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Abstract

Conventional aircraft design is typically optimized based on a nominal mission with a specified range. However,
data from our airline partner show that 33% of its operations are in the off-design ranges, resulting in suboptimal
fuel economy. This motivates the formulation of a new aircraft design optimization process that also considers
off-design range missions early in the design process. In this study, we propose an overall aircraft conceptual
design framework for aircraft sizing purposes based on multi-range missions. The development of this new
framework involves new optimization formulation to take into account multiple range missions, a data-driven
approach to identify the target missions, and the introduction of fuel economy as an objective function of aircraft
design optimization to capture the fuel and environmental costs of various flight mission ranges. Key to this
process is a detailed flight mission analysis procedure. Here, we develop an accurate and yet efficient mission
analysis platform by combining high-fidelity and low-fidelity models, to enable a detailed representation of a
flight mission while keeping the computational time within a practical limit. The usefulness of the framework is
demonstrated by the fuel economy comparison between three single-range mission-based designs optimized
for maximum takeoff weight and a multi-range mission-based design optimized for fuel economy.

Keywords: Overall aircraft design, aircraft conceptual design, data-driven multiple range missions, fuel econ-
omy

Nomenclature

sfc = gpecific fuel consumption (kg/N/s)
L = lift (N)

D = drag (N)

T = thrust (N)

M fyel = mission fuel (kg)

mp = mission payload (kg)

MTOW = maximum takeoff weight (kg)
MLW = maximum landing weight (kg)
OEW = operation empty weight (kg)

MEW = manufacturer empty weight (kg)
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1 Introduction

In an aircraft design optimization process, the top-level aircraft requirements (TLARS) serve as the
core driver and constraints for the entire process [1]. As a result, the final design output is highly de-
pendent on the TLARs setting. Civil aircraft manufacturers have been attempting to set appropriate
TLARSs by predicting future airlines’ needs based on their experience and market research [2]. How-
ever, the operational conditions of aircraft, factors determining TLARS, often change due to unpre-
dictable fluctuations in demand and market situations, which leads to frequent off-design operations.
For example, the pandemic that occurred between 2019 and 2022 [3] changed the origin and destina-
tion flow networks around the globe [4]. Short-haul flights using aircraft designed for long-haul flights
often occur as tag-on services for long-haul flightﬂ To be flexible in confronting such issues, airlines
often purchase oversized aircraft and use them in diverse operating conditions for many years de-
spite the possibility of higher fuel consumption and operating costs [5]. Such a practice also supports
fleet commonality, which benefits airlines in terms of various costs, such as crew and maintenance
costs. Therefore, TLARs must be adjusted to consider these various operational changes to design
an aircraft that is optimized for actual airline operations.

Investigating the relationship between the design target of an aircraft, existing aircraft performance,
and its operating conditions can be done by evaluating the fuel economy [6]. Fuel economy is an
important aircraft performance factor that indicates the energy efficiency of aircraft. We analyze
data provided by our airline partner, Cathay Pacific Airways Limited (CX). The data contain a subset
of flights flying to and from Hong Kong International Airport (HKIA) in 2019. A total of 36,939 CX
flights which departed from or arrived at Hong Kong International Airport in 2019 is investigated.
Among them, the Boeing 777-300ER was one of the dominant aircraft types, accounting for 28.7%
of the total number of flights. Flight data of the Boeing 777-300ER are first clustered depending on
the flight distance and time, as shown in [Fig. 1] The variance of the Euclidean distance difference
among normalized flight data is minimized, classifying the data into three clusters: short, medium,
and long haul. Figure illustrates the proportion of different flight ranges operated by the Boeing
777-300ER. Figure illustrates the relationship between the flight range and fuel economy of the
Boeing 777-300ER, in which the fuel economy values are normalized for confidentiality reasons. The
aircraft is designed for long-haul missions, but a total of 33.1% operated in off-design missions, during
which the fuel economy performance was not optimal. Although 66.9% of flights were operated in
the long-haul missions, the notable differences in fuel economy performance observed in a short-
haul mission, Hong Kong to Taipei (HKG-TPE), and medium-haul mission, Hong Kong to Singapore
(HKG-SIN), can result in poor fuel economy overall. This observation implies that considering only
one design mission might lead to a suboptimal “net” performance of the aircraft, when considering
the entire spectrum of flight operations. Therefore, it calls for a more comprehensive aircraft design
formulation that can consider the tradeoff between aircraft performances under different missions to
minimize performance degradation at off-design missions.

