Exploration of Efficient Hyperparameters Adaption of Support Vector Regression for Aerodynamic Design

34" Congress of the : / *
International Council of *
the Aeronautical Sciences | Florence | September 9-13 /
2 [ Ak e
/i 4

/ / TS

§ / (L /

] /

f i / “f'

EXPLORATION OF EFFICIENT HYPERPARAMETERS ADAPTION OF
SUPPORT VECTOR REGRESSION FOR AERODYNAMIC DESIGN

Ke-Shi Zhang'-2, Hai-Long Qiao"2, Peng-Hui Wang'-2, You-Quan Du"2 & Zhong-Hua Han'2

School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, P.R.China
°National Key Laboratory of Aircraft Configuration Design, Xi'an, 710072, P.R.China

Abstract

Support vector regression (SVR), due to good generalization capability that has been validated in machine
learning and pattern recognition, was introduced into aerodynamic design to build surrogate models based on
the training data with numerical noise in our former work. However, hyperparameters tuning is still a key
problem to solve because it not only has critical impact on the prediction accuracy but also brings high
computational cost. Therefore, the hyperparameter optimization model and algorithms are investigated in this
work. The objective of the hyperparameter optimization model, generalization error (GE), is obtained via the
popular cross validation (CV) method, and compared with the leave-one-out bound (LooB) method due to its
high efficiency. The hyperparameter design spaces are plotted and it is found that the curves of GE w.r.t the
hyperparameters (the insensitive factor, penalty factor and kernel parameter) are commonly characteristic of
multi-modal, large “flat” region and non-smoothness. Therefore, the gradient optimization is not recommended
because of its local-search attribute. Three popular global optimization algorithms, including the Genetic
Algorithm (GA), Bayesian Optimization (BO) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES),
are applied to hyperparameters adaption and compared via a set of benchmark problems to evaluate its
training efficiency and prediction accuracy for analytical problems of low/high nonlinearity, based on the
samples with low/medium/high intensity noise. The results show that, 1) the design space of hyperparameters
tunning is characteristic of multi-modal, large “flat” region and non-smoothness; 2) In terms of accuracy, CMA-
ES behaves well for almost all the test cases, while BO is better in the low-dimensional (< 10) cases and is
still comparable in the higher-dimensional cases when the noise is not too strong but becomes slightly worse
when the noise becomes stronger; 2) In the high-dimensional (>10) cases, the BO algorithm has apparent
superiority of efficiency; 3) the parallel CV can not only enable higher mode accuracy but also has high
efficiency even faster than LooB. Finally, it is applied in modeling based on the computational aerothermal
data and the wind-tunnel experimental data respectively, in which the reasonable results are obtained.

Keywords: support vector regression; hyperparameters adaption; cross validation; leave-one-out bound; global
optimization algorithm

1. Introduction

It is well known that all numerical simulations are not “clean”: numerical noises always exist, as they
are based on discretization. In the computational fluid dynamics (CFD) simulations, coarse grid,
strong shock wave, apparent flow separation, ... may have convergence problems so that incur
numerical noises. Numerical noises, the numerically induced oscillations with small wavelengths,
was sometimes particularly troublesome, which can lead to problems in identifying optimum designs
and will become a hindrance for the further applications of the aerodynamic optimization.

A regression surrogate model can inherently filter numerical noises, in addition, surrogate-based
optimization (SBO) is an efficient global-optimization (EGO) method that is widely used in the design
optimizations associated with different areas of aerospace science and engineering. When these
methods are applied, it is hopeful that the numerical noises can be filtered so that the subsequent
optimization will be less affected.

SVR([1] is usually considered as a special case of support vector machines[2] (SVMs) that is popular
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in machine learning and pattern recognition. SVR has been proven to have good generalization
capability and robustness in data regression[15], i.e., approximating highly nonlinear functions well
and not so sensitive to numerical noises. However, for SVR, the predictive performance is critically
affected by the hyperparameters values used to train them, like most of the machine learning
algorithms. Inappropriate setting can lead to overfitting or underfitting. Then, selecting an optimal
model that minimizes error and generalizes well to the unseen data derives a problem of tuning or
optimizing these parameters. It is called hyperparameters adaption. Hyperparameters adaption
usually accompanies with high computational cost, especially on larger datasets, while the tuning
settings do not always significantly outperform the default values. So, the manual setting is preferred
in many real problems and popular SVR codes like [LibSVM][3], and efficient and effective adaption
of the hyperparameters is still an ongoing extremely important issue of the SVR-related researches.
Despite the advances, hyperparameter tuning on large datasets remains challenging.

For the classical e-SVR, we have the insensitive factor € to control the width of the e-tube, the penalty
factor C to determine the tradeoff between training accuracy and model complexity, and the kernel
parameter o when introducing nonlinearity by the radial basis function (RBF). Traditionally, grid
search was employed to search the optimal parameters by varying them with a fixed step size
through the parameter space and evaluate each parameter combination. Undoubtfully, it's time-
consuming and not suitable for the engineering problems with computational-expensive analysis.
The random search runs faster, but probably miss the optimum. The gradient optimization algorithms
perform fast search in the parameter space but may trap in a local optimum. Then, various heuristic
(or so-called nature-inspired) algorithms that are not relying on the gradients were introduced for
tuning parameters, including GA[4][5], particle swarm optimization[6][7] (PSO), Harris Hawks
optimization[8] (HHO), grasshopper optimization algorithm[9] (GOA), grey wolf optimizer[10]19
(GWO), etc. The CMA-ES[11], as an Evolutionary Strategy (ES) algorithm, is also used for this
purpose due to its good capabilities of fast, global search through the non-convex parameter space.
In addition, the BO has emerged as an efficient method for tuning hyperparameters in variety of
surrogate models including SVR. It offers robust solutions for optimizing expensive black-box
functions, using a Gaussian Process as a probabilistic measure to model the unknown function and
guides the search focusing on the region including the global optimum in a short time. Due to its
robustness and high efficiency, BO[12] is becoming popular for hyperparameters adaption in variety
of machine learning algorithms.

