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Abstract

In the dynamic world of autonomous systems, the demand for accurate simulation platforms has grown ex-
ponentially, enabling rigorous testing of complex algorithms and strategies in a risk-free virtual environment
before real-world deployment. An effective simulator, crucial to researchers, should possess accuracy, reliabil-
ity, flexibility, an intuitive interface, support for various simulation modes, realistic environment representation,
data tracking, parallelization, and thorough documentation. In this paper, the integration of these features in a
simulink-based simulator is approached.
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1. Introduction
The use of small Unmanned Aerial Systems (sUAS) is expanding across diverse fields, introduc-
ing both advancements and challenges. Notably, autonomous drone swarms have emerged as a
significant technological development [1]. Current sUAS are commonly equipped with collision de-
tection and avoidance systems to enhance safety and longevity [2, 3]. These systems are integral in
the creation of drone swarm platforms, addressing challenges such as extensive area scanning and
three-dimensional space coverage. However, given the novelty of drone swarm research, in the ever-
evolving landscape of autonomous systems, the demand for sophisticated simulation platforms has
become always more important. In this context, simulations are invaluable tools, allowing researchers
and engineers to rigorously test and validate complex algorithms, strategies, and formations in a risk-
free virtual environment before real-world deployment. For instance, the presence of any kind of fault
is difficult to emulate on real prototype, and a digital twin can become useful for testing fault detection
algorithms [4, 5].
An effective simulator must include several requirements to ensure accuracy, reliability, and flexibility:

• Accuracy and reliability: the simulator must be precise and validated to ensure that results
faithfully reflect real-world system behaviors.

• Flexibility and modularity: the ability to easily modify the simulator to adapt to different scenarios
or incorporate new agents, rules, or environments without rebuilding the entire system is crucial.

• Intuitive user interface: An intuitive user interface simplifies simulation design, result visualiza-
tion, and adjustment of simulation parameters.

• Support for several simulation modes: the simulator should support various simulation modes,
such as real-time simulation, batch simulation, and accelerated simulation.

• Realistic environment representation: it should represent the environment in which the simu-
lation takes place, including details such as weather conditions, terrain, obstacles, and other
environmental variables.
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• Data tracking and analysis: a good simulator should allow easy tracking and analysis of simu-
lation data to extract valuable insights and assess system performance.

• Support for parallelization: the capability to run simulations in parallel can significantly acceler-
ate execution times, allowing efficient simulation of complex scenarios.

• Adequate documentation: clear and comprehensive documentation is essential to ensure that
users can understand and correctly utilize all features of the simulator.

• Possibility of validation and verification: The simulator should allow validation and verification of
obtained results, providing users with confidence in the accuracy and reliability of simulations.

Integrating these characteristics into a simulator will contribute to creating a powerful and versatile
tool for executing accurate and informative simulations in a variety of contexts.
The focus of the proposed simulator is on a heterogeneous autonomous system comprised of Nr

agents, distributed as follows:

• Na fixed-wing UAVs: These Unmanned Aerial Vehicles boast extended endurance and payload
capacity, strategically employed to ensure heightened temporal resolution, albeit with a trade-off
in spatial coverage.

• Nh Rotorcraft Unmanned Aerial Vehicles (RUAV) with VTOL capabilities: Specifically designed
for surveillance and monitoring, these vehicles offer superior spatial resolution, thanks to their
Vertical Take-Off and Landing capabilities.

• Ng Unmanned Ground Vehicles or Unmanned Surface Vessels (UGV-USV): These ground or
water-based robotic entities serve as mobile base stations, equipped with substantial payload
capacities and autonomy.