Changes in the mission range requirement significantly impact the overall aircraft size and config-
uration, which is usually determined during the conceptual design phase. Hence, in this study, we
propose an aircraft conceptual design framework that gives optimum airplane size and configuration
based on multi-range missions. This framework is built upon several important components, namely
a conventional overall aircraft design framework integrated with mission analysis using flight dynamic
simulations, an optimization formulation for multi-range mission considerations, and data analysis to
derive the mission scenarios for the optimization. To better investigate the impact on the fuel effi-
ciency of an aircraft under various flight ranges, we adopt fuel economy as an objective function in
design optimization. We also improve the computation time of mission analysis in the design loop by
simplifying the cruise part of flight dynamic simulations with a minor sacrifice of its modeling accuracy.

This study includes the sizing phase at the aircraft conceptual design stage. In particular, all of

Thttps://simpleflying.com/worlds-shortest-widebody-routes/ (last accessed on 14 June 2024).

2


https://simpleflying.com/worlds-shortest-widebody-routes/

Data-driven Multi-Range Mission-based Overall Aircraft Conceptual Design Optimization

*.
k4
0.9 1
(<5}
g
i)
= 0.6 *
]
N
=
- i
£
o
©]
Z 0.3
Group 1
+ Group 2
Group 3
® Center
0.0 T T T
0.0 0.3 0.6 0.9

Normalized distance

Figure 1 — Flight clusters depending on the normalized flight distance and time.
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Figure 2 — Fuel economy analysis of Boeing 777-300ER.

our analyses of operational conditions are based on flight data provided by CX. In |Section 2| we
summarize previous works in overall aircraft design frameworks, fuel efficiency metrics, and multi-
point and multi-mission aircraft design optimization. [Section 3|describes the methodology we propose
in this research. The results and discussion are presented in which is followed by the
conclusion of this work described in

2 Literature Review

Aircraft design involves many disciplines and their intricate interdisciplinary relations. To assist in this
highly sophisticated process and make the design process more systematic and efficient, various
overall aircraft design (OAD) frameworks have been developed. However, most of these frameworks
only consider a single mission—the nominal one—in the design process, which may not adequately
accommodate the diverse requirements of airlines in real-world operational conditions. To better
design aircraft that align with actual operational needs, researchers have derived and demonstrated
multi-point and multi-mission optimization formulations with various objectives in optimizations. This
section provides a review of the OAD framework, fuel efficiency metrics and existing efforts in multi-
point and multi-mission aircraft design optimization, including their limitations.
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2.1 Overview of OAD frameworks

The overall aircraft design (OAD) framework, in this study, refers to a computer program that optimizes
the size and configurations of aircraft wings, fuselage, and engines for the objective function of inter-
est, considering various disciplines such as aerodynamics, propulsion, and structure. To be effective
and realistic, OAD frameworks must efficiently represent the inherently multidisciplinary nature of air-
craft systems. Several OAD frameworks have been developed by various academic and research
institutions. For example, Stanford University developed the Stanford University Aerospace Vehicle
Environment (SUAVE) to analyze unconventional configurations at a conceptual level [7]. A team
from the French Aerospace Lab (ONERA) and the Ecole nationale supérieure de I'aéronautique et
de l'espace (ISAE-SUPAERO) developed Fixed-wing Aircraft Sizing Tool (FAST) for multidisciplinary
design analysis (MDA) and sizing, in which an air traffic management (ATM) simulator was added to
consider real-world flight routes and ATM constraints [8]. The FAST framework was then extended to
include optimization in FAST-OAD [9]. A team of researchers from the Ecole nationale de I'aviation
civile (ENAC), IRT Saint-Exupéry, and Airbus developed the Multidisciplinary Airplane Research In-
tegrated Library (MARILib)ﬂ, a Python-based open-source MDO framework for OAD [10]. MARILib
is designed to be modular, which offers users the flexibility to replace any disciplinary module with a
more advanced or higher-fidelity model.

