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Abstract

The design and optimization of complex aircraft usually requires thousands to tens of thousands of numerical
simulations to complete, a costly process. Surrogate models have been widely used in engineering problems
due to their feature of replacing complex and time-consuming numerical simulations. Design of experiment
(DoE) is an important and indispensable part of the process of establishing a surrogate model, and its sampling
results have a crucial impact on the accuracy of the model and the subsequent optimal design. Existing DoE
methods such as Latin hypercube sampling (LHS) are mainly targeted at unconstrained design space. But in
actual engineering problems, such as the ballistic constrained design space in aircraft design is often subject
to multiple and strong constraints on the ballistic trajectory, and then the unconstrained DoE method is no
longer applicable. The constrained DoE method: sequential local enumeration-based Latin hypercube
sampling for constrained design space (SLE-CLHS) for the constraint space is unable to establish the
constraints of the ballistic constraint design space of the whole vehicle. Therefore, based on SLE-CLHS, this
paper proposes a sequential local enumeration-based improved Latin hypercube sampling method for ballistic
constraint design space (BCDS-ILHS), which ensures better exploration of the design space by establishing
the constraints of the ballistic trajectory, improves the correctness and accuracy of the sampling, and
establishes a higher accuracy surrogate model with as few samples as possible. In order to verify the feasibility
of the proposed BCDS-ILHS in the ballistic constraint design space, we apply it to a 3D numerical case and a
3D engineering case. The results show that BCDS-ILHS is able to generate samples that satisfy the constraints
compared to LHS. And in most cases, with the same prediction accuracy of the surrogate model, BCDS-ILHS
requires fewer samples.

Keywords: Design of experiment; Latin hypercube sampling; Ballistic constraint; Surrogate model

1. General Introduction

In the design and optimization of complex aircraft, thousands to tens of thousands of numerical
simulations are usually required, a costly process. Surrogate models, also known as approximate
models or meta-models, have been widely used in engineering problems due to their characteristic
of replacing complex and time-consuming numerical simulations [1]. Design of experiment (DoE) is
an indispensable and important part of the process of establishing a surrogate model, and its
sampling results have a crucial impact on the accuracy of the model and the subsequent optimal
design [2]. Existing DoE methods mainly include Latin hypercube sampling (LHS) [3], Hammersley
sequence sampling (HSS) [4], orthogonal design (OD) [5], uniform design (UD) [6], and central
composite design (CCD) [7], etc., among which, LHS is one of the most popular DoE methods. The
projections of any two samples in any dimension in LHS will not overlap, which can reduce
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unnecessary tests in the same dimension, and has been widely used in the optimization design of
airfoils [8], wings [9] and helicopter rotor blades [10], etc. The above mentioned DoE methods can
only be used in the unconstrained design space. In actual engineering problems, the design space
is often multi-constrained and strongly constrained, when the unconstrained DoE method is no
longer applicable. Therefore, under the condition of considering constraints, Petelet [11] proposed a
LHS method considering inequality constraints, where the initial LHS is replaced according to the
desired monotonic constraints, but the space-filling property of the samples deteriorates when the
maximum or minimum bounds of the two constrained variables are close to each other. Trosset [12]
constructed an approximate maximum and minimum DoE method for constrained design spaces by
using nonlinear programming and the Lp criterion. But as the constraints increase, the problem size
increases drastically, which leads to a reduction in the efficiency of the DoE. Stinstra [13] proposed
a sequential method (SFDP**) for solving maximum and minimum DoE problems for constrained
design spaces. And relative to the method proposed by Trosset, the SFDP**'s problem size is
insensitive to the number of DoE and constraints between variables and has high efficiency. But the
projection properties of the samples are poor. Danel [14] proposed a constrained non-collapsing
design (CoNcaD), which can deal with any type of constraints. But the projection properties of the
samples deteriorate as the problem dimensions become higher. Fuerle [15] minimized the problem
size of the DoE by using the permutation genetic algorithm to minimize the points of the Audze-
Eglais potential to find the optimal Latin hypercube (OLH). And then combining the constraints to
extend the OLH to the constrained design space. But when the number of samples becomes too
large, the space-filling and projection properties of the samples deteriorate. Du [16] proposed a
sequential local enumeration-based Latin hypercube sampling for constrained design space (SLE-
CLHS) and applied it to rotor optimization of UAVs. SLE-CLHS directly establishes the constrained
design space by considering the constraints between variables. The initial samples are firstly
generated in the unconstrained design space by LHS. Then the samples that do not satisfy the
constraints are eliminated. Finally, a line search is performed in the constrained design space to
generate new samples, which need to satisfy the space-filling property and projection property of the
overall sampling. The difficulty of this method is that it needs to establish the constraints of the whole
design space, which is difficult or even impossible to be applied to complex engineering problems,
such as the ballistic design space with multiple constraints and strong constraints. Therefore, based
on SLE-CLHS, this paper proposes a sequential local enumeration-based improved Latin hypercube
sampling method for ballistic constraint design space (BCDS-ILHS) to solve the DoE problem of
ballistic constraint design space, which avoids establishing constraints of the whole design space by
constraining points on the ballistic trajectory individually. And at the same time, BCDS-ILHS ensures
that the samples strictly satisfy the constraints in the conditions, the design space is better explored
and the sampling correctness and accuracy are improved.