This paper aims to explore the most efficient method of hyperparameters adaption by comparing two
optimization models and several popular optimization algorithms, in order to make the SVR model
applicable to the aerodynamic design problems and the other time-consuming engineering design
problems. This paper is organized as following. Section 2 gives a brief introduction to the SVR theory.
In Section 3 and Section 4, the hyperparameter-adaption models are established based on the CV
method and the LooB method respectively. The hyperparameters design space, modeling error and
computational cost are analyzed. Section 5 explains process of the hyperparameters adaption and
briefly introduces the optimization algorithms. In Section 6, the modeling methods and optimization
algorithms are systematically investigated and compared via series of numerical examples and then
preliminarily applied in the aerodynamic design.

2. Background: support vector regression
The ¢-SVR is one of the most popular SVR methods. All the investigations on the hyperparameter-
adaption methods will be performed based on it.
Given is a training data set D = (Xs,Ys) = {(x¥,y®)|i = 1,2,--,n}, where x¥ € R™ denotes the
input vector and y @ is its corresponding response (y® = f(x?)). In e-SVR, x is first mapped to z =
Y(x) in a feature space via a nonlinear map y that is often called kernel function. Then a regression
function f(x) = (w-Y(x)) + b is constructed so that it deviates least from the training set according
to Vapnik’s e-insensitive loss function

0 if f(x)- y‘ <g

L (x)=1 . 1
]( ) f(x)-y‘-s otherwise ™
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while at the same time is as “flat” as possible (i.e., ||w|| is as small as possible). Mathematically, this
means

. 1 2 < *
min Enw" +CZ(§,. +¢ )
i=1

st. - (wex;)-b<e+¢, (2)
(wex;)+b-y, <e+¢;
.8 20
A key assumption of this formulation is that there exists a function f(x) that can approximate all pairs
of (x;,y;) in € precision by a so-called “s-tube” or “c-insensitive zone”. In a linear case, it is shown in

Figure 1. The constant C>0 controls the tradeoff between complexity of model and the deviations
larger than ¢.

S

=& &

a) e-tube in the sample space b) e-insensitive loss
Figure 1 — e-tube and error allowance of the €-SVR (samples in a red circle: support vectors)

Nonlinear regression can be achieved by simply processing the training data by mapping into some
feature space and then applying the linear SVR algorithm, i.e. replacing the dot product of input
vectors with a nonlinear transformation on the input vectors. This transformation is achieved by the
so-called kernel function, k(x,x’ ). Table 1 lists some common kernel functions. Gaussian radial
basis function (RBF)[13], as the most commonly used kernel function, will be adopted in all of the
examples in this paper.

Table 1 — Common kernel functions

Kernel function Expression

Linear k(x,x) = (x,x')

Polynomial k(x, x') = (x, x')@

Gaussian RBF k(x, ) = exp (_ llx — x'||2>
' 20?

Exponential RBF k(x, x') = exp (_ llx — x'II>
' 202

Multi-layer perceptron k(x,x") = tanh(B{x, x") + )

Applying the kernel function into the dot product of input vectors, the following optimization problem
is obtained.

L3 ) o )

ij=1

—sZn:(ai +aj)+zn:yi(ai —a:)
st Y(a-a)=0 (3)

i=1

max

a:f[O,C]

Then the regression formulation becomes

n

f(x):Z(ai -a:)k(xl.,x)+b (4)

i=1
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3. Hyperparameter adaption modeling

3.1 Optimization problem

The hyperparameters critically affect the predictive performance of the model. As such, selecting an
optimal model that minimizes error and generalizes well to unseen data becomes a problem of tuning
or optimizing these hyperparameters. The error can be approximately taken as the sum of bias and
variance[14], neglecting a random error that is unavailable in the data of learning process,

A A A 2
[f (%)) - £ (X)) =Varl f(x,)]+ Bias[ f (x,)] (5)
variance bias

Bias is the error introduced by approximating a real-world phenomenon, while variance measures
the sensitivity of f to the training dataset and how much its fit would change if estimated using
different data. Figure 2 illustrates the bias and variance trade-off with respect to model complexity.
In general, as a model becomes more complicated or flexible, bias decreases and variance increases.
In other words, a flexible f fits closer to given training dataset but is more sensitive to training data
variability. Too much variance leads to f overfitting the data, and too much bias leads to f
underfitting the data. Therefore, selecting an optimal f, ranging in complexity from simple linear to
highly nonlinear, involves balancing the bias and variance trade-off. Possessing both low bias and
low variance gives the learned model a higher probability of generalizing well to unseen data during

model training and predict more accurately.
ErrorA

Generalization error Variance

Bias

! » Model
min(GE) complexity

Figure 2 — Bias and variance trade-off w.r.t. model complexity

The hyperparameters of e-SVR include (g, C,0). The parameter ¢ controls the width of the e-tube;
the parameter C penalizes any deviation beyond the tube and determines the tradeoff between
training accuracy and model complexity; and the kernel parameter ¢ affects flexibility of the
approximation function: a very small 0 means the function is more localized, while a large c makes
it less flexible. The hyperparameter adaption is an optimization process in essence, which is to
search for the optimal hyperparameters combination that minimizes an estimate of the generalization
error (GE):

min 1gGE(e,C,0) (6)

We set the design range of (¢, C, o) as listed in Table 2 by experience. Although the value of € is
proportional to noise variance, such a setting is proven to be appropriate for our test cases.

