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Abstract 

The design and optimization of complex aircraft usually requires thousands to tens of thousands of numerical 
simulations to complete, a costly process. Surrogate models have been widely used in engineering problems 
due to their feature of replacing complex and time-consuming numerical simulations. Design of experiment 
(DoE) is an important and indispensable part of the process of establishing a surrogate model, and its sampling 
results have a crucial impact on the accuracy of the model and the subsequent optimal design. Existing DoE 
methods such as Latin hypercube sampling (LHS) are mainly targeted at unconstrained design space. But in 
actual engineering problems, such as the ballistic constrained design space in aircraft design is often subject 
to multiple and strong constraints on the ballistic trajectory, and then the unconstrained DoE method is no 
longer applicable. The constrained DoE method: sequential local enumeration-based Latin hypercube 
sampling for constrained design space (SLE-CLHS) for the constraint space is unable to establish the 
constraints of the ballistic constraint design space of the whole vehicle. Therefore, based on SLE-CLHS, this 
paper proposes a sequential local enumeration-based improved Latin hypercube sampling method for ballistic 
constraint design space (BCDS-ILHS), which ensures better exploration of the design space by establishing 
the constraints of the ballistic trajectory, improves the correctness and accuracy of the sampling, and 
establishes a higher accuracy surrogate model with as few samples as possible. In order to verify the feasibility 
of the proposed BCDS-ILHS in the ballistic constraint design space, we apply it to a 3D numerical case and a 
3D engineering case. The results show that BCDS-ILHS is able to generate samples that satisfy the constraints 
compared to LHS. And in most cases, with the same prediction accuracy of the surrogate model, BCDS-ILHS 
requires fewer samples. 

Keywords: Design of experiment; Latin hypercube sampling; Ballistic constraint; Surrogate model 
 

1. General Introduction 
In the design and optimization of complex aircraft, thousands to tens of thousands of numerical 
simulations are usually required, a costly process. Surrogate models, also known as approximate 
models or meta-models, have been widely used in engineering problems due to their characteristic 
of replacing complex and time-consuming numerical simulations [1]. Design of experiment (DoE) is 
an indispensable and important part of the process of establishing a surrogate model, and its 
sampling results have a crucial impact on the accuracy of the model and the subsequent optimal 
design [2]. Existing DoE methods mainly include Latin hypercube sampling (LHS) [3], Hammersley 
sequence sampling (HSS) [4], orthogonal design (OD) [5], uniform design (UD) [6], and central 
composite design (CCD) [7], etc., among which, LHS is one of the most popular DoE methods. The 
projections of any two samples in any dimension in LHS will not overlap, which can reduce 
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unnecessary tests in the same dimension, and has been widely used in the optimization design of 
airfoils [8], wings [9] and helicopter rotor blades [10], etc. The above mentioned DoE methods can 
only be used in the unconstrained design space. In actual engineering problems, the design space 
is often multi-constrained and strongly constrained, when the unconstrained DoE method is no 
longer applicable. Therefore, under the condition of considering constraints, Petelet [11] proposed a 
LHS method considering inequality constraints, where the initial LHS is replaced according to the 
desired monotonic constraints, but the space-filling property of the samples deteriorates when the 
maximum or minimum bounds of the two constrained variables are close to each other. Trosset [12] 
constructed an approximate maximum and minimum DoE method for constrained design spaces by 
using nonlinear programming and the pL  criterion. But as the constraints increase, the problem size 
increases drastically, which leads to a reduction in the efficiency of the DoE. Stinstra [13] proposed 
a sequential method (SFDP**) for solving maximum and minimum DoE problems for constrained 
design spaces. And relative to the method proposed by Trosset, the SFDP**'s problem size is 
insensitive to the number of DoE and constraints between variables and has high efficiency. But the 
projection properties of the samples are poor. Danel [14] proposed a constrained non-collapsing 
design (CoNcaD), which can deal with any type of constraints. But the projection properties of the 
samples deteriorate as the problem dimensions become higher. Fuerle [15] minimized the problem 
size of the DoE by using the permutation genetic algorithm to minimize the points of the Audze-
Eglais potential to find the optimal Latin hypercube (OLH). And then combining the constraints to 
extend the OLH to the constrained design space. But when the number of samples becomes too 
large, the space-filling and projection properties of the samples deteriorate. Du [16] proposed a 
sequential local enumeration-based Latin hypercube sampling for constrained design space (SLE-
CLHS) and applied it to rotor optimization of UAVs. SLE-CLHS directly establishes the constrained 
design space by considering the constraints between variables. The initial samples are firstly 
generated in the unconstrained design space by LHS. Then the samples that do not satisfy the 
constraints are eliminated. Finally, a line search is performed in the constrained design space to 
generate new samples, which need to satisfy the space-filling property and projection property of the 
overall sampling. The difficulty of this method is that it needs to establish the constraints of the whole 
design space, which is difficult or even impossible to be applied to complex engineering problems, 
such as the ballistic design space with multiple constraints and strong constraints. Therefore, based 
on SLE-CLHS, this paper proposes a sequential local enumeration-based improved Latin hypercube 
sampling method for ballistic constraint design space (BCDS-ILHS) to solve the DoE problem of 
ballistic constraint design space, which avoids establishing constraints of the whole design space by 
constraining points on the ballistic trajectory individually. And at the same time, BCDS-ILHS ensures 
that the samples strictly satisfy the constraints in the conditions, the design space is better explored 
and the sampling correctness and accuracy are improved. 

