(−
‖𝒙 − 𝒙′‖2

2σ2
) 

Exponential RBF 𝑘(𝒙, 𝒙′) = exp(−
‖𝒙 − 𝒙′‖

2σ2 ) 

Multi-layer perceptron 𝑘(𝒙, 𝒙′) = tanh(𝛽〈𝒙, 𝒙′〉 + θ) 

 

Applying the kernel function into the dot product of input vectors, the following optimization problem 

is obtained. 
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Then the regression formulation becomes 
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3. Hyperparameter adaption modeling 

3.1 Optimization problem 

The hyperparameters critically affect the predictive performance of the model. As such, selecting an 

optimal model that minimizes error and generalizes well to unseen data becomes a problem of tuning 

or optimizing these hyperparameters. The error can be approximately taken as the sum of bias and 

variance[14], neglecting a random error that is unavailable in the data of learning process, 

 

variance bias

ˆ ˆ ˆ[ ( ) - ( )] [ ( )] [ ( )]
2

2

0 0 0 0f x f x Var f x Bias f x= +   (5) 

Bias is the error introduced by approximating a real-world phenomenon, while variance measures 

the sensitivity of 𝑓 to the training dataset and how much its fit would change if estimated using 

different data. Figure 2 illustrates the bias and variance trade-off with respect to model complexity. 

In general, as a model becomes more complicated or flexible, bias decreases and variance increases. 

In other words, a flexible 𝑓 fits closer to given training dataset but is more sensitive to training data 

variability. Too much variance leads to 𝑓  overfitting the data, and too much bias leads to 𝑓 

underfitting the data. Therefore, selecting an optimal 𝑓, ranging in complexity from simple linear to 

highly nonlinear, involves balancing the bias and variance trade-off. Possessing both low bias and 

low variance gives the learned model a higher probability of generalizing well to unseen data during 

model training and predict more accurately. 

 

Figure 2 – Bias and variance trade-off w.r.t. model complexity 

The hyperparameters of 𝜀-SVR include (𝜀, 𝐶, 𝜎). The parameter ε controls the width of the ε-tube; 

the parameter C penalizes any deviation beyond the tube and determines the tradeoff between 

training accuracy and model complexity; and the kernel parameter σ affects flexibility of the 

approximation function: a very small σ means the function is more localized, while a large σ makes 

it less flexible. The hyperparameter adaption is an optimization process in essence, which is to 

search for the optimal hyperparameters combination that minimizes an estimate of the generalization 

error (GE): 

 min lgGE(ε,C,σ)   (6) 

We set the design range of (𝜀, 𝐶, 𝜎) as listed in Table 2 by experience. Although the value of ε is 

proportional to noise variance, such a setting is proven to be appropriate for our test cases.  

Table 2 – Design region of the hyperparameters 

Logarithm of the hyperparameters lg𝜀 lg𝐶 lg𝜎 

Design range [-7,1] [-1,7] [-2,2] 

3.2 GE estimation methods 

For solving the optimization problem of hyperparameters adaption in Eq.(6), one of the key problems 

is how to evaluate GE. Taking both accuracy and efficiency into consideration, the cross-validation 

method and leave-one-out bound method will be compared for this purpose. 

3.2.1 CV method 

CV method[15]-[17] is the most common method for tuning hyperparameters for variety of surrogate 

models. The advantages of CV are that, in most cases, it captures the actual test error that balances 

bias and variance well enough[18]. 

Error 

Model 

complexity 

Bias 

Variance Generalization error 

min(GE) 
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The procedure of CV randomly and evenly divides the given dataset D into k subsets (𝐷1 ∪ 𝐷2 ∪⋯∪

𝐷𝑘 = 𝐷;𝐷𝑖 ∩ 𝐷𝑗 = ∅, 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2,⋯ , 𝑘), and uses k-1 subsets for training and the remaining one 

for testing, which is called k-fold CV. This process is repeated k times by changing the remaining 

subset. Then the GE is evaluated by the MSE (mean squared error), over all test results, as following 

 ( )CV
ˆ

isk
2

t t

i=1 t=1i

1 1
MSE = y - y

k s

 
 
 

    (7) 

where 𝑠𝑖  is number of the samples in the 𝑖th subset. The k-fold CV is the most popular way of 

performing cross validation. Theoretically the result of CV gets closer to unbiased estimate of the 

modeling error when increasing k, however its computational cost might be unacceptable, which 

often happens in engineering designs, as model training must be repeated k times in each objective 

evaluation. Typical choice of k is between 5 and 10. From the consideration of efficiency, k=5 is 

applied in this work, the basic principle of which is shown in Figure 3. 

 

Figure 3 – An overview of 5-fold CV 

3.2.2 LooB method 

The leave-one-out (LOO) method is the extreme case of CV, in which a single sample is excluded 

from the training set and used for evaluating the model. The LOO error is defined as 

 ˆ
n

t t

t=1

1
LOO = y - y

n
   (8) 

LOO provides an unbiased estimate of the true GE, however, is highly time consuming. Therefore, 

a more popular approach is to approximate the error by its upper bound that is a function of the 

hyperparameters. Then we search for parameters so that this bound is minimized, which must lead 

to minimization of the GE. 