Table 2 — Design region of the hyperparameters

Logarithm of the hyperparameters  lge lgC lgo
Design range [-7,11  [-1,7] [-2,2]

3.2 GE estimation methods

For solving the optimization problem of hyperparameters adaption in Eq.(6), one of the key problems
is how to evaluate GE. Taking both accuracy and efficiency into consideration, the cross-validation
method and leave-one-out bound method will be compared for this purpose.

3.2.1 CV method

CV method[15]-[17] is the most common method for tuning hyperparameters for variety of surrogate
models. The advantages of CV are that, in most cases, it captures the actual test error that balances
bias and variance well enough[18].
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The procedure of CV randomly and evenly divides the given dataset D into k subsets (D; UD, U ---U
D, =D;D;nD; =@,i #j,i,j =12,-,k), and uses k-1 subsets for training and the remaining one
for testing, which is called k-fold CV. This process is repeated k times by changing the remaining

subset. Then the GE is evaluated by the MSE (mean squared error), over all test results, as following
k S;

MSE, = éz{izl(yf 5, )z} ™
where s; is number of the samples in the ith subset. The k-fold CV is the most popular way of
performing cross validation. Theoretically the result of CV gets closer to unbiased estimate of the
modeling error when increasing k, however its computational cost might be unacceptable, which
often happens in engineering designs, as model training must be repeated k times in each objective
evaluation. Typical choice of k is between 5 and 10. From the consideration of efficiency, k=5 is
applied in this work, the basic principle of which is shown in Figure 3.

| All Sample Data: {(x;, y)|i = 1,2,---,n} |

.y

Fold #1: 1 3 4
Fold #2: 1 3 5
Fold #3:
© L Z = 2 Training Set
Fold #4: 1 3 4 5
Fold #5: 2 3 4 5 3 e

Figure 3 — An overview of 5-fold CV

3.2.2 LooB method

The leave-one-out (LOO) method is the extreme case of CV, in which a single sample is excluded
from the training set and used for evaluating the model. The LOO error is defined as

1L )
LOO=;Z|y, -3 (8)
t=1

LOO provides an unbiased estimate of the true GE, however, is highly time consuming. Therefore,
a more popular approach is to approximate the error by its upper bound that is a function of the
hyperparameters. Then we search for parameters so that this bound is minimized, which must lead
to minimization of the GE.

The LooB is computationally efficient, so that it's used in this work as the alternative method for
approximating the GE, to explore an efficient method of hyperparameters adaption. The LOO bounds,
such as radius margin bound and span bound for L2-SVR, and the bound for L1-SVR, were derived
in Ref.[19]. Here we use the bound for L1-SVR that matches the SVR optimization model in Eq.(3)
and is a commonly used form for regression, as following:

LooB=Zn:(ai +a;)S,2 +Zn:(fl +f:)+n8 9)

It is obvious that the LooB value obtained via Eq.(9) will vary within a wide range for large-scale
sample problems (i.e. n is large), which is not easy for observation. So, we divide it by the number
of samples, n, then get a varied form:

n

:l N 2 2 * 10
LooB n(;(ai+ai)5t +;(ff+§,- )J+8 (10)

SZ is not a continuous function, so a modified item is proposed:

52— (M]-’) -D, (11)

23

in which

- K. +D 1 ~
M _ |: SVIT NZ SO'V:| and D[t =
N4

*
o, ta.

where 7 is a user defined positive constant for smoothing regularization and is set to 0.01 in current
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work. SV is number of free support vectors that are the samples lying on the bounds of e-tube.

Eq.(10) will be used for objective evaluation for the hyperparameter optimization in Eq.(6). Obviously,
its computational cost will usually be much lower than that of the CV method because model training
is implemented only once in each objective evaluation. However, Eq.(11) indicates that inverse of
matrix M will incur computational burden when applying the LooB method if SV is large.

The LooB in Eq.(10) was derived under the assumption that the set of support vectors remains the
same during the leave-one-out procedure. This assumption is valid in condition that the function is
smooth because most of the samples are always free support vectors. However, when there are
numerical noises, only few samples are free support vectors and most samples are inside and some
are outside e-tube, and the set of free support vectors varies a lot in the process of hyperparameters
adaption. That's why the LooB method becomes not so accurate as the CV method when numerical
noises exist.

4. Some observations on the hyperparameter adaption model
In this section, we aim to know more about the hyperparameter adaption model, by observing what
the design space looks like and how the computational cost is to measure the GE. This work will be
done based on the classical sinc function in Eq.(12). Besides the smooth function, the Gaussian
noises subject to normal distribution, N(0,52), are also added to simulate the noisy function for
investigating the related attributes.

f(x)=asinx/x, xe[-10,10] (12)

Firstly, from 100 evenly and smoothly distributed samples, the hyperparameters are set to get the
baseline prediction model in Figure 4. Then the remained research in this sub-section will be done
based on this baseline model by adjusting one of the hyperparameters while keeping the others
constant.

Table 3 — Empirical hyperparameter setting for the sinc function without and with numerical noises

Function N Oy 3 C o
Sinc (noise free) 100 0 1e-6 1e5 0.09
Sinc (with noise) 100 2 1e-4 300 0.14

120 - 120 -

Samples L & o Samples

100 A~ True function 100 |- o True function
N £ I - —.—.= SVR

Figure 4 — SVR predictions of the sinc function (left: noise free, right: with noise)

To show how the change of the hyperparameters affects the GE of the prediction model, the design
spaces of them are illustrated, so that an appropriate optimization algorithm would be applied
subsequently.