Each OAD framework has its unique characteristics, including the level of open-source, the complex-
ity of usage, and built-in default (empirical) settings related to design, which also lead to different
target users. In this study, we use MARILib as the baseline platform due to the ease of its accessi-
bility and usability. MARILib is fully open-source and well-organized by different disciplines, making
it easy to understand the overall structure. Users can modify modules as needed since the source
code is transparent. The equations used in the framework are mostly based on physical equations
with known assumptions or some reproducible statistical regressions of known data or models. The
framework was designed for a wide range of aircraft, such as super-jumbos or hybrid propulsion
systems. Our research focuses on wide-body commercial aircraft, which is one of the main design
targets of MARILib.

2.2 Overview of Fuel Efficiency Metrics

In conventional aircraft design optimization, mission fuel consumption has been used as one of the
important objectives to be minimized. However, in the design of aircraft operating in various mission
ranges, comparing and minimizing fuel consumption is not a valid method because it increases with
mission range. In such case, fuel efficiency, which takes into account the fuel consumption per
traveled distance, can be a good alternative measure when comparing the fuel performance of an
aircraft with various mission ranges. There are many ways to quantify the fuel efficiency, such as the
Corporate Average Fuel Efficiency (CAFE) [11], which is applicable to all types of vehicles. The fuel
efficiency metrics for aircraft design should be specifically tailored to meet its purpose.

There are mainly two approaches to quantifying aircraft fuel efficiency performance: 1) full mission
metrics 2) instantaneous metrics. Full mission metrics encompass all flight phases and require a
large set of assumptions. The instantaneous approach can either measure fuel efficiency perfor-
mance at one point or multiple points. Yutko [12] derived the specific air range (SAR), an instanta-
neous metric, that measures the aircraft fuel efficiency performance at a single point in time. SAR
is used in a case study for D8.5 (concept commercial transport aircraft developed by MIT) to evalu-
ate the impact of new aircraft technology on fuel efficiency performance. Green [13] formulated the
payload fuel efficiency (PFE) as the measurement of fuel efficiency during a full mission with the
assumption of the aircraft operated in a cruise-climb mode, at a constant Mach number and lift coef-
ficient. Nangia [14] extended Green’s work on PFE (renamed as PRE by the author), introducing two

2https://github.com/marilib/MARILib|(last accessed on 27 December 2023).
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additional fuel efficiency metrics, VEOPX (Nangia value efficiency parameter) and VEMPX (Nangia
emissions efficiency parameter) to take into account noise emissions and operating costs within fuel
efficiency evaluation. Hileman et al. [15] formulated payload fuel energy efficiency (PFEE) for fuel
efficiency evaluation on a fleet-wide basis. Doganis [16] suggested specific hourly productivity (SHP)
for aircraft economics evaluation which is defined as the product of payload and flight speed, divided
by the required block fuel. The metric was widely used as criteria/cost function for fuel efficiency eval-
uation/optimization [17]. In this study, we derive a full mission fuel efficiency metric, the fuel economy,
as the cost function for our design optimization, in which the flight distances, mission payloads, and
amount of fuel consumption of diverse mission ranges can be taken into account in one objective.
The details of derivation are described in