The LooB is computationally efficient, so that it’s used in this work as the alternative method for 

approximating the GE, to explore an efficient method of hyperparameters adaption. The LOO bounds, 

such as radius margin bound and span bound for L2-SVR, and the bound for L1-SVR, were derived 

in Ref.[19]. Here we use the bound for L1-SVR that matches the SVR optimization model in Eq.(3) 

and is a commonly used form for regression, as following: 

 ( ) ( )
n n

* 2 *

i i t i i

t=1 t=1

LooB = α +α S + ξ +ξ + nε    (9) 

It is obvious that the LooB value obtained via Eq.(9) will vary within a wide range for large-scale 

sample problems (i.e. n is large), which is not easy for observation. So, we divide it by the number 

of samples, n, then get a varied form: 

 ( ) ( )
n n

* 2 *

i i t i i

t=1 t=1

1
LooB = α +α S + ξ +ξ + ε

n

 
 
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𝑆𝑡
2 is not a continuous function, so a modified item is proposed: 
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where 𝜂 is a user defined positive constant for smoothing regularization and is set to 0.01 in current 
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work. SV is number of free support vectors that are the samples lying on the bounds of 𝜀-tube.  

Eq.(10) will be used for objective evaluation for the hyperparameter optimization in Eq.(6). Obviously, 

its computational cost will usually be much lower than that of the CV method because model training 

is implemented only once in each objective evaluation. However, Eq.(11) indicates that inverse of 

matrix 𝑀̃ will incur computational burden when applying the LooB method if SV is large.  

The LooB in Eq.(10) was derived under the assumption that the set of support vectors remains the 

same during the leave-one-out procedure. This assumption is valid in condition that the function is 

smooth because most of the samples are always free support vectors. However, when there are 

numerical noises, only few samples are free support vectors and most samples are inside and some 

are outside 𝜀-tube, and the set of free support vectors varies a lot in the process of hyperparameters 

adaption. That’s why the LooB method becomes not so accurate as the CV method when numerical 

noises exist. 

4. Some observations on the hyperparameter adaption model 

In this section, we aim to know more about the hyperparameter adaption model, by observing what 

the design space looks like and how the computational cost is to measure the GE. This work will be 

done based on the classical sinc function in Eq.(12). Besides the smooth function, the Gaussian 

noises subject to normal distribution, 𝑁(0, 𝜎𝑛
2), are also added to simulate the noisy function for 

investigating the related attributes. 

 ( ) = asin , [-10,10]f x x x x   (12) 

Firstly, from 100 evenly and smoothly distributed samples, the hyperparameters are set to get the 

baseline prediction model in Figure 4. Then the remained research in this sub-section will be done 

based on this baseline model by adjusting one of the hyperparameters while keeping the others 

constant.  

Table 3 – Empirical hyperparameter setting for the sinc function without and with numerical noises 

Function N 𝜎𝑛 𝜀 𝐶 𝜎 

Sinc (noise free) 100 0 1e-6 1e5 0.09 

Sinc (with noise) 100 2 1e-4 300 0.14 

 

 

Figure 4 – SVR predictions of the sinc function (left: noise free, right: with noise) 

To show how the change of the hyperparameters affects the GE of the prediction model, the design 

spaces of them are illustrated, so that an appropriate optimization algorithm would be applied 

subsequently. 

(1) insensitive factor ε  

Parameter ε controls the width of the ε-insensitive tube, which is proportional to noise variance. A 

very thin ε-tube does not provide enough margin to tolerate the numerical noise in data points, so 

SVR function tends to interpolate the data, while a thick ε-tube has enough margin, having a 

tendency to get flat to generate a regression fit. For a given dataset (smoothly distributed or with 

numerical noise), the influence of ε on accuracy of the prediction model is illustrated in Figure 5, 

estimating GE by CV method via Eq.(7) or LooB method via Eq.(10). It is found that, 1) the minimal 
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GE can be obtained by changing ε; 2) the curve near the optimal ε seems relatively “flat”, where the 

GE is not sensitive with change of ε, and the empirical value of ε in Table 3 lies in this region; 3) the 

ε curve behaves not smooth that might be caused by the numerical error that happened in SVR 

model training. The attributes 2) and 3) of the ε curve present a challenge to the optimization 

algorithms and indicate that a global optimization not dependent upon gradients should be adopted. 

The results in Figure 5 also prove the statement[20] that ε is proportional to noise variance. 