(1) insensitive factor €

Parameter ¢ controls the width of the ¢-insensitive tube, which is proportional to noise variance. A
very thin e-tube does not provide enough margin to tolerate the numerical noise in data points, so
SVR function tends to interpolate the data, while a thick e-tube has enough margin, having a
tendency to get flat to generate a regression fit. For a given dataset (smoothly distributed or with
numerical noise), the influence of € on accuracy of the prediction model is illustrated in Figure 5,
estimating GE by CV method via Eq.(7) or LooB method via Eq.(10). It is found that, 1) the minimal
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GE can be obtained by changing €; 2) the curve near the optimal € seems relatively “flat”, where the
GE is not sensitive with change of €, and the empirical value of € in Table 3 lies in this region; 3) the
€ curve behaves not smooth that might be caused by the numerical error that happened in SVR
model training. The attributes 2) and 3) of the € curve present a challenge to the optimization
algorithms and indicate that a global optimization not dependent upon gradients should be adopted.
The results in Figure 5 also prove the statement[20] that ¢ is proportional to noise variance.

~ noiseless sample ~ noise sample
2 F C=1ES 206 L C=300
1E 5=0.09 0=0.14
or 204
_-1F .
S [
=2 HE =
»n F wn
s r S 202
@ S o |
S r S
4F [
E B 2k
SE mpirical value | .
F i empirical value
6 F A
] S S B B S SR N S| 1‘987””“”‘|HH|HHluuluuluuluul
7 6 5 4 2 1 0 1 -7 6 5 4 2 1 0 1
log,,& log, &
(a) GE estimation by CV method
1.5¢ 15 i
F noiseless sample o noise sample
1E C=1E5 14F C=300
b E 0=0.14
13F
= f
= E
= T
2- 51
S 2 F
5 E
= g 10
on -~ F
= . Ik
8F
F empirical value
7 = —
P S B WS WU NS N BT S
-7 -6 -5 2 1 0 1

lo;gioa )
(b) GE estimation by LooB method
Figure 5 — Design space of the insensitive factor € (left: noise free, right: with noise)
(2) penalty factor C

Parameter C determines the tradeoff between the model complexity (flatness) and the degree to
which deviations larger than ¢ are tolerated. If C is too large (infinity), the objective in the SVR
optimization formulation is to minimize the empirical risk only. If C is small, the penalty tends
negligible and the SVR function gets flat. As shown in Figure 6, the design space of C behaves
similar to that of ¢, i.e. large “flat” region and oscillated curve, which indicates a gradient optimization
method is not appropriate due to local search and gradient-dependent. Furthermore, it's proven that
a relatively large value of C is preferred to punish any deviation out of the e-tube to get a good
prediction function when numerical noises don’t exist. But in case of noisy samples, C should be
carefully valued.
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(a) GE estimation by CV method
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(b) GE estimation by LooB method
Figure 6 — Design space of the penalty factor C (left: noise free, right: with noise)

(3) kernel parameter o

o is the width parameter of RBF kernel function. A very small c means the kernel is more localized,
thus, the SVR function tends to overfit, while a large ¢ makes the SVR function less flexible. The
influence of o on the GE can be observed via Figure 7. Different from the curves of € and C in Figure
5 and Figure 6, the GE is very sensitive to the change of o near the optimum, which implies that we
should be more cautious in valuing ¢ to prevent exacerbation of model accuracy.

ir 321
3E [ noise sample
F noiseless sample 3+ e=1E-4
2K e=1E-6 r C=300
F C=1ES o
e 2.8F
& OF 5 I
= E B 2.6
v -lF 7 [
= L - |
e F o 24Y
= 3F 2 [
4F 22F
SE [
= 2F Vi
-6F empirical value [ empirical value
7k P BRI R R | e
-2 -1 1 2 -2 -1 1 2

0 0
log,,c log,,c

a) GE estimation by CV method
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Figure 7 — Design space of kernel function parameter (left: noise free, right: with noise)

5. Optimization algorithms for hyperparameters adaption

In this section, we aim to evaluate effectiveness and efficiency of different optimization algorithms to
search for the optimal hyperparameters. based on the numerical examples of low- and high-
dimensional benchmarks. Due to local flatness, multimodality and non-smoothness of the design
space observed in the last section, some popular global optimization algorithms for training
hyperparameters will be applied and compared in this work, including GA, BO and CMA-ES.

5.1 Steady GA algorithm

Genetic algorithm, a type of heuristic algorithm, search for the optimal solution by simulating the
natural evolutionary process. According to the different population generation mechanisms, Galib[21],
a genetic algorithm program library based on C++, includes three basic types: Incremental GA, Simple
GA and Steady GA. This paper adopts Steady GA to optimize hyperparameters because of its faster
convergence speed and stability[22]. The Steady GA directly passes excellent individuals to the next
generation in a proportion controlled by nReplacement. Meanwhile, only the individuals with low
fitness undergo crossover and mutation operations. The Steady GA algorithm can be summarized
below:
Algorithms 1 — Steady GA algorithm

Input: population size 1, crossover probability P., mutation probability B,,, nReplacement
Output: P, ;

1: Initialize Population Py = (x4,...,x3); t=0

2 repeat

3 for (i=1to 1) do

4: Evaluate fitness f(x;)