The remainder of this paper is organized as follows. In Section 2, the specific sampling steps of 
BCDS-ILHS are introduced, as well as the numerical simulation method and the surrogate model 
used in this paper. In Section 3, BCDS-ILHS is applied to a 3D numerical case and a 3D engineering 
case, and the results are presented. In Section 4, the conclusions are presented. 
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2. Methodology 
2.1 BCDS-ILHS 
Aiming at the DoE problem of the ballistic constraint design space, BCDS-ILHS ensures that the 
design space can be better explored and the correctness and accuracy of the sampling can be 
improved by establishing the constraints of the ballistics under the condition that the samples strictly 
satisfy the constraints. Specifically, for a n -dimensional ballistic constraint design space, the 
algorithm steps are as follows: 

(1) Given ballistic data (usually consisting of a series of discrete points) and interpolating it to obtain 
a continuous trajectory. 

(2) Establish a constraint equation based on the constraints of the trajectory, with the constraint that 
the Euclidean distance between the sample to be sampled and a point on the trajectory at the 
same altitude segment is not greater than a given value, R . 

(3) The LHS is used to generate m  samples in the design space without ballistic constraints, of which 
there are t  samples that satisfy the constraint equations, t m≤ . Therefore, after eliminating the 
samples that do not satisfy the constraints, the number of samples that need to be added is m t− . 

(4) Select one of the n  dimensions as the base dimension, denoted as 1dim . Arrange these t
samples from smallest to largest value in the 1dim  dimension, denoted as { }1 2, , , tX x x x=  . 
And compute the distance between neighboring points in the 1dim  dimension, denoted as 

{ }1 2 1, , , tD d d d +=  . 

(5) Select the two neighboring points in X  that have the largest distance in the 1dim  dimension, give 
the value of the 1t +  sample to be supplemented in the 1dim  dimension at 1/2 of these two points, 
and update D . 

(6) Select one of the n  dimensions as the 2dim  dimension, and given that the search step of this 
dimension is dim 2λ , search the 1t +  sample in the 2dim  dimension. Because the value in the 

1dim  dimension has already been determined, this search is mainly to determine the value of the 
1t +  sample in the 2dim  dimension. Search from the lower bound of the constraint to the upper 

bound of the constraint with the step dim 2λ  in 2dim  dimension. In the search process, calculate 
the Euclidean distance between the to-be-sampled point and the sampled point according to the 
formula (1), and select the position where the Euclidean distance is the largest as the value of the 

1t +  sample in 2dim  dimension. Repeat the above process until the value of the 1t +  sample in 
all dimensions is recognized. At this time, { }1 2 1, , , ,new t tX x x x x +=  . 