Our work focuses on the development of a simulator to be used in the Simulink environment, a state-
of-the-art tool for system-level modeling and simulation. Simulink provides a versatile and intuitive
platform, with an intuitive user interface as well as data analysis and parallelization support, useful to
model the dynamics of heterogeneous drone formations.
The proposed approach is based on the principles of agent-based simulation, where each agent
operates autonomously, governed by internal rules and responsive to dynamic interactions with the
environment and other agents. This methodology allows us to make decentralized formation structure
and capture emergent behaviors resulting from the collective actions of individual agents.
An agent is defined as an autonomous software entity positioned within environment, capable of
actions and coordination with other agents to achieve predefined goals [6]. Consequently, Multi-Agent
System (MAS) technology has evolved as a framework for embedding autonomous behavior and
decision-making into computer systems [7, 8]. An Agent-Based Simulation (ABS) model comprises
interacting intelligent entities mirroring real-world relationships within an artificial environment [9].
Through a visual and modular interface the proposed simulator integrates several agent models and
environmental factors, incorporating the complexities of real-world scenarios and providing a high-
fidelity representation of the interactions between heterogeneous drone agents, mission objectives,
and environmental conditions.
In its first version, the proposed simulator implements not only the dynamics of the agents but also
their autopilots to ensure that each vehicles can follow an assigned reference state, in order to make
it ready to use for example in path planning problems [10].
The objective is to make a tool that is able to facilitate the design of an autonomous formation, ca-
pable of fulfilling mission objectives while navigating through a complex web of constraints. These
constraints span a spectrum that includes vehicle characteristics, temporal constraints, spatial limita-
tions, task sequencing, obstacles, as well as weather and terrain considerations.
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2. Dynamic model
In order to define the equations of motion the reference frames must be defined. The most common
choice in aeronautics, regarding the fixed reference frame, is the NED reference (North-East-Down),
depicted in figure 1, whose XE-axis points to the local North, the YE-axis towards East and the ZE-axis
completes the right-handed frame by pointing downwards, towards the centre of the Earth. Finally,
the center O of the reference is on the surface of the Earth. Strictly speaking, this reference frame is
not inertial due to the Earth rotation but, since this rotation is slow compared to the vehicle motion,
the inertial approximation is reasonable. As local reference frame, we can consider a body frame
with the XB-axis aligned with the longitudinal reference line, the ZB-axis, normal to XB to build the
symmetry plane of the aircraft and the YB-axis to form a right-handed frame. NED and body reference
frames are shown in Figure 1.

Figure 1 – NED reference frame.

In the body reference frame, Euler equations can be derived as follows:

F = m(v̇c + ω̃B × vC)

M = IBω̇B + ω̃B × IBωB
(1)

where F represents the external forces acting on the vehicle and linked to the motion of the centre of
mass, M is the external moment acting on the centre of mass and calculated as the derivative of the
angular momentum h, vc = [U,V,W ]T is the center of mass velocity vector, I is the matrix of inertia of
the vehicle and ω̃B = [P,Q,R]T represents its angular velocity.
To know the pose of the aircraft in the NED reference frame, the following equations are needed:

ẋ
ẏ
ż


E

=REB


U
V
W


B

(2)


φ̇

θ̇

ψ̇

= T


P
Q
R

 (3)

Equation 2 can be integrated to give the trajectory coordinates x(t), y(t), z(t), where REB represents
the rotation matrix between the NED and the body reference frame, where the rotation angles along
the body axis are called Euler angles, in particular yaw ψ (Z-axis), pitch θ (Y-axis), roll φ (X-axis).

REB =

 cosθ cosψ cosθ sinψ −sinθ

−cosθ sinψ + sinφ sinθ cosψ cosφ cosψ + sinφ sinθ sinψ sinφ cosθ

sinφ sinψ + cosφ sinθ cosψ −sinφ cosψ + cosφ sinθ sinψ cosφ cosθ

 (4)

Equation 3 can be integrated to find the attitude of the aircraft in terms of Euler angles φ(t), θ(t),
ψ(t), with T a matrix to bind the angular velocity vector in body frame with the derivative of the Euler
angles.
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T =

1 sinφ tanθ cosφ tanθ

0 cosφ −sinφ

0 sinφ secθ cosφ secθ

 (5)

2.1 Forces and moments
To complete the equations of motion, three types of forces and moments are considered: gravita-
tional, propulsion and aerodynamics. The gravitational forces can be expressed in the body frame
considering a generic orientation of the vehicle and using matrix 4, as shown in 6.Xg