5 end for

6 Sort fitness in a descending order and its result is f(x1.;) =...2 f(x3.,), in which x;.; means the i -th best
individual

7 Py = (X120 -rx/l(l—nReplacement):A)

8: repeat

9: Get xparents DY roulette wheel selection operation to C; = (Xj(1—nreplacement)+1:4: - -» X2:1)

10: if random(0,1) < P, then

11: Crossover to generate offspring individuals Xxcpjidren

12: if random(0,1) < P, then

13: Mutation to xcpjigren

14: Evaluate fithess f (Xchildren)

15: iff(xchildren) = f(xparents) then

16: Add Xchildren to Pt+1

17: else

18: Add Xparents 10 Priq

19: until (the length of P, ; is 1)

20: t=t+1

21: until stop condition met
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5.2 CMA-ES algorithm

CMA-ES is an evolution algorithm for non-linear non-convex optimization problems in continuous
domain [23]. Its core idea is to adjust the search direction by adjusting the covariance matrix,
increasing the probability of generating good solutions. The algorithm can be divided into four aspects:
sampling, updating the mean, updating the covariance matrix, and controlling the step size.

Algorithms 2 — CMA-ES algorithm

Input: population size 4, step size ¢(®
Output: x{*"

1: Initialize c., ¢y, ¢g, Ay s 1
2: Initialize mean vectors m©®; ¢(® =; pf, =0; p(o) =0; =0
3: repeat
40 X =m® £ 6ONO,C®),i=1,...,1
5: Evaluate fitness f(x"*"),i = 1,...,1
6: Sort fitness in a descending order and its result is f(x(t“)) > f(xf;l)) in which x;.; means the i -th best
" individual;
7 m+D) Z w; x(t+1)
) 1 @@
8: pd™ « (1=l +eg@ = e C® 2%
(g+1)
]
9: oD « O exp | -Z -1
P\, \ EINGO, DIl
@+) _ @
im m
10: P e (= cdp® +ee@ = cduaCO ————
a @+ _ (@) /9D _ @\
: @+ (+1T Xia —m Xpp —m
1 CED e A —a)CO +ape p +C"Zwi< L @
i=1
12: t=t+1

13: until stop condition met

5.3 Bayesian optimization algorithm
Bayesian optimization is one of the most advanced and promising techniques in the fields of
probabilistic machine learning and artificial intelligence, capable of obtaining an approximate optimal
solution at a low cost of evaluations. It can be concluded as follows:

Algorithms 3 — BO algorithm

Input: black-box function f, hyperparameter search space y, max iterations T
Output: best result

1 Initialize Dy « ((x1, V1), -, (Xn, ¥n)), in which y; = f(x;)

2 t=0;

3 repeat

4: p(yl|x,Dy) « FitModel(D;)
5: X; < argmaxye, @ (x,p(ylx, Dy)), in which & is Acquisition Function
6 yi < f(x)

7 Dey1 < D U (x4, y1)

8 t=t+1

9 until t=T

6. Analytical benchmark test cases

In this section, different hyperparameters adaption schemes, i.e. different optimization algorithms
applied to search for the minimal GE estimated by the CV or LooB method, will be evaluated in terms
of modeling accuracy and efficiency. We employ seven analytical benchmark functions (listed in Table
4) and the Gaussian noise is added to model noisy responses. The test functions are chosen to cover
variety of problem properties and dimensions. Rosenbrock is a unimodal function that is characteristic
of a narrow valley like banana that makes it difficult to be modeled. Branin-Hoo, Hartman and
Griewank are multimodal functions. Ellipsoid is a separable function. GO7 is a non-separable function
so that the interrelation among the variables makes it more difficult to model than a separable function.
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Table 4 — Formulation of the benchmark functions

No. Range m  Function Formulation
1 [-10,10] 1 Sinc y(x) =sin(x)/ x
2
1 x5y, 1 _
P(x) = —— [)?2—5 al +&—6j +(10——0jcos(xl)—44.8l
2 [0,1] 2 Branin-Hoo 51.95 4r° 7 87
where x —15x, —5,%, =15x,
1 : - —2)? =2 5
y(x)z—{ (100 T,-)+(1-% )—3.827><10
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where x=15x-5
-1 4 6 )
4 [0,1] 6  Hartman YO =50 2.58+;C[exp —;aﬁ(x,/—p,ﬂ-)
where C=[1.0 1.2 3.0 3.2],
[10.00 0.05 3.00 17.00] [0.1312 0.2329 0.2348 0.4047]
3.00 10.00 3.50 8.00 0.1696 0.4135 0.1451 0.8828
17.00 17.00 1.70 0.05 0.5569 0.8307 0.3522 0.8732
a= =
3.50 0.10 10.00 10.00 P 0.0124 0.3736 0.2883 0.5743
1.70  8.00 17.00 0.10 0.8283 0.1004 0.3047 0.1091
18.00 14.00 8.00 14.00 | 0.5886 0.9991 0.6650 0.0381 |
f(x)=(xF +x2 + x,x, —14x, —16x, — (x; —10)* + 4(x, —3)* + (x, = 3)
5  [-10,10] 10  GO7 o e o e e e
+2(x =17 +5x5 +T(xg —11)" + 2(x, —10)" + (x,, = 7)" +45)x10
20
6 [-5,5] 20 Ellipsoid ) =107 %Y ix?
i=l
60 X-2 60 X
7 [-600,600] 60 Griewank )= =~ Jeos(=x) +1)x10~
4000 Wi

The definition of the test cases is explained in Table 5. The observation noise is added artificially
using Gaussian random variables based on the deterministic functions in Table 4. The noise variance
is formulated proportional to the function standard-variance. The noise intensity varies from low- to
high-level. Three optimization algorithms respectively combined with two GE-estimation methods for
SVR hyperparameters tunning will be investigated. The parameter setting of the optimization
algorithms is listed in Table 6. As the optimization algorithms have different convergence rate, for fair
comparison and acceptable time cost consideration, the termination condition of the hyperparameter
optimization is set as number of the GE-evaluation times no more than 50.