(7) Repeat steps (5)~(6) until the number of samples in X  reaches m , and sampling ends. 

 
dim

2
0

1
 ( )

x
i i
a

i
Euclidean Distance x x

=

= −∑  (1) 

where dimx  denotes the dimension in which the step search is being performed. i
ax  denotes the 

value of the a  sample to be sampled in the i  dimension. 0
ix  denotes the value of sample in the X -

sample set in the i  dimension. 
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A simple 2D example is used here to simulate the DoE problem in ballistic constraint design space, 
which in turn demonstrates the BCDS-ILHS sampling steps in detail (as shown in Figure 1). The 
design space is 

 [ ]1 2, 0,1x x ∈  (2) 

The trajectory is 

 2
2 1x x=  (3) 

The ballistic constraints are 

 2 2
2 1( ) 0.2x x− ≤  (4) 

Selecting 1x  as the base dimension, the search step of BCDS-ILHS in 2x  dimension is 
 0.05BCDS ILHSλ − =  (5) 

The design space, ballistic trajectory and ballistic constraints are shown in Figure 1 (a). Firstly, 10 
samples are sampled in the unconstrained design space by LHS (as shown in Figure 1 (b)). After 
eliminating the samples that do not satisfy the constraints, the remaining samples that satisfy the 
constraints are shown in Figure 1 (c). Next, taking 1x  as the base dimension, the remaining samples 
are arranged in order of their values in 1x  dimension from smallest to largest. The distance between 
neighboring points in 1x  dimension is calculated. The value of the first sample to be sampled in 1x  
dimension is fixed at 1/2 of the largest distance between the neighboring points. Then, search from 
the lower bound of the constraint to the upper bound of the constraint in the 2x  dimension with the 
step 2xλ . In the searching process (as shown in Figure 1 (d)), the Euclidean distance between the 
samples to be collected and the existing samples is calculated. Finally, the sample with the largest 
Euclidean distance is selected to determine the value of the samples to be collected in the 2x  
dimension, which determines the exact location of the samples to be collected in the ballistic 
constraint design space (as shown in Figure 1 (e)). The process of sampling subsequent samples is 
the same as the above, so it will not be repeated. The final sampling results are shown in Figure 1 
(f). From the figure, it can be seen that the samples obtained by BCDS-ILHS strictly satisfy the 
constraints. 

  
(a) Design space, ballistic trajectory, ballistic 

constraints 
(b) Samples generated by LHS 
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(c) Samples satisfying ballistic constraints (d) Line search process for samples to be 

collected 

  
(e) Final collection of samples (f) BCDS-ILHS sampling results 

Figure 1 - Sampling process of BCDS-ILHS. 
2.2 Numerical Simulation Methodology 
In this paper, a Navier-Stokes equation-based solver is used for the flow solution, with Reynolds-
averaged Navier-Stokes equations (RANS) as the flow control equations, AUSM format for the 
spatial discretization, and  k SSTω−  as the turbulence model of choice. 

In order to verify the correctness and validity of the mesh generation method and numerical 
simulation method used in this paper, the aerodynamic characteristics of the FDL-5A [17] hypersonic 
vehicle (as shown in Figure 2) are computed at the 7.98, 24.5 , 10Ma H km α= = = °  state. 

 
Figure 2 - FDL-5A hypersonic vehicle profile. 

Boundary layer mesh is generated for the near-wall surfaces and tetrahedral mesh is generated for 
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the rest of the space, with a total of three sets of mesh, 48W, 100W, and 200W, as shown in Figure 
3. 

   
(a) 2L  48W (b) 1L  100W (c) 0L  200W 

Figure 3 - FDL-5A hypersonic vehicle mesh. 

The computational results are shown in Figure 4. The lift coefficients, drag coefficients and pitching 
moment coefficients at zero mesh spacing obtained by Richardson extrapolation [18] are also shown, 
from which it can be seen that the coefficients change approximately linearly with the amount of 
mesh. The mesh convergence is good, which verifies the correctness and validity of the mesh 
generation methodology and numerical simulation methodology used in this paper. 

 
Figure 4 - FDL-5A hypersonic vehicle solver calculation results. 

2.3 Surrogate Model 
Surrogate model is an approximate mathematical model used to replace relatively complex and time-
consuming numerical simulations in the design and optimization process. The Kriging [19-20], which 
has the ability to predict unknown points and error estimation, is a supervised machine learning 
model. In recent years, it has been widely applied in aerospace field, especially in modeling of 
aerodynamic data of small samples of vehicles. 