Yg

Zg


B

= TBI

 0
0

mg


I

(6)

The gravitational forces are applied in the center of gravity of the vehicle so they do not contribute to
the external moments. Propulsion and aerodynamics will be different for UAV and RUAV.
For the UAV model, a preliminary function to compute the propulsion force considers only the thrust
applied along the X axis and centered in the center of gravity, thus not contributing to the moments.
The aerodynamic forces (X ,Y,Z) and moments (L,M,N) acting on the UAV model are shown in
7, expressed in terms of non-dimensional coefficients Cx,Cy,Cz,Cl,Cm,Cn, where ρ is the density,
VC = |vc| the cruise speed, S the wing surface, b the wing span, c the chord.

X =
1
2

ρV 2
C SCx L =

1
2

ρV 2
C SbCl

Y =
1
2

ρV 2
C SCy M =

1
2

ρV 2
C ScCm

Z =
1
2

ρV 2
C SCz N =

1
2

ρV 2
C SbCn

(7)

However, usually a wind reference frame is considered to express aerodynamics forces and moments
acting on an aircraft. In particular, the net aerodynamic force can be decomposed in drag (XW wind
axis component) and lift (ZW wind axis component). The orientation of the wind reference frame with
respect to the body reference frame is given by two angles, namely the angle of attack α and the
side-slip angle β . These two angles can be computed given the components u,v,w which represent
the decomposition of the velocity vector along the x,y,z body axis. The relationship between α and β

with u,v,w is shown in equation 8, in which appears also the True AirSpeed (TAS).

α = arctan
w
u

β = arcsin
v

TAS
TAS =

√
u2 + v2 +w2

(8)

Ideally, the non-dimensional coefficients can be determined numerically through aerodynamic calcu-
lations and/or experimentally through wind tunnel tests and tabulated based on the system state.
To simplify the simulator, the aerodynamic forces (F ) and moments (M ) acting on an aircraft can be
expressed as functions of the state variables and control surface deflections. For small perturbations
around a trim condition, these functions can be linearized using a Taylor series expansion.
The general form of the Taylor series expansion for the aerodynamic force or moment (which can
represent any aerodynamic force or moment) around a trim state is given by:

G = G0 +
∂G
∂U

∆U +
∂G
∂V

∆V +
∂G
∂W

∆W + · · · (9)

where:

• G0 is the value of the force or moment at the trim condition.

• ∂G
∂U , ∂G

∂V , and ∂G
∂W are the aerodynamic derivatives.
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Figure 2 – Schematic of the RUAV convention considered.

• ∆U , ∆V , and ∆W are small perturbations of the state from the trim condition.

The aerodynamic derivatives represent the sensitivity of the forces and moments to changes in the
state variables and control inputs.
On the other hand, for the RUAV model the aerodynamic model is neglected, while the propulsion
force is computed considering a symmetric rotorcraft, with 2N motors which contribute to the external
forces, along the Z axis, and to the external moments as shown in eq.10, where l is the distance
between the rotors and the centre of gravity.

Fz =−
2N

∑
i

Ti

Mx = l ·
N

∑
i

Ti
x,right − l ·

N

∑
i

Ti
x,le f tt

My = l ·
N

∑
i

Ti
y,right − l ·

N

∑
i

Ti
y,le f t

Mz = l ·
N

∑
i

Ti
z,right − l ·

N

∑
i

Ti
z,le f t

(10)

where T r,right
i and T r,le f t

i indicate that motor i is located at right or a t left of r-axis.