 

 

(a) GE estimation by CV method 

 

(b) GE estimation by LooB method 

Figure 5 – Design space of the insensitive factor ε (left: noise free, right: with noise) 

(2) penalty factor C 

Parameter C determines the tradeoff between the model complexity (flatness) and the degree to 

which deviations larger than ε are tolerated. If C is too large (infinity), the objective in the SVR 

optimization formulation is to minimize the empirical risk only. If C is small, the penalty tends 

negligible and the SVR function gets flat. As shown in Figure 6, the design space of C behaves 

similar to that of ε, i.e. large “flat” region and oscillated curve, which indicates a gradient optimization 

method is not appropriate due to local search and gradient-dependent. Furthermore, it’s proven that 

a relatively large value of C is preferred to punish any deviation out of the ε-tube to get a good 

prediction function when numerical noises don’t exist. But in case of noisy samples, C should be 

carefully valued. 
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(a) GE estimation by CV method 

 

(b) GE estimation by LooB method 

Figure 6 – Design space of the penalty factor C (left: noise free, right: with noise) 

(3) kernel parameter σ 

σ is the width parameter of RBF kernel function. A very small σ means the kernel is more localized, 

thus, the SVR function tends to overfit, while a large σ makes the SVR function less flexible. The 

influence of σ on the GE can be observed via Figure 7. Different from the curves of ε and C in Figure 

5 and Figure 6, the GE is very sensitive to the change of σ near the optimum, which implies that we 

should be more cautious in valuing σ to prevent exacerbation of model accuracy. 
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b) GE estimation by LooB method 

Figure 7 – Design space of kernel function parameter (left: noise free, right: with noise) 

5. Optimization algorithms for hyperparameters adaption 

In this section, we aim to evaluate effectiveness and efficiency of different optimization algorithms to 

search for the optimal hyperparameters. based on the numerical examples of low- and high-

dimensional benchmarks. Due to local flatness, multimodality and non-smoothness of the design 

space observed in the last section, some popular global optimization algorithms for training 

hyperparameters will be applied and compared in this work, including GA, BO and CMA-ES. 

5.1 Steady GA algorithm 

Genetic algorithm, a type of heuristic algorithm, search for the optimal solution by simulating the 

natural evolutionary process. According to the different population generation mechanisms, Galib[21], 

a genetic algorithm program library based on C++, includes three basic types: Incremental GA, Simple 

GA and Steady GA. This paper adopts Steady GA to optimize hyperparameters because of its faster 

convergence speed and stability[22]. The Steady GA directly passes excellent individuals to the next 

generation in a proportion controlled by nReplacement. Meanwhile, only the individuals with low 

fitness undergo crossover and mutation operations. The Steady GA algorithm can be summarized 

below: 
Algorithms 1 – Steady GA algorithm 

Input: population size 𝜆， crossover probability 𝑃𝑐, mutation probability 𝑃𝑚, nReplacement 

Output: 𝑃𝑡+1 

1: Initialize Population 𝑃0 = (𝑥1, . . . , 𝑥𝜆); t=0 
2: repeat 
3: for (i=1 to 𝜆) do 
4: Evaluate fitness 𝑓(𝑥𝑖) 
5: end for 
6: Sort fitness in a descending order and its result is 𝑓(𝑥1:𝜆) ≥. . . ≥ 𝑓(𝑥𝜆:𝜆), in which 𝑥𝑖:𝜆 means the 𝑖 -th best 

individual 
7: 𝑃𝑡+1 = (𝑥1:𝜆, . . . , 𝑥𝜆(1−𝑛Replacement):𝜆) 

8: repeat 
9: Get 𝑥parents by roulette wheel selection operation to 𝐶𝑡 = (𝑥𝜆(1−𝑛Replacement)+1:𝜆, . . . , 𝑥𝜆:𝜆) 

10: if 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) < 𝑃𝑐 then 
11: Crossover to generate offspring individuals 𝑥children 
12: if 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) < 𝑃𝑚 then 
13: Mutation to 𝑥children 
14: Evaluate fitness 𝑓(𝑥children) 
15: if 𝑓(𝑥children) ≥ 𝑓(𝑥parents) then 

16: Add 𝑥children to 𝑃𝑡+1 
17: else 
18: Add 𝑥parents to 𝑃𝑡+1 

19: until (the length of 𝑃𝑡+1 is  ) 

20: 1t t= +  

21: until stop condition met 
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5.2 CMA-ES algorithm 

CMA-ES is an evolution algorithm for non-linear non-convex optimization problems in continuous 

domain [23]. Its core idea is to adjust the search direction by adjusting the covariance matrix, 

increasing the probability of generating good solutions. The algorithm can be divided into four aspects: 

sampling, updating the mean, updating the covariance matrix, and controlling the step size. 

Algorithms 2 – CMA-ES algorithm 

Input: population size 𝜆, step size 𝜎(0) 

Output: 𝑥1:𝜆
(𝑡+1)

 

1: Initialize 𝑐𝑐 , 𝑐1, 𝑐𝜎 , 𝑑𝜎 , 𝜇𝜔, 𝜇 

2: Initialize mean vectors 𝑚(0); 𝐶(0) = 𝐼; 𝑝𝜎
(0)

= 0; 𝑝𝑐
(0)

= 0; t=0 

3: repeat 

4: 𝑥𝑖
(𝑡+1)

= 𝑚(𝑡) + 𝜎(𝑡)𝑁(0, 𝐶(𝑡)), 𝑖 = 1, . . . , 𝜆 

5: Evaluate fitness 𝑓(𝑥𝑖
(𝑡+1)