Table 5 — Definition of the test cases

Factor Division Explanation
Training dataset 40xm Number of the training samples
Test dataset 1000 Number of the test samples
Low level Noise variance is 5% of the function standard variance.
Noise intensity Medium level Noise variance is 20% of the function standard variance.
High level Noise variance is 50% of the function standard variance.

Table 6 — Parameter setting of the optimization algorithms

Algorithm popglation generation Crosso.v.er Mutatign Initiql Numt?er of
size probability probability  step size GE times

GA 10 0.6 0.05 50

CMA-ES 10 24 50

BO 50
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6.1 Comparison of hyperparameter optimization algorithms

6.1.1 One-dimensional test case

Based on the Sinc function, the Gaussian noise is added to the 40 samples generated by Latin
hypercube sampling (LHS) and the noise variance is 20% of the function standard-variance. Figure 8
shows the SVR models in case of different hyperparameter optimization algorithms. The SVR models
optimized by BO and CMA-ES matches better with the true function. To check the optimization results
and figure out why BO and CMA-ES obtains the hyperparameters that enables better modeling,
changes of MSE w.r.t. the hyperparameters are given at the location of the optimal hyperparameters
of each optimization algorithm, as shown in Figure 9. It is found that, with the same computational
cost (i.e. same number of GE-evaluation times), BO successfully finds the global optimums of all the
three hyperparameters and achieves the minimal value of MSE (6.37e-4). CMA-ES and GA
optimizations have not completely converged, so the optimal MSE of CMA-ES is slightly worse (7.74e-
4) but at the same level and that of GA is the worst. If more iterations are allowed, CMA-ES and GA
optimization may further reduce GE, however, computational cost must be higher.
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Figure 8 — SVR models of the Sinc function in case of different hyperparameter optimization algorithms
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Figure 9 — Modeling error varies with the hyperparameters (Sinc function)

To further understand the convergence rate, for each optimization algorithm, the hyperparameter
tuning is repeated 50 times based on the same data set, take the average at each convergence step
and the convergence history is shown in Figure 10. It explains the results above again as the BO and
CMA-ES converges fast and the GA converges slowly.

51 ——GA ——CMA-ES —BO

log,y(MSEy)

-2.5 T T T T T
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Iteration

Figure 10 — Convergence history of hyperparameter optimization (Sinc function)

6.1.2 Two-dimensional test case

For further validation and comparison purpose, the surrogate model of the Branin-Hoo function is built
based on the samples generated by LHS, in which the Gaussian noise variance is 20% of the function
standard-variance. Figure 11(a) shows the SVR models based on 80 samples in case of different
hyperparameter optimization algorithms, however, all the three surrogate models do not predict the
function well although it seems that the optimizer has already found the global optimum. So we
increase the sample number to 300 and regenerate the surrogate model. As shown in Figure 11(b)
and Figure 12, when the samples are sufficient, accuracy of the surrogate models is highly improved.
Figure 12 gives changes of MSE w.r.t. the hyperparameters at the location of the optimal
hyperparameters of each optimization algorithm, in which the results of the optimizations are marked
by the symbols. It is found that, in the limited GE evaluations, CMA-ES and BO successfully find the
global optimum which GA still need more iterations to improve its results.
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Figure 11 — SVR models of the Branin-Hoo function in case of different hyperparameter optimization

algorithms (from left to right: GA, CMA-ES and BO)
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Figure 12 — Modeling error varies with the hyperparameters (Branin-Hoo function)

The hyperparameter tuning is repeated 50 times based on the same data set, take the average at
each convergence step and the convergence history is shown in Figure 13. Similar to the last test
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case, CMA-ES and BO still converges faster and achieves higher accuracy, while GA converges

slowly and is not so robust.
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Figure 13 — Hyperparameter-tunning convergence history based on 80 samples (Branin-Hoo function)

6.1.3 Comparison based on all the test cases

In this sub-section, all of the test cases defined in Table 4 will be run by the in-house SVR modeling
codes with the hyperparameters tuned respectively by the GA, CMA-ES and BO algorithms. Two
statistical measures, including the relative root mean square error (RRMSE) and the R-Square (R2),
will be used for evaluation of the surrogate models.

RRMSE=\/Z@,- ~y)IN / JZ@,- Y IN (13)

R ZI_Z(% _)A},‘)z/Z(yi _y)z (14)

where N is number of the test samples, y, and j, are the true response and its corresponding
predicted value, and y is mean of the true responses. The lower value of RRMSE is, more accurate

the model is. The closer R2 is to 1 indicates better fitting of the model. Due to the heuristic searching
mechanisms, every time we run the hyperparameter tunning by any of the optimization algorithms,
the results would be different even based on the same data set. Therefore, for a trustable comparison,
modeling of the 1st-6th function is repeated 50 times based on the regenerated samples by the LHS
method, while that of the 7th function is repeated 20 times due to higher computational cost, then take
the average. Additional 1000 points are generated by LHS for testing. Note that, all the numerical
experiments are conducted in our in-house SVR code and run on a PC with Intel (R) Core (TM) i9-
13900H @ 3.00 GHz and 128GB RAM.