2.3 Overview of Multi-point and Multi-mission Optimization

In aircraft design optimization, single-point design optimization refers to an optimization formulation
where the design is obtained by considering only one single flight condition, which typically corre-
sponds to the dominant cruise condition. Single-point optimization results often exhibit poor perfor-
mance at operational points other than the design point [18]. To overcome this issue, multi-point
optimization that considers multiple operational conditions with their ratios in actual operations [19]
was introduced. Some of the works, however, pertain to the detailed design stage of an aircraft,
instead of the conceptual design or sizing stage. In which case, the “point” refers to the aircraft's
specific flight condition (e.g., a combination of Mach number and lift coefficient). Mark Drela [20]
conducted single-point and multi-point optimizations for a transonic and low Reynolds number air-
foil. He suggested that single-point optimization should be transformed into a multi-point optimization
problem to suppress undesirable local optimization. He also demonstrated the superiority of multi-
point optimization in consideration of multiple flight conditions. Liem et al. [21, 22] suggested a novel
approach for choosing operational points and their weightings in the multi-point optimization, based
on actual operational data, in the context of aerostructural and aerodynamic shape optimization. The
method integrated multi-mission profiles within the aircraft’s payload-range envelope.

The development of multi-point formulation is less prominent in OAD. In OAD, we believe that the
multi-point formulation should be formulated as a multi-range formulation to consider several “target”
mission ranges that represent the aircraft’s diverse future operations. To achieve this, we use MAR-
ILib upon integrating a flight dynamic simulation model in the mission analysis module to be able to
simulate different flight operations for given target ranges in the optimization. This is a follow-up of
previous work by some of the authors; Kim et al. [23] integrated flight dynamic simulations into MAR-
llib and conducted design optimization based on the TLARs derived from the data analysis. During
the flight dynamic simulations in the design optimization process, all operational points of a mission
are taken into account.

3 Proposed Methodology

This section presents the OAD framework proposed in this work, which is built upon MARILib and
incorporates three key enhancements. The first one is the linear scalarization formulation of design
optimization to take into account the multi-range missions, which is presented in The
second one is the use of fuel economy as the objective function in design optimization to subtly
consider the impact of flight distance traveled, as described in [Section 3.2l The third one is the
mixture of the flight dynamics model and the Bréguet range equation in the flight simulation module

to reduce the computational time, as explained in
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3.1 OAD optimization formulation

The OAD optimization process is illustrated as an eXtended Design Structure Matrix (XDSM) dia-
granf|in Figure [3a shows the structure of the base framework, which originated from MAR-
ILib [10], and shows the OAD framework structure developed and used in this study. In the
base framework, wing area Swing € R and reference thrust ;s € R were optimized for one of the ob-
jective functions J € R, which can be maximum takeoff weight (MTOW), mission fuel, CO, emission,
cash operating cost, or direct operating cost. This base framework can design an aircraft specifi-
cally optimized for a single mission. In the proposed framework, however, multiple MDA is performed
within one optimization loop. This enables the evaluation of the optimization objective across various
missions, providing a comprehensive assessment of aircraft fuel performance on multi-range mis-
sions. Further details of the framework will be provided in the subsequent section. Six performance
constraints gi,...g¢ Were applied: vertical climb speed V., ., cruise speeds V,_ ..., time to climb zgjimp,
takeoff field length droF., approach speed V. ..., and one engine inoperative performance Yo
The required values for the performance constraints gco"st@int ¢ R6 and TLARSs, such as design range
ddesign € N, cruise Mach number Mcise € R, cruise altitude Acrise € N, number of passengers npax € N,
and propulsion type engy,,,, € {1,2} are set as the input parameters.

In our framework, two design variables are optimized for the weighted sum of fuel economy, which
will be explained later in this section. Each fuel economy value is computed by repeating the MDA
process multiple times depending on the number of groups in multi-range missions, which will also be
detailed later in this section. A generalized optimization formulation for both frameworks is presented

in[Eq. (7}

minimize J (XdesignaXTLARs)
Xdesign € {(Swing, Tref) }
. . . 1
subject to g(XdesingTLARs) 7gConstralnt <0, g= {gj |j=1,...,6}, (1)

Xdesignmin < Xdesign < Xdesignmaxa

where Xgesign represents design variables and Xt ars are the fixed inputs other than design variables,
including TLARs and default configuration parameters that users can change. Multi-range mission
consideration is achieved by formulating J with linear scalarization as shown in [Eq. (2)