), 𝑖 = 1, . . . , 𝜆 

6: 
Sort fitness in a descending order and its result is 𝑓(𝑥1:𝜆

(𝑡+1)
) ≥. . . ≥ 𝑓(𝑥𝜆:𝜆

(𝑡+1)
), in which 𝑥𝑖:𝜆 means the 𝑖 -th best 

individual; 

7: 𝑚(𝑡+1) ←∑𝜔𝑖𝑥𝑖:𝜆
(𝑡+1)

𝜇

𝑖=1

 

8: 𝑝𝜎
(𝑡+1)

← (1 − 𝑐𝜎)𝑝𝜎
(𝑡)

+√𝑐𝜎(2 − 𝑐𝜎)𝜇𝜔𝐶
(𝑡)−

1
2 𝑚

(𝑔+1)−𝑚(𝑔)

𝜎(𝑔)
  

9: 𝜎(𝑡+1) ← 𝜎(𝑡) 𝑒𝑥𝑝(
𝑐𝜎
𝑑𝜎

(
‖𝑝𝜎

(𝑔+1)
‖

𝐸‖𝑁(0, 𝐼)‖
− 1)) 

10: 𝑝𝑐
(𝑡+1)

← (1 − 𝑐𝑐)𝑝𝑐
(𝑡)

+√𝑐𝑐(2 − 𝑐𝑐)𝜇𝜔𝐶
(𝑡)

−
1
2
𝑚(𝑔+1) −𝑚(𝑔)

𝜎(𝑔)
 

11: 𝐶(𝑡+1) ← (1 − 𝑐𝜎 − 𝑐𝜇)𝐶
(𝑡) + 𝑐1𝑝𝑐

(𝑡+1)
𝑝𝑐
(𝑡+1)𝛵

+ 𝑐𝜇∑𝜔𝑖

𝜇

𝑖=1

(
𝑥𝑖:𝜆
(𝑔+1)

−𝑚(𝑔)

𝜎(𝑔)
)(

𝑥𝑖:𝜆
(𝑔+1)

−𝑚(𝑔)

𝜎(𝑔)
)

𝛵

 

12: 𝑡 = 𝑡 + 1 
13: until stop condition met 

5.3 Bayesian optimization algorithm 

Bayesian optimization is one of the most advanced and promising techniques in the fields of 

probabilistic machine learning and artificial intelligence, capable of obtaining an approximate optimal 

solution at a low cost of evaluations. It can be concluded as follows: 

Algorithms 3 – BO algorithm 

Input: black-box function 𝑓, hyperparameter search space 𝜒, max iterations T 

Output: best result 

1: Initialize 𝐷0 ← ((𝑥1, 𝑦1), . . . , (𝑥𝑛 , 𝑦𝑛)), in which 𝑦𝑖 = 𝑓(𝑥𝑖) 

2: t=0; 

3: repeat 

4: 𝑝(𝑦|𝑥, 𝐷𝑡) ← 𝐹𝑖𝑡𝑀𝑜𝑑𝑒𝑙(𝐷𝑡) 

5: 𝑥𝑖 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∈𝜒 𝛼 (𝑥, 𝑝(𝑦|𝑥, 𝐷𝑡)), in which 𝛼 is Acquisition Function 

6: 𝑦𝑖 ← 𝑓(𝑥𝑖) 

7: 𝐷𝑡+1 ← 𝐷𝑡 ∪ (𝑥𝑖 , 𝑦𝑖) 

8: 𝑡 = 𝑡 + 1 

9: until t=T 

6. Analytical benchmark test cases  

In this section, different hyperparameters adaption schemes, i.e. different optimization algorithms 

applied to search for the minimal GE estimated by the CV or LooB method, will be evaluated in terms 

of modeling accuracy and efficiency. We employ seven analytical benchmark functions (listed in Table 

4) and the Gaussian noise is added to model noisy responses. The test functions are chosen to cover 

variety of problem properties and dimensions. Rosenbrock is a unimodal function that is characteristic 

of a narrow valley like banana that makes it difficult to be modeled. Branin-Hoo, Hartman and 

Griewank are multimodal functions. Ellipsoid is a separable function. G07 is a non-separable function 

so that the interrelation among the variables makes it more difficult to model than a separable function. 



Exploration of Efficient Hyperparameters Adaption of Support Vector Regression for Aerodynamic Design 
 

Table 4 – Formulation of the benchmark functions 

No. Range m Function Formulation 

1 [−10,10] 1 Sinc ( ) sin( ) /y x x x=  

2 [0,1] 2 Branin-Hoo 

2
2

1 1
2 12

1 5.1 5 10
( ) 6 10 cos( ) 44.81

51.95 4 8

x x
y x x x

  

    
 = − + − + − −   

    

 

where 
1 1 2 215 5, 15x x x x= − =  

3 [0,1] 4 Rosenbrock 
( ) ( )( )

3
2 22 5

15
1

1
( ) 100 1 3.827 10

3.755 10
i i i

i

y x x x x+

=

 
= − + − −  

  
  

where 15 5= −x x  

4 [0,1] 6 Hartman 
4 6

2

1 1

1
( ) 2.58 exp ( )