The remainder of this paper is organized as follows. In Section 2, the specific sampling steps of
BCDS-ILHS are introduced, as well as the numerical simulation method and the surrogate model
used in this paper. In Section 3, BCDS-ILHS is applied to a 3D numerical case and a 3D engineering
case, and the results are presented. In Section 4, the conclusions are presented.
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2. Methodology
2.1 BCDS-ILHS

Aiming at the DoE problem of the ballistic constraint design space, BCDS-ILHS ensures that the
design space can be better explored and the correctness and accuracy of the sampling can be
improved by establishing the constraints of the ballistics under the condition that the samples strictly
satisfy the constraints. Specifically, for a n -dimensional ballistic constraint design space, the
algorithm steps are as follows:

(1) Given ballistic data (usually consisting of a series of discrete points) and interpolating it to obtain
a continuous trajectory.

(2) Establish a constraint equation based on the constraints of the trajectory, with the constraint that
the Euclidean distance between the sample to be sampled and a point on the trajectory at the
same altitude segment is not greater than a given value, R.

(3) The LHS is used to generate m samples in the design space without ballistic constraints, of which
there are ¢ samples that satisfy the constraint equations, ¢ < m . Therefore, after eliminating the
samples that do not satisfy the constraints, the number of samples that need to be added is m —¢.

(4) Select one of the n dimensions as the base dimension, denoted as dim,. Arrange these ¢
samples from smallest to largest value in the dim, dimension, denoted as Xz{xl,xz,---,x,}.

And compute the distance between neighboring points in the dim, dimension, denoted as
D:{dl,dz,---,dm}.

(5) Select the two neighboring points in X that have the largest distance in the dim, dimension, give
the value of the 7 +1 sample to be supplemented in the dim, dimension at 1/2 of these two points,
and update D.

(6) Select one of the n dimensions as the dim, dimension, and given that the search step of this
dimension is A, search the ¢ +1 sample in the dim, dimension. Because the value in the
dim, dimension has already been determined, this search is mainly to determine the value of the
¢t +1 sample in the dim, dimension. Search from the lower bound of the constraint to the upper
bound of the constraint with the step A, in dim, dimension. In the search process, calculate
the Euclidean distance between the to-be-sampled point and the sampled point according to the
formula (1), and select the position where the Euclidean distance is the largest as the value of the
t+1 sample in dim, dimension. Repeat the above process until the value of the #+1 sample in

all dimensions is recognized. At this time, X, = {xl,xz,---,xt,xm} .