The principle of the Kriging is to consider the unknown function as a concrete realization of some 
static random process. Specifically, for an arbitrary unknown position x , its corresponding function 
value ( )y x  is replaced by a random function ( )Y x , and ( )y x  is only a random result in ( )Y x , 
which is expressed as 
 0( ) ( )Y x Z xβ= +  (6) 
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where 0β  is the mathematical expectation of ( )Y x , an unknown constant. And ( )Z ⋅  is a static 
stochastic process with mean 0 and variance 2σ . 

The detailed modeling process of the Kriging can be found in the literature [1]. In this paper, the 
correlation function chosen in the modeling process is the “Gaussian quadratic exponential function”, 
whose expression is as follows 

 ( ) ( ) ( ) ( )( , ) exp( ), 2kpi j i j
k k k kk k k kR x x x x pθ θ− = − − =  (7) 

where ( )i
kx  and ( )j

kx  are the k  dimensional components of the i  and j  samples, respectively; kθ  is 
the model hyperparameters. When establishing the Kriging, in order to improve the accuracy of the 
model, it is usually necessary to train the hyperparameters of the model. In this paper, we use the 
maximum likelihood estimation for the hyperparameters to find the optimal. In addition, this paper 
uses statistical indicators to evaluate the accuracy of Kriging. The accuracy metrics are mainly 
coefficient of determination ( 2R ), relative root mean square error ( RRMSE ) and relative maximum 
absolute error ( RMAE ), where 2R  and RRMSE  are the global accuracy metrics, and RMAE  is 
the local accuracy metric, which are calculated as follows 

 

2

2 21

2

1

ˆ( )
1 , ( ,1]

( )

N

i i
i
N

i
i

y y
R R

y y

=

=

−
= − ∈ −∞

−

∑

∑
 (8) 

 2

1

1 1 ˆ( )
N

i i
i

RRMSE y y
STD N =

= −∑  (9) 

 
1 ˆmax i iRMAE y y

STD
= −  (10) 

 2

1

1 ( )
1

N

i
i

STD y y
N =

= −
− ∑  (11) 

where N  is the number of test samples, ˆiy  is the predicted value of the surrogate model at the i  
test sample, iy  is the true value of the test sample, y  is the average value of the true values of the 
test samples, and the closer 2R  is to 1, the smaller RRMSE  and RMAE  are, which indicates that 
the predictive accuracy of the surrogate model is higher. 

3. Case Validation 
3.1 Case 1: Three-dimensional Numerical Case 
Taking the 3D Rastrigin analytic function ( )f x  as the modeling objective and 1 2 3, ,x x x  as the 
variables, the DoE problem and the modeling problem in the ballistic constraint design space are 
simulated by sampling and building Kriging for ( )f x , and the analytic function expression is as 
follows 

 
3

2

1
( ) 10*3 10cos(2 )i i

i
f x x xπ

=

 = + − ∑  (12) 
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The design space is 

 1 2

3

, [-0.2,1.2],
[0.0,2.0]

x x
x

∈
∈

 (13) 

The trajectory is 

 2 2
3 1 2 1 2,x x x x x= + =  (14) 

The ballistic constraints are 

 2 23 3
1 2( ) ( ) 0.2

2 2
x xx x− + − ≤  (15) 

3x  is selected as the baseline dimension, and the BCDS-ILHS search steps in the 1 2,x x  dimensions 
are all 
 0.001BCDS ILHSλ − =  (16) 

The design space, ballistic trajectory and ballistic constraints are shown in Figure 5. When the value 
of 3x  is determined, the ballistic constraints (blue circle) are shown in Figure 5 (a). and the complete 
ballistic constraints obtained from the ballistic trajectory are shown in Figure 5 (b) (gray pipe). 

  
(a) Constraints for a point on the trajectory (b) Complete ballistic constraints 

Figure 5 - 3D Rastrigin analytic functions for design space, ballistic trajectory, and ballistic 
constraints. 