1.94 10
i ji j ji

i j

y x C a x p
= =

  −
= + − −  

    
   

    

where 1.0 1.2 3.0 .2]3[=C       , 

10.00 0.05 3.00 17.00

3.00 10.00 3.50 8.00

17.00 17.00 1.70 0.05

3.50 0.10 10.00 10.00

1.70 8.00 17.00 0.10

8.00 14.00 8.00 14.00

 
 
 
 

=  
 
 
 
  

a

  

  

  

  

   

 

0.1312 0.2329 0.2348 0.4047

0.1696 0.4135 0.1451 0.8828

0.5569 0.8307 0.3522 0.8732

0.0124 0.3736 0.2883 0.5743

0.8283 0.1004 0.3047 0.1091

0.5886 0.9991 0.6650 0.0381

 
 
 
 

=  
 
 

 

p

      

      

      

      

      

      



 

5 [−10,10] 10 G07 

2 2 2 2 2

1 2 1 2 1 2 3 4 5

2 2 2 2 2 4

6 7 8 9 10

( ) ( 14 16 ( 10) 4( 3) ( 3)

2( 1) 5 7( 11) 2( 10) ( 7) 45) 10

f x x x x x x x x x x

x x x x x −

= + + − − − − + − + −

+ − + + − + − + − + 
 

6 [−5, 5] 20 Ellipsoid 

20
4 2

1

( ) 10 i

i

f x ix−

=

=   

7 [−600,600] 60 Griewank 

2 6060
4

1 1

( ) ( cos( ) 1) 10
4000

i i

i i

x x
f x

i

−

= =

= − +    

 

The definition of the test cases is explained in Table 5. The observation noise is added artificially 

using Gaussian random variables based on the deterministic functions in Table 4. The noise variance 

is formulated proportional to the function standard-variance. The noise intensity varies from low- to 

high-level. Three optimization algorithms respectively combined with two GE-estimation methods for 

SVR hyperparameters tunning will be investigated. The parameter setting of the optimization 

algorithms is listed in Table 6. As the optimization algorithms have different convergence rate, for fair 

comparison and acceptable time cost consideration, the termination condition of the hyperparameter 

optimization is set as number of the GE-evaluation times no more than 50.  

 

Table 5 – Definition of the test cases 

Factor Division Explanation 

Training dataset 40×𝑚 Number of the training samples 

Test dataset 1000 Number of the test samples 

Noise intensity 

Low level Noise variance is 5% of the function standard variance. 

Medium level Noise variance is 20% of the function standard variance. 

High level Noise variance is 50% of the function standard variance. 

Table 6 – Parameter setting of the optimization algorithms  

Algorithm 
population 

size 
generation 

Crossover 
probability 

Mutation 
probability 

Initial 
step size 

Number of 
GE times 

GA 10 5 0.6 0.05  50 

CMA-ES 10 5   2.4 50 

BO      50 
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6.1 Comparison of hyperparameter optimization algorithms 

6.1.1 One-dimensional test case 

Based on the Sinc function, the Gaussian noise is added to the 40 samples generated by Latin 

hypercube sampling (LHS) and the noise variance is 20% of the function standard-variance. Figure 8 

shows the SVR models in case of different hyperparameter optimization algorithms. The SVR models 

optimized by BO and CMA-ES matches better with the true function. To check the optimization results 

and figure out why BO and CMA-ES obtains the hyperparameters that enables better modeling, 

changes of MSE w.r.t. the hyperparameters are given at the location of the optimal hyperparameters 

of each optimization algorithm, as shown in Figure 9. It is found that, with the same computational 

cost (i.e. same number of GE-evaluation times), BO successfully finds the global optimums of all the 

three hyperparameters and achieves the minimal value of MSE (6.37e-4). CMA-ES and GA 

optimizations have not completely converged, so the optimal MSE of CMA-ES is slightly worse (7.74e-

4) but at the same level and that of GA is the worst. If more iterations are allowed, CMA-ES and GA 

optimization may further reduce GE, however, computational cost must be higher.  

 

Figure 8 – SVR models of the Sinc function in case of different hyperparameter optimization algorithms 
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(b) CMA-ES 
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(c) BO 

Figure 9 – Modeling error varies with the hyperparameters (Sinc function) 

To further understand the convergence rate, for each optimization algorithm, the hyperparameter 

tuning is repeated 50 times based on the same data set, take the average at each convergence step 

and the convergence history is shown in Figure 10. It explains the results above again as the BO and 

CMA-ES converges fast and the GA converges slowly. 

 

Figure 10 – Convergence history of hyperparameter optimization (Sinc function) 

6.1.2 Two-dimensional test case 

For further validation and comparison purpose, the surrogate model of the Branin-Hoo function is built 

based on the samples generated by LHS, in which the Gaussian noise variance is 20% of the function 

standard-variance. Figure 11(a) shows the SVR models based on 80 samples in case of different 

hyperparameter optimization algorithms, however, all the three surrogate models do not predict the 

function well although it seems that the optimizer has already found the global optimum. So we 

increase the sample number to 300 and regenerate the surrogate model. As shown in Figure 11(b) 

and Figure 12, when the samples are sufficient, accuracy of the surrogate models is highly improved. 