(7) Repeat steps (5)~(6) until the number of samples in X reaches m , and sampling ends.

dim, . .
Euclidean Distance = / Z (x\ —x})* (1)
=1

where dim_ denotes the dimension in which the step search is being performed. xfl denotes the
value of the a sample to be sampled in the i dimension. xf, denotes the value of sample in the X -
sample set in the i dimension.



A SEQUENTIAL LOCAL ENUMERATION-BASED IMPROVED LATIN HYPERCUBE SAMPLING METHOD FOR
BALLISTIC CONSTRAINT DESIGN SPACE

A simple 2D example is used here to simulate the DoE problem in ballistic constraint design space,
which in turn demonstrates the BCDS-ILHS sampling steps in detail (as shown in Figure 1). The
design space is

X[, X, € [0,1] (2)

The trajectory is

=% 3)

The ballistic constraints are

Selecting x, as the base dimension, the search step of BCDS-ILHS in x, dimension is
Apcps-ius = 0-05 (5)

The design space, ballistic trajectory and ballistic constraints are shown in Figure 1 (a). Firstly, 10
samples are sampled in the unconstrained design space by LHS (as shown in Figure 1 (b)). After
eliminating the samples that do not satisfy the constraints, the remaining samples that satisfy the
constraints are shown in Figure 1 (c). Next, taking x, as the base dimension, the remaining samples
are arranged in order of their values in x; dimension from smallest to largest. The distance between
neighboring points in x, dimension is calculated. The value of the first sample to be sampled in Xx;,
dimension is fixed at 1/2 of the largest distance between the neighboring points. Then, search from
the lower bound of the constraint to the upper bound of the constraint in the x, dimension with the
step A,,. In the searching process (as shown in Figure 1 (d)), the Euclidean distance between the
samples to be collected and the existing samples is calculated. Finally, the sample with the largest
Euclidean distance is selected to determine the value of the samples to be collected in the x,
dimension, which determines the exact location of the samples to be collected in the ballistic
constraint design space (as shown in Figure 1 (e)). The process of sampling subsequent samples is
the same as the above, so it will not be repeated. The final sampling results are shown in Figure 1
(f). From the figure, it can be seen that the samples obtained by BCDS-ILHS strictly satisfy the

constraints.
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Figure 1 - Sampling process of BCDS-ILHS.
2.2 Numerical Simulation Methodology
In this paper, a Navier-Stokes equation-based solver is used for the flow solution, with Reynolds-
averaged Navier-Stokes equations (RANS) as the flow control equations, AUSM format for the
spatial discretization, and & — @ SST as the turbulence model of choice.

In order to verify the correctness and validity of the mesh generation method and numerical
simulation method used in this paper, the aerodynamic characteristics of the FDL-5A [17] hypersonic
vehicle (as shown in Figure 2) are computed at the Ma =7.98, H =24.5 km,x =10° state.

Figure 2 - FDL-5A hypersonic vehicle profile.

Boundary layer mesh is generated for the near-wall surfaces and tetrahedral mesh is generated for
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the rest of the space, with a total of three sets of mesh, 48W, 100W, and 200W, as shown in Figure
3.

(a) L, 48W

(b) Z, 100W () L, 200W

Figure 3 - FDL-5A hypersonic vehicle mesh.

The computational results are shown in Figure 4. The lift coefficients, drag coefficients and pitching
moment coefficients at zero mesh spacing obtained by Richardson extrapolation [18] are also shown,
from which it can be seen that the coefficients change approximately linearly with the amount of
mesh. The mesh convergence is good, which verifies the correctness and validity of the mesh
generation methodology and numerical simulation methodology used in this paper.
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Figure 4 - FDL-5A hypersonic vehicle solver calculation results.

2.3 Surrogate Model

Surrogate model is an approximate mathematical model used to replace relatively complex and time-
consuming numerical simulations in the design and optimization process. The Kriging [19-20], which
has the ability to predict unknown points and error estimation, is a supervised machine learning
model. In recent years, it has been widely applied in aerospace field, especially in modeling of
aerodynamic data of small samples of vehicles.