The box plots of the RRMSE results are shown in Figure 14, in which the median is the mean value
of the results. The mean values of RRMSE and R2 are listed in Table 7, in which the highest-accuracy
values are marked bold. It is found that, when the dimension is low (im < 10) and the numerical noise
is not too strong, BO is slightly better than CMA-ES, and GA is apparently worse. With the dimension
is higher (m = 10) or the noise is strong, CMA-ES enables the highest accuracy of the surrogate
models, and the models obtained by BO and GA are almost at the same level. The results of GA are

not so good no matter in terms of accuracy or robustness, as it converges slowly.
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Figure 14 — RRMSE box-plots of model accuracy by different hyperparameter optimization algorithms

Table 7 — GE of GA, CMA-ES and BO (noise intensity: 5%, 20% and 50%)

Functions Dimension Optimization 5% 20% 50%
Algorithms RRMSE R? RRMSE R? RRMSE R?
GA 0.0690  0.9896  0.1702  0.9562  0.3398  0.8809
Sincl 1 CMA-ES 0.0396 09973  0.1187  0.9848  0.3482  0.8610
BO 0.0377  0.9985  0.1260  0.9830  0.3236  0.8869
GA 0.1660 09664 02644 09169 0.3387  0.8703
Branin-Hoo 2 CMA-ES 0.1144 09852  0.2052  0.9558  0.3074  0.8966
BO 0.1041  0.9874  0.1994  0.9593  0.3218  0.8882
GA 0.1530 09748  0.2877 09139  0.4065  0.8320
Rosenbrock 4 CMA-ES 0.1366 09804  0.2330  0.9442  0.3679  0.8629
BO 0.1248  0.9834  0.2214  0.9503  0.3904  0.8461
GA 0.5407  0.6949  0.5747  0.6601  0.6752  0.5365
Hartman 6 CMA-ES 0.4969  0.7490  0.5270  0.7158  0.6252  0.6054
BO 0.5015  0.7448  0.5373  0.7068  0.6461  0.5771
GA 0.0519  0.9968  0.1294 09827 0.2474  0.9370
G07 10 CMA-ES 0.0351  0.9987  0.1139  0.9868  0.2276  0.9474
BO 0.0463 09976  0.1324 09813  0.2385  0.9423
GA 0.0732  0.9908  0.2056  0.9498  0.3968  0.8404
Ellipsoid 20 CMA-ES 0.0476  0.9977  0.1651  0.9725 0.3674  0.8638
BO 0.0544 09968  0.1872  0.9640  0.3925  0.8450
GA 0.0643  0.9958  0.1640  0.9725 0.2872 09145
Griewank 60 CMA-ES 0.0630  0.9960  0.1497  0.9775  0.2627  0.9306
BO 0.0630  0.9960  0.1590  0.9745  0.2874  0.9162

For the efficiency comparison, the average time of each test case is collected as well and listed in
Table 8 in which the shortest times are marked bold. The results indicates that: GA has a distinct
superiority of efficiency in the low-dimensional cases (m < 10). But in the higher-dimensional cases
(m > 10), the BO becomes the most efficient method.
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Table 8 — Average modeling time (/s) of GA, CMA-ES and BO (noise intensity: 5%, 20% and 50%)

Function Dimension Op tlmlzatlon 5% 20% 50%
Algorithms
GA 0.0235 0.0197 0.0155
Sinc 1 CMA-ES 0.0343 0.0306 0.0286
BO 0.4339 0.4282 0.4252
GA 0.0662 0.0595 0.0432
Branin-Hoo 2 CMA-ES 0.1098 0.0739 0.0835
BO 0.5274 0.4775 0.4473
GA 0.3018 0.2122 0.1704
Rosenbrock 4 CMA-ES 0.3304 0.3058 0.2503
BO 0.9029 0.7327 0.5835
GA 0.3457 0.3635 0.2748
Hartman 6 CMA-ES 0.5068 0.4780 0.6288
BO 0.6754 0.6642 0.6729
GA 1.6248 1.4660 1.0363
GO07 10 CMA-ES 2.7387 2.2779 1.7405
BO 1.3605 1.1101 1.1455
GA 5.1942 4.7202 4.2082
Ellipsoid 20 CMA-ES 7.0025 7.8510 6.3853
BO 3.7529 3.5470 2.8547
GA 71.0773 67.4167 51.0448
Griewank 60 CMA-ES 77.3284 82.9799 80.4204
BO 39.0394 38.7733 46.4693

By the comprehensive comparison of three global optimization algorithms, it can be concluded that:
1) In terms of accuracy, CMA-ES behaves well for almost all the test cases, while BO is better in the
low-dimensional (m <10) cases and is still comparable in the higher-dimensional cases when the
noise is not too strong. GA is apparently worse than the other two algorithms in the low-dimensional
cases as more iterations are needed but is at the same level with BO when the dimension is higher
(m = 10). 2) In terms of efficiency, GA has distinct superiority in the low-dimensional cases (m <10),
but as it needs more iterations to improve the accuracy which would offset its efficiency to some extent.
In contrast, BO is time-consuming in the low-dimensional cases but becomes the most efficient in the
higher-dimensional (m = 10) cases.

6.2 Comparison of GE-estimation methods

In aerodynamic design and optimization, numerical simulations are time-consuming. Therefore, it
aims to find the appropriate methods that are both efficient and accurate. In order to establish a fast
hyperparameter-tunning process to build a trustable surrogate model, the last section is focused on
the hyperparameter optimization algorithms and this section will compare two GE-estimation methods,
CV and LooB. Due to fast convergence and satisfied accuracy, BO will be used for the following work.