Figure 12 gives changes of MSE w.r.t. the hyperparameters at the location of the optimal 

hyperparameters of each optimization algorithm, in which the results of the optimizations are marked 

by the symbols. It is found that, in the limited GE evaluations, CMA-ES and BO successfully find the 

global optimum which GA still need more iterations to improve its results.  
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(b) 300 samples 

Figure 11 – SVR models of the Branin-Hoo function in case of different hyperparameter optimization 

algorithms (from left to right: GA, CMA-ES and BO) 

 

(a) GA 

 

(b) CMA-ES 

 

(c) BO 

Figure 12 – Modeling error varies with the hyperparameters (Branin-Hoo function) 

The hyperparameter tuning is repeated 50 times based on the same data set, take the average at 

each convergence step and the convergence history is shown in Figure 13. Similar to the last test 
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case, CMA-ES and BO still converges faster and achieves higher accuracy, while GA converges 

slowly and is not so robust. 

 

Figure 13 – Hyperparameter-tunning convergence history based on 80 samples (Branin-Hoo function) 

6.1.3 Comparison based on all the test cases 

In this sub-section, all of the test cases defined in Table 4 will be run by the in-house SVR modeling 

codes with the hyperparameters tuned respectively by the GA, CMA-ES and BO algorithms. Two 

statistical measures, including the relative root mean square error (RRMSE) and the R-Square (R2), 

will be used for evaluation of the surrogate models. 

 
2 2

1 1

ˆ ˆ( ) / ( ) /
N N

i i i

i i

RRMSE y y N y y N
= =

= − −    (13) 

2 2 2

1 1

ˆ1 ( ) / ( )
N N

i i i

i i

R y y y y
= =

= − − −    (14) 

where N is number of the test samples, 
iy  and ˆ

iy  are the true response and its corresponding 

predicted value, and y  is mean of the true responses. The lower value of RRMSE is, more accurate 

the model is. The closer R2 is to 1 indicates better fitting of the model. Due to the heuristic searching 

mechanisms, every time we run the hyperparameter tunning by any of the optimization algorithms, 

the results would be different even based on the same data set. Therefore, for a trustable comparison, 

modeling of the 1st-6th function is repeated 50 times based on the regenerated samples by the LHS 

method, while that of the 7th function is repeated 20 times due to higher computational cost, then take 

the average. Additional 1000 points are generated by LHS for testing. Note that, all the numerical 

experiments are conducted in our in-house SVR code and run on a PC with Intel (R) Core (TM) i9-

13900H @ 3.00 GHz and 128GB RAM. 

The box plots of the RRMSE results are shown in Figure 14, in which the median is the mean value 

of the results. The mean values of RRMSE and R2 are listed in Table 7, in which the highest-accuracy 

values are marked bold. It is found that, when the dimension is low (𝑚 < 10) and the numerical noise 

is not too strong, BO is slightly better than CMA-ES, and GA is apparently worse. With the dimension 

is higher (𝑚 ≥ 10) or the noise is strong, CMA-ES enables the highest accuracy of the surrogate 

models, and the models obtained by BO and GA are almost at the same level. The results of GA are 

not so good no matter in terms of accuracy or robustness, as it converges slowly.  

  
(a) Sinc function (𝑚=1) (b) Branin-Hoo function (𝑚=2) 
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(c) Rosenbrock function (𝑚=4) (d) Hartman function (𝑚=6) 

  
(e) G07 function (𝑚=10) (f) Ellipsoid function (𝑚=20) 

 

 

(g) Griewank function (𝑚=60)  

Figure 14 – RRMSE box-plots of model accuracy by different hyperparameter optimization algorithms 

 

Table 7 – GE of GA, CMA-ES and BO (noise intensity: 5%, 20% and 50%) 

Functions Dimension 
Optimization 
Algorithms 

5% 20% 50% 

RRMSE R2 RRMSE R2 RRMSE R2 

Sinc1 1 

GA 0.0690 0.9896 0.1702 0.9562 0.3398 0.8809 

CMA-ES 0.0396 0.9973 0.1187 0.9848 0.3482 0.8610 

BO 0.0377 0.9985 0.1260 0.9830 0.3236 0.8869 

Branin-Hoo 2 

GA 0.1660 0.9664 0.2644 0.9169 0.3387 0.8703 

CMA-ES 0.1144 0.9852 0.2052 0.9558 0.3074 0.8966 

BO 0.1041 0.9874 0.1994 0.9593 0.3218 0.8882 

Rosenbrock 4 
GA 0.1530 0.9748 0.2877 0.9139 0.4065 0.8320 
CMA-ES 0.1366 0.9804 0.2330 0.9442 0.3679 0.8629 