The principle of the Kriging is to consider the unknown function as a concrete realization of some
static random process. Specifically, for an arbitrary unknown position x, its corresponding function
value y(x) is replaced by a random function Y(x), and y(x) is only a random result in Y(x),
which is expressed as

Y(x) =y +Z(x) (6)
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where f, is the mathematical expectation of Y(x), an unknown constant. And Z(-) is a static
stochastic process with mean 0 and variance o?.

The detailed modeling process of the Kriging can be found in the literature [1]. In this paper, the
correlation function chosen in the modeling process is the “Gaussian quadratic exponential function”,
whose expression is as follows

i ; i | P
R, (6 ,x,E) —x,(cj)) =exp(—6, ‘x,E) —x,(CJ) ), pp =2 (7)

where x,(f) and x,(cj) are the k dimensional components of the i and j samples, respectively; 6, is
the model hyperparameters. When establishing the Kriging, in order to improve the accuracy of the
model, it is usually necessary to train the hyperparameters of the model. In this paper, we use the
maximum likelihood estimation for the hyperparameters to find the optimal. In addition, this paper
uses statistical indicators to evaluate the accuracy of Kriging. The accuracy metrics are mainly
coefficient of determination (R2 ), relative root mean square error ( RRMSE ) and relative maximum
absolute error (RMAE ), where R> and RRMSE are the global accuracy metrics, and RMAE is
the local accuracy metric, which are calculated as follows

u 2
Z(yi_yi)
R =1-£— R*e(-0,1] (8)
2 =7)
i=1
RRMSE—L\/ii(y —9.)* (9)
STD\ NS " !
1 5
RMAE:S%maX|yi—yl.| (10)
STD=,|——=2_ (vi=») (11)
N-1 i=1

where N is the number of test samples, p, is the predicted value of the surrogate model at the i
test sample, y, is the true value of the test sample, y is the average value of the true values of the
test samples, and the closer R? isto 1, the smaller RRMSE and RMAE are, which indicates that
the predictive accuracy of the surrogate model is higher.

3. Case Validation

3.1 Case 1: Three-dimensional Numerical Case

Taking the 3D Rastrigin analytic function f(x) as the modeling objective and x,,x,,x; as the
variables, the DoE problem and the modeling problem in the ballistic constraint design space are
simulated by sampling and building Kriging for f(x), and the analytic function expression is as
follows

f(x)=10*3+23:[xf —10005(27rxi)] (12)

i=1
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The design space is
x;,x, €[-0.2,1.2],

X, €[0.0,2.0] (13)

The trajectory is

Xy=X +X5,X =X, (14)

\/(xl—\/%)2+(x2 —\/%)2 <0.2 (15)

x; is selected as the baseline dimension, and the BCDS-ILHS search steps in the x;,x, dimensions

The ballistic constraints are

are all
ﬂBCDS—ILHS =0.001 (16)

The design space, ballistic trajectory and ballistic constraints are shown in Figure 5. When the value
of x; is determined, the ballistic constraints (blue circle) are shown in Figure 5 (a). and the complete
ballistic constraints obtained from the ballistic trajectory are shown in Figure 5 (b) (gray pipe).

. When x, = 0.98, the constraint space is
Tr ajectory . Trajectory
@ Constraint center | ypryined according to formula (14).
\\_ [ ——
rl Y / T
e

/ /

NN
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02 04 06 0.8

0204 06 o8
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(a) Constraints for a point on the trajectory (b) Complete ballistic constraints

Figure 5 - 3D Rastrigin analytic functions for design space, ballistic trajectory, and ballistic
constraints.

The LHS and BCDS-ILHS is used to sample the above design space with a sample size of 100 and
the sampling results are shown in Figure 6 and Figure 7.
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Figure 7 - BCDS-ILHS sampling results.

As can be seen in Figure 6 and Figure 7, most of the samples obtained by LHS do not satisfy the
constraints, while all the samples obtained by BCDS-ILHS are strictly within the constraints.