The LHS and BCDS-ILHS is used to sample the above design space with a sample size of 100 and 
the sampling results are shown in Figure 6 and Figure 7. 
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(a) LHS sampling results 1 2 3x x x− −  (b) LHS sampling results 1 2x x−  

  
(c) LHS sampling results 1 3x x−  (d) LHS sampling results 2 3x x−  

Figure 6 - LHS sampling results. 

  
(a) BCDS-ILHS sampling results 1 2 3x x x− −  (b) BCDS-ILHS sampling results 1 2x x−  
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(c) BCDS-ILHS sampling results 1 3x x−  (d) BCDS-ILHS sampling results 2 3x x−  

Figure 7 - BCDS-ILHS sampling results. 

As can be seen in Figure 6 and Figure 7, most of the samples obtained by LHS do not satisfy the 
constraints, while all the samples obtained by BCDS-ILHS are strictly within the constraints. 

In order to further test the feasibility of BCDS-ILHS for the DoE problem and modeling problem in 
the ballistic constraint design space, 10, 20, 30, 40 and 50 samples are taken as training samples 
by using LHS and BCDS-ILHS, respectively. And 101 samples are selected uniformly from the 
ballistic trajectory as test samples. The surrogate model uses Kriging. In the two sampling methods, 

( )f x  of the three error metrics 2R , RRMSE  and RMAE  with the increase of the number of 
training samples is shown in Figure 8. From the figure, it can be seen that all the error metrics of 
BCDS-ILHS are significantly better and more robust than LHS for different number of training 
samples. The feasibility of the proposed method in this paper is verified for the DoE problem and 
modeling problem in the ballistic constraint design space. 

   
(a) 2R  (b) RRMSE  (c) RMAE  

Figure 8 - Variation of the three error metrics 2R , RRMSE  and RMAE  of ( )f x  with increasing 
number of training samples in the two sampling methods. 

3.2 Case 2: Three-dimensional Engineering Case 
The FDL-5A hypersonic vehicle (shown in Figure 2) is used to fly on the ballistic trajectory shown in 
Figure 9. Its , ,L D MC C C  are used as the modeling targets. , ,H Ma α  are used as the variable. The 
DoE problem and the modeling problem in the ballistic constraint design space are simulated by 
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sampling and building Kriging for FDL-5A , ,L D MC C C . The design space is as follows 

 
10.0511 19.7947 
         5.65 15.22
          3.74 12.50

km H km
Ma
α

≤ ≤
≤ ≤
° ≤ ≤ °

 (17) 

The ballistic constraints are established based on the following assumption: with H  as the base 
dimension, for the sample to be collected , , )x xH H

x a aH Ma α（  at the height of xH , the xH
aMa  and 

xH
aα  Euclidean distances of 0

xHMa  and 0
xHα  from the ballistic point 0 0, , )x xH H

xH Ma α（  at the height 
of xH  on the trajectory should not be greater than R . This assumption is mainly based on the fact 
that states on the trajectory usually do not mutate too much. Specifically, when H  is changed from 
11.0 km to 11.1 km, the Ma  usually will not be mutate from 5.65 to 15.22. Therefore, the constraint 
equations for the ballistic trajectory are as follows 

 2 2
0 0( ) ( )x xx xH HH H

a aMa Ma Rα α− + − ≤  (18) 

where R  is given as 1.0. 

H  is selected as the base dimension, and the BCDS-ILHS search steps in the ,Ma α  dimension 
are all 
 0.001BCDS ILHSλ − =  (19) 

The design space, ballistic trajectory and ballistic constraints are shown in Figure 9. When the value 
of H  is determined, the ballistic constraints (blue circle) are shown in Figure 9 (a), and the complete 
ballistic constraints obtained from the ballistic trajectory are shown in Figure 9 (b) (gray pipe). 

  
(a) Constraints for a point on the trajectory (b) Complete ballistic constraints 

Figure 9 - FDL-5A design space, ballistic trajectory and ballistic constraints. 

The LHS and BCDS-ILHS are used to sample the above design space with a sample size of 100, 
and the sampling results are shown in Figure 10 and Figure 11. 
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(a) LHS sampling results H Ma α− −  (b) LHS sampling results Ma α−  

  
(c) LHS sampling results Ma H−  (d) LHS sampling results Hα −  

Figure 10 - LHS sampling results. 

