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Abstract

The expansion corner is a common feature on the wings of hypersonic vehicles with a significant impact
on crossflow instabilities. This study aims to investigate how the expansion corner affects instabilities under
real three-dimensional hypersonic flow conditions. We focus on hypersonic swept flows over a wing model
designed to mimic actual vehicles. The flow is calculated at a free-stream Mach number of 6 with an adiabatic
wall condition. The model consists of a blunt cone, followed by an expansion corner and a flat plate. Laminar
flow computations with different swept angles are conducted using in-house shock-fitting procedures to ensure
the accuracy of the base flow. We employ linear stability theory (LST) and secondary instability theory (SIT) to
understand how the expansion corner influences crossflow instabilities. Both growth rates curves and neutral
curves are calculated to illuminate the instabilities in this regime. Our results show that the expansion corner
has a destabilizing effect on the crossflow modes in this case.
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1. General Introduction
1.1 Research Background
In the realm of aerodynamic studies, the instability and transition phenomenon of the boundary layer
holds a prominent position as a typical flow phenomenon on aircraft surfaces. This phenomenon can
lead to a significant increase in skin friction and heat flux, making it closely related to the design of
the vehicle’s thermal protection system. However, due to the strong nonlinearity and sensitivity of the
flow itself, the transition of hypersonic flows still presents numerous challenges[1].
The three-dimensional boundary layer on the actual vehicle surface is subject to various instabil-
ity mechanisms that can trigger transition, such as attachment line instability, streamwise instability,
centrifugal Görtler instability, and crossflow instability, with crossflow stability being particularly im-
portant. Unlike two-dimensional boundary layers, the typical feature of three-dimensional boundary
layers is that inviscid instabilities may dominate over traditional viscous instabilities, such as Tollmien-
Schlichting (T-S) waves, as the primary instability mechanism[2]. Within this context, Hall[3] pointed
out that the significance of centrifugal Görtler instability diminishes substantially when the sweep
angle surpasses a certain threshold relative to the Reynolds number raised to the power of one-
half (Re-1/2). Consequently, the dominant instability mechanisms become either T-S instability or
crossflow instability.
Crossflow, a secondary flow in the three-dimensional boundary layer, is induced by an imbalance
between the pressure gradient perpendicular to the potential flow direction and the centripetal force.
This secondary flow has a velocity profile with an inflection point, making it primarily governed by
the inviscid instability mechanisms defined in traditional stability analysis. Typical models for studying
crossflow include swept wings, corner flows, swirling disks, and blunted cones with an angle of attack.
The stability characteristics of the three-dimensional boundary layer are often investigated using
modal analysis methods. Crossflow modes can be classified into two overarching categories: station-
ary waves characterized by zero frequency, and traveling waves characterized by specific frequencies[4].
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The most unstable traveling wave mode typically has a frequency much lower than that of the T-S
mode and the second Mack mode. Stationary wave disturbances are commonly attributed to wall
roughness-induced excitations, whereas traveling wave disturbances primarily arise due to the tur-
bulence intensity within the freestream flow. Deyhle[5] pointed out that, despite the generally higher
growth rates predicted by linear stability theory for traveling wave modes, empirical evidence suggests
that in instances of low turbulence intensity in the incoming flow, the transition is often instigated by
stationary wave modes. Therefore, studying the stability characteristics of steady crossflow modes
can help understand the physical factors influencing transition under actual flight conditions.
The phenomenon of crossflow instability transition was first observed by Gray[6] in 1952 during the
flight tests of the AW52 at the Royal Aircraft Establishment in the UK. In these tests, the swept wing
experienced transition earlier than the unswept wing, with sublimation lines of kaolin observed before
transition, aligned with the direction of inviscid potential flow, somewhat similar to the two-dimensional
Görtler vortex transition. The study speculated that stationary streamwise vortices were generated
within the boundary layer. Owen and Randell, Squire, Stuart[7][8][9] conducted theoretical and exper-
imental studies on this phenomenon in 1952, primarily by defining the crossflow Reynolds number