In order to further test the feasibility of BCDS-ILHS for the DoE problem and modeling problem in
the ballistic constraint design space, 10, 20, 30, 40 and 50 samples are taken as training samples
by using LHS and BCDS-ILHS, respectively. And 101 samples are selected uniformly from the
ballistic trajectory as test samples. The surrogate model uses Kriging. In the two sampling methods,
f(x) of the three error metrics R?, RRMSE and RMAE with the increase of the number of
training samples is shown in Figure 8. From the figure, it can be seen that all the error metrics of
BCDS-ILHS are significantly better and more robust than LHS for different number of training
samples. The feasibility of the proposed method in this paper is verified for the DoE problem and
modeling problem in the ballistic constraint design space.

L5p L5 25

b —®— LHSEK 3 —®—— LHS RRMSE b —m— LHS RMAE
1.25F BCDS-ILHS R’ 3 BCDS-ILHS RRMSE 2F BCDS-ILHS RMAE
r 1t [
1k [ L5k
o r a L ;sc [
= r = | S
0.75F =05 &Ik
0.5k I 0.5k
[ o+ [
0.25F [ of
0:‘H‘|"Hnuunuunuunuu [Py I T I W W W _05: L L I I L
0 10 20 30 40 50 60 : 10 20 30 40 50 60 0 10 20 30 40 50 60
No. of Samples No. of Samples No. of Samples
2
(@ R (b) RRMSE (¢) RMAE

Figure 8 - Variation of the three error metrics R*, RRMSE and RMAE of f(x) with increasing
number of training samples in the two sampling methods.
3.2 Case 2: Three-dimensional Engineering Case
The FDL-5A hypersonic vehicle (shown in Figure 2) is used to fly on the ballistic trajectory shown in
Figure 9. Its C,,C,,,C,, are used as the modeling targets. H,Ma,« are used as the variable. The
DoE problem and the modeling problem in the ballistic constraint design space are simulated by
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sampling and building Kriging for FDL-5A C,,C,,,C,, . The design space is as follows
10.0511 km < H £19.7947 km
5.65< Ma<15.22 (17)
3.74° < £12.50°

The ballistic constraints are established based on the following assumption: with 4 as the base
dimension, for the sample to be collected (Hx,Man,af*) at the height of /, the Maf)‘ and
aff Euclidean distances of Magl" and agl" from the ballistic point (Hx,MagI*,agI*) at the height
of H_ on the trajectory should not be greater than R . This assumption is mainly based on the fact
that states on the trajectory usually do not mutate too much. Specifically, when H is changed from
11.0 km to 11.1 km, the Ma usually will not be mutate from 5.65 to 15.22. Therefore, the constraint

equations for the ballistic trajectory are as follows

JMas — Mal"y + (@ —al") <R (18)
where R is given as 1.0.

H is selected as the base dimension, and the BCDS-ILHS search steps in the Ma,a dimension
are all
ﬂ’BCDS—ILHS =0.001 (19)

The design space, ballistic trajectory and ballistic constraints are shown in Figure 9. When the value
of H is determined, the ballistic constraints (blue circle) are shown in Figure 9 (a), and the complete
ballistic constraints obtained from the ballistic trajectory are shown in Figure 9 (b) (gray pipe).

- Trajectory When H_= 14.538, the constraint space is [ Trajectory

4 Constraint center | obtained according to formula (18).

———

L]

o S0 115
(a) Constraints for a point on the trajectory (b) Complete ballistic constraints

Figure 9 - FDL-5A design space, ballistic trajectory and ballistic constraints.

The LHS and BCDS-ILHS are used to sample the above design space with a sample size of 100,
and the sampling results are shown in Figure 10 and Figure 11.
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Figure 10 - LHS sampling results.
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Figure 11 - BCDS-ILHS sampling results.

As can be seen in Figure 10 and Figure 11, most of the samples obtained through LHS do not satisfy
the constraints, whereas all the samples obtained from BCDS-ILHS are strictly within the constraints.