J (Xdesign,XTLARs) = Z ;i fi,
= @

where  f; = f (Xdesign: XTLARs:) -

The weighting ; is determined by the frequency of the same (or similar) range mission occurrence
from flight data analysis. In other words, w;, as shown in represents the number of flight data
belonging to a specific cluster i among all flight data m. 1p(px) is an indicator function which gives 1
if px € P, otherwise the value is set to 0. P, is the set of points in the i-th group, p, is a point in flight
data, m is the total number of data, and r is the total number of groups. The center of each group is
used to set the design ranges and cruise speeds in XyaRs;-

m
1p
wl.zzkzlipl(pk)’ wherei=1,....n. (3)
m

Shttps://github.com/mdolab/pyXDsM (last accessed on 27 December 2023).
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Figure 3 — XDSM of overall design optimization processes.

3.2 OAD optimization objective function

To better evaluate the impact of considering multi-range missions in the design process, we adopt
fuel economy f as an objective of the optimization. The fuel economy is a metric that relates the
distance traveled to the amount of fuel consumed, as expressed below,

Miyel
/ mp X d X Prye|’ “
where my,q is the fuel mass, mp is the payload mass, d is the distance travelled, and ps is the
density of fuel. This metric represents the efficiency of the vehicle by calculating the fuel volume
consumed per distance traveled and per unit mass of payload; the smaller the value, the better is
the fuel economy (i.e., more desirable). Although fuel consumption and other weight-related factors
are important criteria in aircraft design, manufacturing, and pollution measures, fuel economy can
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provide a more comprehensive measure of fuel efficiency for an aircraft operating under different
operational conditions.

3.3 Mission analysis model

Detailed mission analysis in the design optimization process enhances the accuracy of fuel con-
sumption, flight range, and time computation, resulting in better optimum design. We used a flight
simulation model developed by Kim et al. [24] for mission analysis of detailed flight segments. The
flight simulation is derived based on a flight dynamic model,

FT+E4+m§:m(zi+(Bx\7>, (5)

where the acceleration d is determined by the mass m, propulsive and aerodynamic force components
Fr and Fy, gravitational acceleration g, velocity V and angular velocity @. Equation [5]is discretized
in time using first-order finite differences, and numerical integration is performed using the forward
Euler method, in which the number of elements in the integration differs depending on the type of
segment. V at each time step is computed by @ and V at the previous time step as shown in [Eq. (6)l
Flight distance 7 is computed by V and r at the previous time step, as shown in [Eq. (7)L

Vi=Viii +adi1At, (6)
=T+ Vi, (7)
where At is the specified time interval. —; and —;_; subscripts represent values at ith time step and

one time step before the ith time step, respectively.

Mixture of the flight dynamics model and Bréguet range equation

In this work, we simplify the cruise segment calculation, which typically takes most of the compu-
tational time especially for medium- and long-haul flights, by replacing it with the Bréguet range
equation.

Figure |4 shows the schematic of the proposed mission analysis. Fuel consumption in the cruise
segment is estimated by the Bréguet range equation (denoted as BRE in the figure), and fuel con-
sumption from other segments is estimated by the flight dynamic simulation model (HFS). The combi-
nation of high-fidelity and low-fidelity models, as shown here, helps to maintain a high accuracy of the
flight performance estimations while reducing the computation time. Our model identifies the num-
ber of cruise phases and assigns the usage of HFS and BRE based on the identification of different
sections. The entire fuel estimation process is shown in

HF'S BRE HFS

M fuel, mfuel,

M fuel,

Cruise

ot

Mission Range

Figure 4 — Schematic of the proposed mission analysis.
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q