3. Control Systems
To make the simulator ready to use in path planning problems, each kind of aircraft is equipped
with a customizable controller. The fixed-wing UAV control system is based on classic control [11],
implementing the Stability Augmentation System (SAS) to enhance aircraft stability, the Control Aug-
mentation System (CAS), to follow a reference signal in terms of attitude.
Figure 3 shows the control systems schemes for both types of vehicles. The controllers for UAV and
RUAV differ in how the control action is actuated. In a fixed-wing aircraft, the vehicle state is changed
by modifying the thrust or the deflections of the mobile surfaces. In a rotorcraft, the state of the
system is changed by modifying the thrust of each propeller. The RUAV considered in this work has
four motors and a cross structure, as in figure 2, with the rotors 1 and 3 rotating clockwise and 2 and
4 anticlockwise. In order to use SISO (Single Input Single Output) controllers with the RUAV model
an allocation function is necessary. This function converts the commands on thrust, yaw, pitch or roll
in thrust commands for every motor. The allocation function is shown in equation 11.

T 1
T 2
T 3
T 4

=


T −ψ +θ +φ

T +ψ +θ −φ

T −ψ −θ −φ

T +ψ −θ +φ

 (11)

4. Architecture
To simplify the operations and make the simulator versatile, the implementation is based on the Mat-
lab system class, which is cross-compatible between both Matlab and Simulink, making the simulator
runnable both in the Matlab-only or Simulink environments.
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(a) RUAV. (b) UAV.

Figure 3 – Schematic representation of the autopilots for both RUAV and UAV.

(a) RUAV control scheme

(b) RUAV dynamics

(c) UAV control scheme (d) UAV dynamics

Figure 4 – Dynamic and control schemes for single RUAV and single UAV.

In this section the structure of the simulator is analyzed following a top-down approach, starting from
the single-vehicle blocks which are the base of the final multi-vehicle blocks.

4.1 Single vehicle blocks
Figure 4 presents the appearance of the four schemes implemented for the two types of single-
vehicle: UAV Control, UAV Dynamic Model, RUAV Control and RUAV Dynamic Model. The descrip-
tion of the Input/Output signals connecting blocks is represented in table ??.
The details of each of the single-vehicle schemes are described in the following:

• Control blocks
Both the UAV Control block and the RUAV Control block are composed of a Matlab system and
four saturation blocks, as shown in figure 4a and figure 4c. The saturations of the UAV impose
limits on the deflection angles of the control surfaces and on the thrust. The saturations of
the RUAV impose limits on each propeller speed. For both blocks, The Matlab system accepts
as input a reference signal vector Re f erence_state and a vector Current_state representing the
state at time step t. The output of the block is a vector Virtual_Command representing the control
actions. An integrator block is not needed because the implemented controllers are digital, thus
the integration is carried out in the Matlab system. In the Matlab system, the UAV and RUAV
controls are implemented as discussed in section 3., with the properties of the class representing
the characteristics of the particular controller. Lastly, in ?? is shown the composition of the
vectors present in figure 4a and figure 4c.
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• Dynamic Model blocks
The UAV Dynamic Model block consists of four transfer functions, representing the actuators’
dynamics, a Matlab system and an integrator block, as shown in figure 4b. The RUAV Dy-
namic Model block is made of a Matlab system and an integrator block, as shown in figure
4d. For both blocks, The Matlab system accepts an input signal vector Virtual_Command and
a vector Current_state representing the state at time step t. The output of the block is a vec-
tor Derivative_state representing the state derivative. The integrator is used to calculate the
state from the state derivative. Moreover, the integrator holds the starting condition of the
state Current_state(0). In the Matlab system, the UAV and RUAV models are implemented as
discussed in section 2., with the properties of the class representing the characteristics of the
particular vehicle.

4.2 Multi vehicle blocks
The Multi-vehicle blocks final appearance, as presented to the users, is shown in figure 5. These
blocks are the generalization of the single-vehicle systems and are useful to avoid cluttering the
workspace. Every multi-vehicle block works with matrices in input and output, where different vehicles
are represented by different columns. The Input/Output signals of the multi-vehicle blocks have the
same structure of the single-vehicle ones, but different dimensions. The multi-vehicle blocks take in
input matrices, having the same number of rows as the single-vehicle column vectors and as many
as the number of vehicles considered.

(a) RUAV control (b) RUAV dynamics

(c) UAV control (d) UAV dynamics

Figure 5 – Final appearance of the implemented dynamic and control blocks for multi-vehicle
simulation.