In order to further test the feasibility of BCDS-ILHS for the DoE problem and modeling problem in
the ballistic constraint design space, 5, 10, 15, 20 and 25 samples are taken as training samples
using LHS and BCDS-ILHS, respectively. And 34 ballistic points on the ballistic trajectory are
selected as test samples. The surrogate model uses Kriging. In order to reduce the computational
cost, the mesh is chosen to be 48W (as shown in Figure 3 (a)), and the numerical simulation method
is adopted as mentioned in Section 2.2. The variations of the three error metrics R?, RRMSE and
RMAE of C,,C,,C,, with the increase of the number of training samples in both sampling
methods are shown in Figure 12 to Figure 14. When the number of samples is small, in Figure 12
and Figure 14, although the BCDS-ILHS accuracy is slightly worse than the LHS, it is worth noting
that both have achieved high accuracy. In Figure 13, the BCDS-ILHS accuracy is much larger than
the LHS, and the LHS accuracy is poor. When the number of samples is large, the accuracy of the
two methods gradually converges (as shown in Figure 12 to Figure 14). Initially, the feasibility of the
method proposed in this paper is verified in the DoE problem and modelling problem in the ballistic
constraint design space.
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1005k BCDS-ILHS R 0.15F BCDS-ILHS RRMSE o5k BCDS-ILHS RMAE
s [ F.0L.1125 - r
L IF -—a—"0 a f K04
=0 . Sorf §
0.995 § [ o3
N 0.075
0.99F F 0.2F l\
[ 0.05F [
0.985F 0.025F .—\/\ e \\ .
r t [ .
0y87\\\\|\\\\l\\\\l\\\\l\\\\l\\\\ 07\\\\|\\\\|\\\\l\\\\l\\\\l\\\\ 07\\\\l\\\\l\\\\*{‘l\\ﬁ’l‘\\\\
. 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
No. of Samples No. of Samples No. of Samples
2
(@ R (b) RRMSE (c) RMAE

Figure 12 - Variation of the three error metrics R?, RRMSE and RMAE of C, with increasing
number of training samples in both sampling methods.
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Figure 13 - Variation of the three error metrics R?*, RRMSE and RMAE of C,, with increasing
number of training samples in both sampling methods.
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Figure 14 - Variation of the three error metrics R?, RRMSE and RMAE of C,, Wwith increasing
number of training samples in both sampling methods.

Combining the results of numerical and aerodynamic calculations, it can be seen that the method
proposed in this paper is feasible for DoE problems and modelling problems in the ballistic constraint
design space.

4. Conclusions

In this paper, a sequential local enumeration-based improved Latin hypercube sampling method for
ballistic constraint design space is proposed, and the main conclusions are summarized as follows:

(1) The constraints of the ballistic constraints design space are established based on the trajectory,
which ensures a better exploration of the design space and improves the sampling correctness and
accuracy under the condition that the samples strictly satisfy the constraints.

(2) BCDS-ILHS is used in the DoE problem of ballistic constraint design space for a 3D numerical
case and a 3D aerodynamic case. Compared with the sampling results of LHS, the results obtained
from BCDS-ILHS sampling strictly satisfy the constraints, which proves the feasibility of the method
proposed in this paper in the DoE problem of ballistic constraint design space.

(3) BCDS-ILHS is used to model the ballistic constraint design space for a 3D numerical case and a
3D aerodynamic case. Comparison of the modelling results between the LHS and BCDS-ILHS
samples shows that the latter requires fewer samples to build a more accurate surrogate model in
most cases, which initially demonstrates the feasibility of the proposed method in the problem of

modelling the ballistic constraint design space. However, it should be noted that the accuracy of
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BCDS-ILHS is slightly worse than that of LHS for a small number of samples in the C,, modelling of
aerodynamic case, which may be related to the vehicle, design space and flow characteristics.

Although BCDS-ILHS is feasible in this paper, it is only a preliminary exploration. And Its applicability
in high dimensional and complex ballistic constraint design space remains to be investigate. Also,
regarding the C,, modelling problem mentioned in conclusion (3), it will be investigated in future
work.
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