A
Miyel = Z MBRE, + Z MHFS,; s
=1 =1

__dxsfexg
where MBRE, = My, — mlf =m, (1 — e L/Dxv ) (8)

1
=
and MyFs, = m;, —mj, = / (FT X Neng X SfC) dt.
tli

In[Eq. (8)} make, is fuel consumed during cruise and myrs, is fuel consumed during the flight other than
cruise. g is total number of cruise segments during a flight and s is total number of flight segments
other than cruise segments. Hence, the total fuel consumed during the flight equals to the sum of fuel
consumed during cruise and other flight phases. Both mprg, and myrs, are computed from the mass
difference at initial ;, and final I of flight segment [. Particularly, mggg, is derived from the Bréguet
range equation, where sfc represents specific fuel consumption, g is gravitational acceleration, L/D
is lift and drag ratio, and V is airspeed. myrs, is computed from the time integration from 7, to 7,
where T is thrust and neng is the number of engines.

Model validation

To evaluate the impact of a mixture of mgre and mpyrg on both computational efficiency and model
accuracy, the mean absolute percentage error (MAPE) and mean computation time (MCT) in|Eq. (9)
are computed and compared. In[Eqg. (9) » is the total number of flights considered, § is the fuel
estimated by models, y is actual fuel consumption, and ¢ is the computational time. The subscript ;
indicates the ith flight mission.

Vi —yi 1 &
, MCT=-Yty (9)
Vi ' ”,; l

1 n
MAPE = 00% Z
noi3

[Fig. 5|shows MAPE and MCT of fuel estimations computed on the BRE, a data-driven flight dynamics
model (DFD) [23], and the proposed mission analysis model (MDFD). 60 flight missions are evaluated
and presented by groups, which are short-, medium-, and long-haul missions. The results in [Fig. 5
indicate that the MDFD model outperforms the BRE in terms of MAPE. Although the MAPE values
of BRE decrease when the mission range increases, they are always higher than those of the MDFD
and DFD models. Furthermore, the MAPE deviation is contained within 3% across different flight
ranges, compared to the BRE model that exhibits a notably higher error for short-haul flights due
to the assumptions of the Bréguet range equation. Compared to the DFD model, the MDFD model
exhibits a substantial improvement in computational efficiency for medium and long-haul missions,

20.0 N BRE 1200 ImE BRE
’ DFD DFD
17.5 1 I MDFD 1000+ mmm MDFD
15.0
< ~ 800 A
125 @
S =
£ 10.0 S 6001
7.5 1 4001
5.0 1
200 -
2.5 1
0.0- 0 T T T
short-haul medium-haul long-haul short-haul medium-haul long-haul

Figure 5 — Fuel estimation comparison of three different methods.
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with a reduction in mission computation time (MCT) of 45.2% and 72.1%, respectively, albeit at the
expense of a marginal sacrifice in fuel estimation accuracy.

4 Results and Discussion

To demonstrate the benefits of the proposed method in|Section 3| we conduct single-range and multi-
range mission-based design optimizations for three different-range missions. The mission scenarios
are derived from flight data analysis using the eXtreme Gradient Boosting (XGboost) flight classifica-
tion model in [24]. The reference routes are from Hong Kong International Airport (HKG) to Taiwan
Taoyuan International Airport (TPE) for the short-haul mission, Singapore Changi Airport (SIN) for the
medium-haul mission, and to Heathrow Airport, London (LHR) for the long-haul mission, as shown in

[Fig. &

In this section, we present single-range mission-based design optimization results and the fuel econ-
omy performance of each optimal aircraft configuration under three range missions in
Subsequently, we demonstrate multi-range mission-based design optimization results in
The optimization was performed based on a single-range optimization result and employed fuel econ-
omy as the objective function. We also discuss the comparison of the single- and multi-range mission-
based optimization in terms of configuration and fuel efficiency in

LHR

I Long-haul mission
s Medium-haul mission

/ mmm Short-haul mission SINy N\

Figure 6 — Reference nominal missions for design

4.1 Single-range mission-based design optimization

This subsection presents three design results of single-range mission-based optimization, where n
in [Eg. (2)|is set to one. Each design is optimized for a specific mission, which can be one of three
missions in MTOW is used as an objective function of the design optimizations, and the fuel
economy of each designed aircraft is evaluated under three missions, respectively.