BO 0.1248 0.9834 0.2214 0.9503 0.3904 0.8461 

Hartman 6 

GA 0.5407 0.6949 0.5747 0.6601 0.6752 0.5365 

CMA-ES 0.4969 0.7490 0.5270 0.7158 0.6252 0.6054 

BO 0.5015 0.7448 0.5373 0.7068 0.6461 0.5771 

G07 10 

GA 0.0519 0.9968 0.1294 0.9827 0.2474 0.9370 

CMA-ES 0.0351 0.9987 0.1139 0.9868 0.2276 0.9474 

BO 0.0463 0.9976 0.1324 0.9813 0.2385 0.9423 

Ellipsoid 20 

GA 0.0732 0.9908 0.2056 0.9498 0.3968 0.8404 

CMA-ES 0.0476 0.9977 0.1651 0.9725 0.3674 0.8638 

BO 0.0544 0.9968 0.1872 0.9640 0.3925 0.8450 

Griewank 60 
GA 0.0643 0.9958 0.1640 0.9725 0.2872 0.9145 
CMA-ES 0.0630 0.9960 0.1497 0.9775 0.2627 0.9306 

BO 0.0630 0.9960 0.1590 0.9745 0.2874 0.9162 

For the efficiency comparison, the average time of each test case is collected as well and listed in 

Table 8 in which the shortest times are marked bold. The results indicates that: GA has a distinct 

superiority of efficiency in the low-dimensional cases (𝑚 < 10). But in the higher-dimensional cases 

(𝑚 ≥ 10), the BO becomes the most efficient method.  
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Table 8 – Average modeling time (/s) of GA, CMA-ES and BO (noise intensity: 5%, 20% and 50%) 

Function Dimension 
Optimization 

Algorithms 
5% 20% 50% 

Sinc 1 

GA 0.0235 0.0197 0.0155 

CMA-ES 0.0343 0.0306 0.0286 

BO 0.4339 0.4282 0.4252 

Branin-Hoo 2 

GA 0.0662 0.0595 0.0432 

CMA-ES 0.1098 0.0739 0.0835 

BO 0.5274 0.4775 0.4473 

Rosenbrock 4 

GA 0.3018 0.2122 0.1704 

CMA-ES 0.3304 0.3058 0.2503 

BO 0.9029 0.7327 0.5835 

Hartman 6 

GA 0.3457 0.3635 0.2748 

CMA-ES 0.5068 0.4780 0.6288 

BO 0.6754 0.6642 0.6729 

G07 10 

GA 1.6248 1.4660 1.0363 

CMA-ES 2.7387 2.2779 1.7405 

BO 1.3605 1.1101 1.1455 

Ellipsoid 20 

GA 5.1942 4.7202 4.2082 

CMA-ES 7.0025 7.8510 6.3853 

BO 3.7529 3.5470 2.8547 

Griewank 60 

GA 71.0773 67.4167 51.0448 

CMA-ES 77.3284 82.9799 80.4204 

BO 39.0394 38.7733 46.4693 

 

By the comprehensive comparison of three global optimization algorithms, it can be concluded that: 

1) In terms of accuracy, CMA-ES behaves well for almost all the test cases, while BO is better in the 

low-dimensional (𝑚 <10) cases and is still comparable in the higher-dimensional cases when the 

noise is not too strong. GA is apparently worse than the other two algorithms in the low-dimensional 

cases as more iterations are needed but is at the same level with BO when the dimension is higher 

(𝑚 ≥ 10). 2) In terms of efficiency, GA has distinct superiority in the low-dimensional cases (𝑚 <10), 

but as it needs more iterations to improve the accuracy which would offset its efficiency to some extent. 
In contrast, BO is time-consuming in the low-dimensional cases but becomes the most efficient in the 

higher-dimensional (𝑚 ≥ 10) cases.  

6.2 Comparison of GE-estimation methods 

In aerodynamic design and optimization, numerical simulations are time-consuming. Therefore, it 

aims to find the appropriate methods that are both efficient and accurate. In order to establish a fast 

hyperparameter-tunning process to build a trustable surrogate model, the last section is focused on 

the hyperparameter optimization algorithms and this section will compare two GE-estimation methods, 

CV and LooB. Due to fast convergence and satisfied accuracy, BO will be used for the following work. 

6.2.1 Modeling comparison 

The Sinc and Branin-Hoo functions are predicted by SVR based on CV and LooB respectively, as 

shown in Figure 15 and Figure 16. Besides, the models are rebuilt based on 300 samples for the 

Branin-Hoo function. The results indicate that, 1) the prediction of CV fits better with the true function, 

2) when the samples are sufficient and the noise intensity is low, model accuracy of LooB can be 

comparable, 3) when the noise is strong, the SVR based on either CV or LooB is not able to give a 

trustable prediction. 

 
(a) Case 1: 5% noise intensity          (b) Case 2: 20% noise intensity         (c) Case 3: 50% noise intensity 

Figure 15 – SVR models of the Sinc function in case of different GE-estimation methods 
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(a) 80 samples 

 
(b) 300 samples 

Figure 16 – SVR models of the Branin-Hoo function in case of different GE-estimation methods (noise 
intensity: 5%, 20% and 50% from left to right) 

6.2.2 Comparison based on all the test cases 

In principle, LooB sacrifices some accuracy to reduce modeling time. The average modeling time of 

each test case is listed in Table 9 verifies it. But can we win on both accuracy and efficiency? The 

further work is done on parallelization of the 𝑘-fold CV process, i.e. 𝑘 times of SVR modeling for GE 

evaluation are run at the same time instead of in sequence. The results are listed in Table 9 too, 

labeled as CV (parallel). It is interesting to find that the parallel CV wins both accuracy and efficiency. 