  
(a) BCDS-ILHS sampling results H Ma α− −  (b) BCDS-ILHS sampling results Ma α−  
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(a) BCDS-ILHS sampling results Ma H−  (b) BCDS-ILHS sampling results Hα −  

Figure 11 - BCDS-ILHS sampling results. 

As can be seen in Figure 10 and Figure 11, most of the samples obtained through LHS do not satisfy 
the constraints, whereas all the samples obtained from BCDS-ILHS are strictly within the constraints. 

In order to further test the feasibility of BCDS-ILHS for the DoE problem and modeling problem in 
the ballistic constraint design space, 5, 10, 15, 20 and 25 samples are taken as training samples 
using LHS and BCDS-ILHS, respectively. And 34 ballistic points on the ballistic trajectory are 
selected as test samples. The surrogate model uses Kriging. In order to reduce the computational 
cost, the mesh is chosen to be 48W (as shown in Figure 3 (a)), and the numerical simulation method 
is adopted as mentioned in Section 2.2. The variations of the three error metrics 2R , RRMSE  and 
RMAE  of , ,L D MC C C  with the increase of the number of training samples in both sampling 
methods are shown in Figure 12 to Figure 14. When the number of samples is small, in Figure 12 
and Figure 14, although the BCDS-ILHS accuracy is slightly worse than the LHS, it is worth noting 
that both have achieved high accuracy. In Figure 13, the BCDS-ILHS accuracy is much larger than 
the LHS, and the LHS accuracy is poor. When the number of samples is large, the accuracy of the 
two methods gradually converges (as shown in Figure 12 to Figure 14). Initially, the feasibility of the 
method proposed in this paper is verified in the DoE problem and modelling problem in the ballistic 
constraint design space. 

   
(a) 2R  (b) RRMSE  (c) RMAE  

Figure 12 - Variation of the three error metrics 2R , RRMSE  and RMAE  of LC  with increasing 
number of training samples in both sampling methods. 
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(a) 2R  (b) RRMSE  (c) RMAE  

Figure 13 - Variation of the three error metrics 2R , RRMSE  and RMAE  of DC  with increasing 
number of training samples in both sampling methods. 
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Figure 14 - Variation of the three error metrics 2R , RRMSE  and RMAE  of MC  with increasing 
number of training samples in both sampling methods. 

Combining the results of numerical and aerodynamic calculations, it can be seen that the method 
proposed in this paper is feasible for DoE problems and modelling problems in the ballistic constraint 
design space. 

4. Conclusions 
In this paper, a sequential local enumeration-based improved Latin hypercube sampling method for 
ballistic constraint design space is proposed, and the main conclusions are summarized as follows: 

(1) The constraints of the ballistic constraints design space are established based on the trajectory, 
which ensures a better exploration of the design space and improves the sampling correctness and 
accuracy under the condition that the samples strictly satisfy the constraints. 

(2) BCDS-ILHS is used in the DoE problem of ballistic constraint design space for a 3D numerical 
case and a 3D aerodynamic case. Compared with the sampling results of LHS, the results obtained 
from BCDS-ILHS sampling strictly satisfy the constraints, which proves the feasibility of the method 
proposed in this paper in the DoE problem of ballistic constraint design space. 

(3) BCDS-ILHS is used to model the ballistic constraint design space for a 3D numerical case and a 
3D aerodynamic case. Comparison of the modelling results between the LHS and BCDS-ILHS 
samples shows that the latter requires fewer samples to build a more accurate surrogate model in 
most cases, which initially demonstrates the feasibility of the proposed method in the problem of 
modelling the ballistic constraint design space. However, it should be noted that the accuracy of 
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BCDS-ILHS is slightly worse than that of LHS for a small number of samples in the DC  modelling of 
aerodynamic case, which may be related to the vehicle, design space and flow characteristics. 

Although BCDS-ILHS is feasible in this paper, it is only a preliminary exploration. And Its applicability 
in high dimensional and complex ballistic constraint design space remains to be investigate. Also, 
regarding the DC  modelling problem mentioned in conclusion (3), it will be investigated in future 
work. 
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