Design ranges and missions are derived from the flight data provided by Cathay Pacific Airways
Limited. The optimization algorithm used for three of the optimization cases is the Sequential Least
Squares Programming (SLSQP), which can be called from Python’s SciPy Iibraryﬂ The initial inputs
of optimization are shown in which are referred from the Boeing 777-300ER specifications.

The design optimization results for the three missions are presented in [Table 2| and [Fig. 7} As the
fuselage size depends only on the number of passengers, all three aircraft have the same fuselage
size. There is no significant difference in wing area as the fuselage size is the same. However, longer
mission range results in larger wing area. Longer mission range implies more fuel to carry, which
leads to heavier weight, higher thrust, and higher lift from larger wing area and larger aspect ratio.

4https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html/(last accessed on 20
March 2024).
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Table 1 — Specification for single mission-based design optimization

Category HKG-TPE HKG-SIN HKG-LHR
Engine type Turbofan
Number of engine 2
Number of passengers 396
Cruise Mach number 0.85 0.85 0.83

Short-haul ~ Medium-haul Long-haul
R =493NM R, =1431NM R; =5,345 NM
Initial values of Swing = 436.80 m?
design variables Tiet = 514,000 N

Design range

Figure [8] shows the fuel economy when each optimal aircraft flies three different missions. The
best fuel economy always occurs at the corresponding optimal range of each airplane. An aircraft
optimized for a short-haul mission, which is denoted as a blue-colored line, has the best fuel economy
at 493 NM, which is the shortest mission range considered. An aircraft optimized for a medium-haul
mission, which is denoted as an green-colored line, has the best fuel economy at 1,431 NM, which is
the medium-haul mission. An aircraft optimized for a long-haul mission, which is denoted as a purple-
colored line, has the best fuel economy at 5,345 NM, which is the long-haul mission. In addition,
we can also observe that the aircraft optimized for the medium-haul mission exhibits the smallest
discrepancy between the maximum and minimum fuel economy, suggesting a tradeoff between the
different missions considered.

Table 2 — Design optimization result (single-range).

Category ltem HKG-TPE HKG-SIN HKG-LHR
Engine Reference thrust (N) 298,793 420,753 481,866
Bypass ratio 9 9 9
Wing Wing area (m?) 414.34 436.81 457.90
Wing span (m) 61.07 62.70 64.20
Fuselage Fuselage length (m) 69.98 69.98 69.98
Fuselage width (m) 6.45 6.45 6.45
MTOW (kg) 175,218 208,904 283,180
Weight MLW (kg) 175,210 205,498 237,743
OEW (kg) 124,328 144,526 167,980
MEW (kg) 120,481 137,100 145,627

4.2 Multi-range mission-based design optimization

This subsection presents design results of multi-range mission-based optimization, where n in[Eq. (2)
is set to three. The flight frequency corresponding to w; in is presented in The initial
values of the two design variables (Swing, Tref) are set according to the single-range mission-based
optimization result, which is the HKG-LHR (long-haul) case presented in (aligned with
the type of mission range Boeing 777-300ER is designed for). The critical inputs for single- (for
comparison) and multi-range mission-based optimization are shown in

Table [4] presents numerical expressions, while [Fig. 10| provides a three-view drawing comparison,
both displaying the outcomes of single- and multi-range mission-based optimizations. To facilitate
comparison, we have chosen the long-haul mission from the single-range mission-based optimiza-
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Figure 7 — Three-view drawing of design optimization results.
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Figure 9 — Specifications of mission input and weight ratios for optimization.

tion, as it closely aligns with the nominal range of our target aircraft. Due to the prevailing domi-
nance (weighting larger than 0.6) of long-haul missions (HKG-LHR), the final result of the multi-range
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Table 3 — Specification for multi-range mission optimization