to investigate the conditions under which crossflow transition occurs, finding the critical crossflow
Reynolds number to be approximately 150. The goal of these studies was to achieve full laminar flow
on swept wing surfaces to enhance aerodynamic efficiency.
Early theoretical analyses of crossflow stability mainly focused on incompressible rotating disk flows
because this type of crossflow is very similar to that on swept wings, and the basic flow of rotat-
ing disk provides similarity solutions, facilitating early research analyses. Another practical model
for studying crossflow is the Falkner-Skan-Cooke boundary layer, which allows control of crossflow
intensity through βh and θ . Smith[10] first observed the characteristics of crossflow vortices on ro-
tating disk surfaces in 1946, noting that they formed an angle of 90+14° with the radius. Gregory et
al.[11] in 1955 derived the three-dimensional stability equations for rotating disk flows and conducted
experimental studies on both rotating disks and swept wings, discussing the concepts of stationary
and traveling waves and indicating that the primary instability mechanism was inflectional instabil-
ity caused by crossflow velocity. Brown solved the disturbance equations directly, obtaining results
consistent with those of Gray and Owen on the AW52 configuration in 1959[12], and he provided a
critical Reynolds number of about 180 for incompressible rotating disk flows in 1961[13]. Cebeci and
Stewartson[14] obtained critical parameters similar to Brown’s for rotating disk flows and produced
neutral stability curves in 1980. Wilkinson and Malik[15], in their experiments on incompressible rotat-
ing disk flows in 1983, first discovered that stationary vortices were initiated from randomly distributed
point sources on the disk, and they artificially added roughness elements, observing secondary in-
stability disturbances in the late transition stage. They reported a critical Reynolds number of about
280, significantly different from Brown’s[13] and Cebeci’s[14] results (around 170), mainly because
earlier theories did not consider the effect of curvature. Malik’s[16] theoretical analysis yielded a
critical Reynolds number of 287, while Kobayashi’s[17] result was 261, closely matching the exper-
imental values. These theoretical analyses indicated that traveling wave disturbances have higher
growth rates than stationary disturbances[18]. Furthermore, Malik[19] computed the neutral stabil-
ity curves for stationary disturbances in more detail in 1986, finding a critical Reynolds number of
285.36 and discovering a second minimum on the lower branch of the neutral curve, corresponding
to an angle of 19.5°, explaining the anomalous crossflow vortex angles observed by Fedorov[20].
The upper branch matched Stuart’s[11] asymptotic solution, while the lower branch corresponded
to disturbances in the direction of zero wall shear, with Fedorov’s experiments showing subcritical
instabilities near this lower branch. Faller[21] provided neutral stability curves and critical Reynolds
numbers for various conditions in incompressible rotating disk flows in 1991, consistent with Malik’s
results for stationary[19] and traveling[22] disturbances. Further studies on incompressible rotating
disk flows can be seen in Hall[23] and Morkovin[24].
Early theoretical and experimental achievements were mainly applied to the design of laminar wings
for low-speed and transonic airfoils, using control methods like blowing and suction. Pfenninger et
al.[25][26][27] conducted a series of experiments on 30-degree swept wings, validating Brown’s re-
sults with blowing and suction and successfully achieving full laminar flow on the X-21 wing. Mack[28]
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studied the effect of compressibility on crossflow instability in 1979, finding that compressibility re-
duced the growth rate and altered the direction of the instability waves. El-Hady[29] and Mack[30]
analyzed crossflow instability for the 23° supercritical swept wing configuration at NASA Langley
Center, showing the impact of suction distribution on crossflow mode growth rates. Nayfeh and
Padhye[31][32][33], using complex group velocity, further developed Gaster’s[34] classic time mode
and spatial mode conversion relationship for three-dimensional boundary layers, deriving disturbance
equations considering non-parallel effects under incompressible and compressible conditions through
multi-scale methods. Their analysis of the X-21 wing revealed that non-parallelism made crossflow
modes more unstable.
With advancements in theoretical and experimental capabilities, the study of crossflow traveling wave
disturbances and their interactions with stationary disturbances, the nonlinear evolution of cross-
flow disturbances, and secondary instabilities has been furthered. DLR’s Bippes[35][36][37], ASU’s
Saric [38][39][40], and ONERA’s Arnal[41], among others, have conducted experiments on the linear
and nonlinear growth of crossflow vortices. ASU and ONERA focused on low-speed experiments