 

Table 9 – Average modeling time (/s) of CV and LooB (noise intensity: 5%, 20% and 50%) 

Function Dimension Noise intensity CV CV (parallel) LooB 

Sinc 1 

  5%   0.7774   0.4339   0.4200 

20%   0.5907   0.4282   0.4142 

50%   0.5166   0.4252   0.4054 

Branin-Hoo 2 

  5%   3.5167   0.5274   0.5123 

20%   2.6885   0.4775   0.4769 

50%   1.7758   0.4473   0.4502 

Rosenbrock 4 

  5% 22.3195   0.9029   0.9027 

20% 13.5967   0.7327   0.8174 

50%   6.0914   0.5835   0.7189 

Hartman 6 

  5%   7.0938   0.6754   1.1088 

20%   8.2261   0.6642   1.0942 

50%   8.7837   0.6729   1.0712 

G07 10 

  5% 26.8963   1.3605   2.4495 

20% 23.1536   1.1101   2.3839 

50% 17.9062   1.1455   2.2352 

Ellipsoid 20 

  5% 59.4847   3.7529   8.1366 

20% 50.4716   3.5470   8.2945 

50% 64.7712   2.8547   7.8739 

Griewank 60 

  5% 318.4338 39.0394 99.0103 

20% 472.0227 38.7733 111.2166 

50% 500.1409 46.4693 353.1617 

 

7. Applications to aerodynamic data modeling 

Based on the results of numerical examples, BO performs well in terms of both efficiency and 

accuracy. Therefore, the BO algorithm will be used in the application examples, and its GE evaluation 
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number is increased to 100 to achieve better results. 

7.1 CFD Aerothermal-data fitting 

The aerothermal heat flux of the thermal protection system for a rocket warhead is obtained by CFD 

and the contour of the extremely high temperature region is plotted in Figure 17. As shown in the 

figure, the contour lines are very rough, which indicates apparent numerical noise. Then based on all 

the 5730 samples in this region, the SVR model is built to predict the aerothermal heat flux, as shown 

in Figure 17. It is obvious that the contour becomes smooth and its distribution fits the original data.  

 
(a) original data        (b) SVR (CV) 

Figure 17 - Prediction of the extremely-high temperature region of the rocket warhead 

7.2 Wind-tunnel experimental data fitting 

The wind-tunnel experimental data is unavoidably accompanied by some physical error due to 

unexpected inaccuracy and randomness in the experiment equipment and environment as well as 

model quality. The experimental data of the NPU-MWA-250 wind-turbine airfoil[25] at Re=1×106 is 

shown in Figure 18 and the SVR model is built. It is found that there is apparent numerical noise in 

the data of 𝐶L 𝐶D⁄  when approaching the stall angle of attack. No matter with or without data noise, 

the good predictions are obtained by the SVR model. 

 

 

Figure 18 – Predictions of 𝐶L 𝐶D⁄  and 𝐶L based on the wind-tunnel experimental data 

8. Conclusion and Outlook 

SVR is one of most popular regression modeling method in machine learning. Due to its good 

generalization ability and good adaptability to high-dimensional problem, we are always striving to 

introduce it into aerodynamic design and analysis as the data noise dramatically deteriorate the 

training efficiency and prediction accuracy. However, for SVR modeling, the hyperparameters have 

critical impact on model accuracy, and the hyperparameters adaption may be accompanied with high 

computational cost as well. To build a trustable SVR model in an efficient way, the hyperparameters 

adaption is investigated. 

1) The hyperparameters design spaces are plotted and it is found that the generalization error curves 

of all the three hyperparameters are characteristic of multi-modal, large “flat” region and non-

smoothness. So the global optimization algorithms are necessary for hyperparameter optimization. 
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2) The comparisons of three popular global optimization algorithms for hyperparameters-tuning are 

performed and some conclusions can be drawn as follows: 

In terms of accuracy, CMA-ES behaves well for almost all the test cases, while BO is better in the 

low-dimensional (𝑚 <10) cases and is still comparable in the higher-dimensional cases when the 

noise is not too strong. GA is apparently worse than the other two algorithms in the low-dimensional 

cases as more iterations are needed but is at the same level with BO when the dimension is higher 

(𝑚 ≥ 10).  

In terms of efficiency, GA has distinct superiority in the low-dimensional cases (𝑚 <10), but as it 

needs more iterations to improve the accuracy which would offset its efficiency to some extent. In 

contrast, BO is time-consuming in the low-dimensional cases but becomes the most efficient in the 

higher-dimensional (𝑚 ≥ 10) cases. 

3) The comparison of two GE-estimation methods is performed as well. It is found that the parallel CV 

can not only enable higher mode accuracy but also has high efficiency even faster than LooB. 
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