Category HKG-LHR Multi-range

R; =493 NM, o, = 0.127
Mission range(s) R =5,345 NM Ry =1,431 NM, @, = 0.233
R3; =5,345 NM, w; = 0.640
Initial values of  Sying = 436.80 m? Swing = 457.90 m?
design variables  T,ss = 514,000 N Tief = 481,866 N

mission-based optimization remains largely unchanged in comparison to those of the single-range
mission optimization. In contrast to the optimization results in the HKG-LHR case, the aircraft de-
signed for multi-range mission optimization has a slightly larger reference thrust (increased by 1.84%)
and smaller wing area (decreased by 0.49%). This outcome may be attributed to the fact that higher
thrust might be more advantageous during the climb phase, thereby enhancing the aircraft’s perfor-
mance during short- and medium-haul missions, given the higher proportion of climb phases in these
missions. Additionally, lower OEW requires less lift at the same cruise speed with the same pay-
load, which leads to lower wing area. Nevertheless, the formulation of the proposed optimization that
considers multiple mission ranges demonstrates its effectiveness, as evidenced by the fuel economy
evaluation across all ranges. Figure[11]depicts the fuel economy of single and multi-range optimized
aircraft on three mission ranges. The figure shows an overall improvement in the fuel economy per-
formance of the multi-range optimization in comparison to the single-range optimization. We observe
some improvements in fuel economy values for short and medium-haul missions (reduced by 6.63%
and 4.56%, respectively), with only a slight sacrifice for long-haul missions (increased by less than
2%). This indicates a tradeoff in the fuel economy, i.e., when the optimization is not concentrated on
a specific flight mission.

Table 4 — Design optimization result (multi-range).

Category ltem HKG-LHR  Multi-range
Engine Reference thrust (N) 481,866 490,734
Bypass ratio 9 9
Wing Wing area (m?) 457.90 455.67
Wing span (m) 64.20 63.92
Fuselage Fuselage length (m) 69.98 69.98
Fuselage width (m) 6.45 6.45
MTOW (kg) 283,180 285,429
, MLW (kg) 237,743 235,682
Weight OEW (kg) 167,980 167,658
MEW (kg) 145,627 145,324

Fuel economy

-4 -4
(Lkg/km) 1.0475%x10 1.0223x10

Criteria evaluation

5 Conclusion

In this study, we proposed an OAD framework that could provide optimum aircraft size and configura-
tion based on multi-range missions to take into account diverse operation conditions when designing
aircraft. We adopted fuel economy as an objective function in the design optimization to consider the
energy efficiency in multi-range missions. We also simplified the cruise part of flight dynamic simu-
lations with a minor sacrifice of its modeling accuracy and reduced the computation time of mission
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Figure 10 — Three-view drawing of design optimization results (multi-range).
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Figure 11 — Fuel economy analysis of single- and multi-range mission-based optimization results.

analysis in the design loop.

Three different-range missions were considered in this study, which were derived from the flight data
of the aircraft departing from and landing in Hong Kong in 2019. The data were grouped based on
different original and destination (OD) pairs [23] and used for optimization inputs and mission weight
ratios (w;) calculation. The final result of the proposed design optimization framework included the
sizing and configurations of the aircraft. Compared to single-range optimization, the proposed multi-
range mission-based optimization provided a better overall fuel economy performance in diverse
operational conditions.

The results presented in this study only focused on three of the flight sectors, which were aimed for
demonstrating the effectiveness of taking into account diverse operation conditions within aircraft de-
sign optimization. However, the diversity of operational conditions in the real-world scenarios could
be substantially more complex than the three representative cases selected in this study (e.g., the
various flight ranges of Boeing 777-300ER shown in[Fig. 7). In the future, we will include flight sectors
and corresponding mission specifications from the more comprehensive data analysis with a wider
range of data. Specifically, we will use a clustering algorithm to investigate the characteristics of dif-
ferent flight missions and determine the number of groups (n) and weight ratios (®;) as mission inputs
for design optimization. Once we obtain the optimization results, we will perform a more thorough
investigation of the tradeoff and the implications on airline operations—both in environmental and
economic metrics.
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