on infinite-span swept wing models, while DLR applied additional pressure gradients above swept
wings through a specific setup. The Nonlinear Parabolized Stability Equations (NPSE) method was
successfully applied to study the nonlinear evolution of stationary crossflow vortices. Malik et al.[42]
studied secondary instability of stationary crossflow vortices on low-speed swept wings in 1999,
showing that the transition location predicted by secondary instability (N-factor) correlated better with
experimental results than those predicted by primary instability methods. Haynes et al.[43] compared
linear and nonlinear stability analysis tools for low-speed swept wings with ASU’s experimental re-
sults, showing that both Linear Stability Theory (LST) and NPSE could accurately capture the linear
growth and nonlinear saturation of stationary crossflow vortices.
Further secondary instability analysis tools, such as the Floquet theory-based Secondary Instabil-
ity Theory (SIT), Bi-Global stability analysis, and Direct Numerical Simulation (DNS), have also been
widely applied in crossflow stability analysis[44][45][46][42][47][48]. Balachandar et al.[49] performed
secondary instability analysis on rotating disk flows, discovering high-frequency secondary instability
disturbances similar to those in Kohama’s[50] experiments. Fisher and Dallmann[51] used secondary
instability theory in 1991, while Meyer and Kleiser in 1988[52] used DNS to theoretically analyze
Müller and Bippes’ experiments[35]. Fisher and Dallmann suggested that the traveling wave distur-
bances observed in experiments were secondary instabilities of stationary crossflow vortices rather
than primary instability characteristics of three-dimensional boundary layers. Meyer and Kleiser ob-
served saturation of two modes in their DNS, consistent with experimental results. Malik et al. in 1996
classified secondary instability modes into Type I and Type II. Type I modes are primarily induced by
spanwise gradients of the streamwise velocity in the basic flow, while Type II modes are primarily
induced by normal gradients of the streamwise velocity in the basic flow.
Interest in hypersonic research has also been increasing. Experimentally studying high-speed cross-
flow transition is challenging, mainly conducted using impulse wind tunnels. FLDI can be used to
study Mack mode disturbances[54], but it cannot measure small-scale crossflow structures. Hot-wire
anemometry can only measure data at one location and for a very short duration[55]. Currently,
experimental data are mostly limited to surface pressure, temperature, and heat flux. The largest
hypersonic crossflow-related flight experiments to date are part of the HiFIRE program[56][57]. Its
research models include a cone (HiFIRE-1) and an ellipsoid cone (HiFIRE-5). However, these mod-
els also lack boundary layer measurement data. Additionally, these models are used to approximate
hypersonic glider shapes, experiencing both crossflow instability and Mack mode instability. In 2016,
Craig and Saric[4] measured traveling crossflow modes and Type I modes, though higher-frequency
modes were not captured. In 2015, Ward, Henderson, and Schneider[58] measured second modes
and Type II modes. Kocian’s[59] review detailed experimental and computational results for this model
at an incoming Mach number of around 6. These experiments are usually conducted in quiet tunnels,
with numerical studies primarily using NPSE and Bi-Global methods, and experimental and theoret-
ical results corroborating each other well. The findings indicate that, aside from the new streamwise
instability mode (Mack’s second mode) appearing under hypersonic conditions, crossflow instability
exhibits many similarities with low-speed conditions. However, under hypersonic conditions, sec-
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ondary instability of crossflow vortices shows saturation[4], and the frequency of secondary insta-
bility modes can be very close to Mack’s second mode under certain conditions, potentially leading
to mode interactions[60]. Other significant hypersonic models include the HyTRV model from the
China Aerodynamics Research and Development Center, which isolates the effects of various insta-
bility mechanisms by dividing the geometry into several main regions[61]. More recent results on
hypersonic crossflow stability analysis can be found in [62][63][64][65][66].
Although there have been studies on hypersonic crossflow stability for various geometries such as
flat plates and blunt cones, research on crossflow stability for complex models remains limited and
insufficient. This study aims to utilize a linear stability framework to analyze the impact of typical
expansion corner structures on the growth rate of the steady crossflow mode in a three-dimensional
boundary layer, which further provides a theoretical basis for the analysis of the transition mechanism
influenced by expansion corners on hypersonic vehicles.