Every multi-vehicle block is implemented with a Simulink for each, which makes use of the single-
vehicle blocks presented in subsection 4.1. It is worth noting that the for each is also used to partition
the vehicle parameters. These parameters should then be defined as a row vector or a matrix, where
each column represents a different vehicle.
Figure 6 shows the interface of the RUAV dynamic block. To make things easier, each multi-vehicle
block has an intuitive interface created with the Simulink mask editor, which presents three different
modes to insert vehicle parameters: direct insert in the parameter list (figure 6a), interactive script
import with spinner (figure 6b) and vector script import (figure 6c) by defining two arrays, one with
the script’s name and the other with the vehicle’s number for each script. The vehicle details can
be inserted in the first tab either by typing the values in full or by referring to MATLAB workspace
variables. Another option is to write scripts containing the characteristics of different vehicles and
import the data by using the name of the scripts and the number of vehicles for each script.

5. Use test-case
In this section, an example of the use of the simulator on Simulink is shown.
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(a) Tab 1: Parameter list (b) Tab 2: script import

(c) Tab 3: vector script import

Figure 6 – User interface to import the data for the RUAV dynamic block. The three different tabs
give access to different import methods.

In particular, a scenario with three RUAV with the same characteristics and a starting altitude of 5
meters is used. To simulate the system, a few blocks are necessary: from the proposed library the
dynamic and control blocks are picked; a zero-order hold is used to ensure that the digital controller
time matches the time of the simulation; a delay is necessary to ensure data integrity during the pro-
cess. Figure 7 represents the final scheme used to simulate the use case.

The use of the simulator in Matlab is equally intuitive. It is sufficient to initialize the desired number of
vehicles by creating one instance of the class for each vehicle. Then, the step method can be used
to carry out the calculation at each step.

Figure 7 – Simulink scheme of an example scenario with 2 RUAV with different references to follow.

8



A Simulink Approach to Modeling Heterogeneous Drone Formations for Agent-Based Simulation

6. Conclusions
In this paper, we propose a complete solution to model heterogeneous drone formations in Simulink.
The proposed simulator integrates elements of fidelity, reliability, soft real-time performance, flexibility,
and ease of use, providing a practical means of facility simulation for research and development. The
agent-based simulation technology is proven to be very successful in capturing the kind of decentral-
ized, emergent behaviours of composite UAV formations. These agents act independently based on
their internal rules and through dynamic interactions with the environment and other agents, which
also make the setting similar to what is observed in the target system.
Using this in Simulink via Matlab system class makes a flexible and easy-to-use simulation framework
for single and multiple vehicle simulations. Integration of dynamic models along with their own control
system for both UAVs and RUAVs also prepares the simulator for path planning and advanced mission
scenarios.
The simulator has a user-friendly interface with a Simulink mask editor for easy insertion of parame-
ters and scenario setup, making the initial adoption of the simulator broadly accessible.
The ability to model a variety of formations, including fixed-wing UAVs, rotorcrafts, and ground ve-
hicles, makes the simulator useful to simulate scenarios of disaster prevention, rapid response, and
other life-saving applications. Additional work in the future will extend the simulator with complex
environmental factors and across more domains.

7. Contact Author Email Address
For any further information, mail to: gennaro.raspaolo@unicampania.it

8. Copyright Statement
The authors confirm that they, and/or their company or organization, hold copyright on all of the original material
included in this paper. The authors also confirm that they have obtained permission, from the copyright holder
of any third party material included in this paper, to publish it as part of their paper. The authors confirm that
they give permission, or have obtained permission from the copyright holder of this paper, for the publication
and distribution of this paper as part of the ICAS proceedings or as individual off-prints from the proceedings.

9. Acknowledgement
This work was supported by the research project - ID:P2022XER7W "CHEMSYS: Cooperative Het-
erogeneous Multi-drone SYStem for disaster prevention and first response" granted by the Italian
Ministry of University and Research (MUR) within the PRIN 2022 PNRR program, funded by the
European Union through the PNRR program.

References
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