6.2.1 Modeling comparison

The Sinc and Branin-Hoo functions are predicted by SVR based on CV and LooB respectively, as
shown in Figure 15 and Figure 16. Besides, the models are rebuilt based on 300 samples for the
Branin-Hoo function. The results indicate that, 1) the prediction of CV fits better with the true function,
2) when the samples are sufficient and the noise intensity is low, model accuracy of LooB can be
comparable, 3) when the noise is strong, the SVR based on either CV or LooB is not able to give a
trustable prediction.
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Figure 15 — SVR models of the Sinc function in case of different GE-estimation methods
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Figure 16 — SVR models of the Branin-Hoo function in case of different GE-estimation methods (noise
intensity: 5%, 20% and 50% from left to right)

6.2.2 Comparison based on all the test cases

In principle, LooB sacrifices some accuracy to reduce modeling time. The average modeling time of
each test case is listed in Table 9 verifies it. But can we win on both accuracy and efficiency? The
further work is done on parallelization of the k-fold CV process, i.e. k times of SVR modeling for GE
evaluation are run at the same time instead of in sequence. The results are listed in Table 9 too,
labeled as CV (parallel). It is interesting to find that the parallel CV wins both accuracy and efficiency.

Table 9 — Average modeling time (/s) of CV and LooB (noise intensity: 5%, 20% and 50%)

Function Dimension Noise intensity Ccv CV (parallel) LooB
5% 0.7774 0.4339 0.4200
Sinc 1 20% 0.5907 0.4282 0.4142
50% 0.5166 0.4252 0.4054
5% 3.5167 0.5274 0.5123
Branin-Hoo 2 20% 2.6885 0.4775 0.4769
50% 1.7758 0.4473 0.4502
5% 22.3195 0.9029 0.9027
Rosenbrock 4 20% 13.5967 0.7327 0.8174
50% 6.0914 0.5835 0.7189
5% 7.0938 0.6754 1.1088
Hartman 6 20% 8.2261 0.6642 1.0942
50% 8.7837 0.6729 1.0712
5% 26.8963 1.3605 2.4495
GO07 10 20% 23.1536 1.1101 2.3839
50% 17.9062 1.1455 2.2352
5% 59.4847 3.7529 8.1366
Ellipsoid 20 20% 50.4716 3.5470 8.2945
50% 64.7712 2.8547 7.8739
5% 318.4338 39.0394 99.0103
Griewank 60 20% 472.0227 38.7733 111.2166
50% 500.1409 46.4693 353.1617

7. Applications to aerodynamic data modeling

Based on the results of numerical examples, BO performs well in terms of both efficiency and
accuracy. Therefore, the BO algorithm will be used in the application examples, and its GE evaluation
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number is increased to 100 to achieve better results.

7.1 CFD Aerothermal-data fitting

The aerothermal heat flux of the thermal protection system for a rocket warhead is obtained by CFD
and the contour of the extremely high temperature region is plotted in Figure 17. As shown in the
figure, the contour lines are very rough, which indicates apparent numerical noise. Then based on all
the 5730 samples in this region, the SVR model is built to predict the aerothermal heat flux, as shown

in Figure 17. It is obvious that the contour becomes smooth and its distribution fits the original data.
heat flux

(a) original data

Figure 17 - Prediction of the extremely-high temperature region of the rocket warhead

7.2 Wind-tunnel experimental data fitting

The wind-tunnel experimental data is unavoidably accompanied by some physical error due to
unexpected inaccuracy and randomness in the experiment equipment and environment as well as
model quality. The experimental data of the NPU-MWA-250 wind-turbine airfoil[25] at Re=1x10° is
shown in Figure 18 and the SVR model is built. It is found that there is apparent numerical noise in
the data of C,/Cp when approaching the stall angle of attack. No matter with or without data noise,
the good predictions are obtained by the SVR model.
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Figure 18 — Predictions of C},/Cp and C}, based on the wind-tunnel experimental data

8. Conclusion and Outlook

SVR is one of most popular regression modeling method in machine learning. Due to its good
generalization ability and good adaptability to high-dimensional problem, we are always striving to
introduce it into aerodynamic design and analysis as the data noise dramatically deteriorate the
training efficiency and prediction accuracy. However, for SVR modeling, the hyperparameters have
critical impact on model accuracy, and the hyperparameters adaption may be accompanied with high
computational cost as well. To build a trustable SVR model in an efficient way, the hyperparameters
adaption is investigated.

1) The hyperparameters design spaces are plotted and it is found that the generalization error curves
of all the three hyperparameters are characteristic of multi-modal, large “flat” region and non-
smoothness. So the global optimization algorithms are necessary for hyperparameter optimization.
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2) The comparisons of three popular global optimization algorithms for hyperparameters-tuning are
performed and some conclusions can be drawn as follows:

In terms of accuracy, CMA-ES behaves well for almost all the test cases, while BO is better in the
low-dimensional (m <10) cases and is still comparable in the higher-dimensional cases when the
noise is not too strong. GA is apparently worse than the other two algorithms in the low-dimensional
cases as more iterations are needed but is at the same level with BO when the dimension is higher
(m = 10).

In terms of efficiency, GA has distinct superiority in the low-dimensional cases (m <10), but as it
needs more iterations to improve the accuracy which would offset its efficiency to some extent. In
contrast, BO is time-consuming in the low-dimensional cases but becomes the most efficient in the
higher-dimensional (m > 10) cases.

3) The comparison of two GE-estimation methods is performed as well. It is found that the parallel CV
can not only enable higher mode accuracy but also has high efficiency even faster than LooB.
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