1.2 Problem Statement
The focal point of investigation pertains to a meticulously designed wing model representative of
actual vehicles. This model comprises a blunt cone with half-angle of 6 degrees followed by an
expansion corner and a flat plate. The aerodynamic calculations are conducted at a free-stream
Mach number of 6, under adiabatic wall conditions. The sweep angle ranges from zero to 60 degrees,
and the present discourse exclusively presents outcomes pertaining to the 60-degree sweep angle
configuration. The model follows the ideal gas assumption of air. The calculation parameters are
listed in Table 1.

Table 1 – Calculation parameters for the swept wing

Re T∞ R Pr γ

3.521×106 224K 2mm 0.72 1.4

2. Methodology
2.1 Baseflow Calculation
Hypersonic stability analysis requires high-quality laminar baseflow calculation. To obtain a smooth
and accurate fundamental flow field, this paper employs a high-order accurate shock-fitted finite
difference method for the calculation of the swept baseflow.
Since this method uses moving shocks as the far-field boundary, the program adopts a dynamic grid
method, and there exists the following transform relationship between the physical coordinates and
the computational coordinates:

ξ = ξ (x,y, t)
η = η (x,y, t)

ζ = z
τ = t

,J =

∣∣∣∣∣∣∣∣
xξ xη 0 xτ

yξ yη 0 yτ

0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣ . (1)

The control equation is the Navier-Stokes equation for compressible fluids, which is expressed as
follows:

1
J

∂U
∂τ

+
∂Finv

∂ξ
+

∂Ginv

∂η
+

∂Hinv

∂ζ
+U

∂

∂τ

(
1
J

)
=

1
Re

[
∂Fvis

∂ξ
+

∂Gvis

∂η
+

∂Hvis

∂ζ

]
. (2)

The expressions for the conservative variables, viscous flux and inviscid flux are:
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U =


ρ

ρu
ρv
ρw
ρE



Finv =
Fξx+Gξy+Hξz

J ,F =


ρu

ρu2 + p
ρuv
ρuw

(E + p)u


(3)

Besides, the working fluid is air, satisfying the assumptions of the ideal gas. The viscosity is calcu-
lated by Sutherland’s law.The baseflow is calculated using in-house shock-fitting DNS code[67]. The
fifth-order upwind scheme (for inviscid flux) of Zhong[68] together with the sixth-order centre scheme
(for viscous flux) is used to compute the flow field. Here, the Rankine-Hugoniot relation is satisfied
at the shock boundary. A fourth-order Runge–Kutta method is applied for the time integration. By
treating the shock wave as a sharp interface, high accuracy can be achieved in the whole flow field,
which is an essential prerequisite for the stability analysis.

2.2 Linear Stablility Theory (LST)
The LNS equations are derived from the NS equations by introducing small perturbations, subtracting
the basic flow equations and ignoring the nonlinear terms. A frequently employed form is commonly
written as

Γ
∂Φ

∂ t
+A

∂Φ

∂x
+B

∂Φ

∂y
+C

∂Φ

∂ z
+DΦ = Hxx

∂ 2Φ

∂x2 +Hxy
∂ 2Φ

∂x∂y
+Hxz

∂ 2Φ

∂x∂ z
+Hyy

∂ 2Φ

∂y2 +Hyz
∂ 2Φ

∂y∂ z
+Hzz

∂ 2Φ

∂ z2 .

(4)
For local analysis, the perturbations can be written in a wave-like form as

Φ(x,y,z, t) = φ (y)exp(iαx+ iβ z− iωt)+ c.c.. (5)

As only stationary waves are investigated, omega is assumed to be zero. The generalized eigenvalue
problem of LST presents

Llφ = αRlφ (6)

2.3 Grid Generation Algorithm
The computational grid is a curvilinear body-fitted structured code-generated grid. The meshing
strategy ensures a smooth transition in the distribution of grid spacing in the flow direction, and the
spacing is densified near the leading edge and the expansion corner. The streamwise grid spacing
is determined by

F =
4
∑

i=1
aierf [σi (ξ −bi)+(−1)ei ]

x = x(ξ ) , d2x
dξ 2 =

F
2∆s

dx
dξ
,

x(0) = 0,x(1) = 1,ξ ∈ [0,1] .

(7)

In the wall-normal direction, grids cluster near the wall surface in the following manner:

y = a
1+η

b−η
,a =

yiymax

ymax −2yi
,b = 1+

2a
ymax

,η ∈ [−1,1] . (8)

The distribution of the spacing in the streamwise direction and the overall glance of the grid is
shown in Fig.1. After testing the grid independence, the final grid number is 1001×201. The three-
dimensional sketch of the swept wing model is shown in Fig.2, and the cyan part of the figure repre-
sents the surface of the swept wing.
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Figure 1 – Computational grid of the swept wing model (a) the distribution of function F and
streamwise grid spaces ∆x; (b) grid lines.

Figure 2 – Three-dimensional sketch of the computational domain of the swept wing model.

3. Results and Discussion
3.1 Baseflow
The results of our basic flow calculations are presented in Fig.3. Our specialized shock-fitting DNS
code ensures accurate depiction of the flow patterns. The expansion corner sharply increases the
boundary layer thickness, and the effect of expansion waves are clearly seen.
Fig.4 shows the velocity, density, and temperature profiles at typical locations before and after the
expansion corner. It can be observed from the figure that the flow parameters conform to the pre-
dicted trend of the Prandtl-Meyer theory when passing through the expansion corner, and the change
becomes smoother due to the viscous interference brought by the boundary layer. The streamwise
velocity gradient parallel to the wall near the wall decreases first and then increases, overall resulting
in an increase in velocity. The density decreases significantly overall, and the temperature decreases,
with the boundary layer thickness monotonically increasing.
Fig.5 provides the crossflow velocity Uc f profile at typical locations before and after the expansion
corner, showing that the maximum crossflow velocity first increases and then decreases. The position
of the maximum crossflow velocity firstly moves towards the solid surface and then moves away from
it. This phenomenom implies a stronger instability near the corner.
Fig.6 presents the D(ρDUc f ) distribution of the crossflow velocity profile before and after the ex-
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Figure 3 – Contour of dimensionless parameters at Λ=60° (a) U velocity; (b) V velocity; (c) W
velocity; (d) pressure; (e) density (f) temperature.

pansion corner at typical locations, where D represents the differential with respect to the normal
coordinate. According to the definition of the general inflection point, D(ρDUc f ) = 0, from the curve
in the figure, it can be seen that the number of the generalized inflection points stay unchanged, and
the wall-normal distance of the inflection point moves awary from the wall. According to inviscid in-
stablility theory, this characteristic usually accompanies increases in growth rates of inviscid unstable
modes.

3.2 Stability Characteristics of Stationary Modes
The most unstable mode embodies the typical crossflow mode pattern. Fig.7 shows the pattern
of the most unstable perturbation mode at s=89.92, beta=0.797. Fig.7(a) provides the spectrum
of the stationary wave. The spectrum consists of both discrete modes and continuous spectrum
approximated by discrete points. Under this paper’s working condition, there is only one unstable
mode in the eigenvalue spectrum. As can be seen from the distribution of its eigenfunctions, the
disturbance velocity components in the streamwise direction alternate in opposite peaks along the
spanwise direction. Superimposed on the basic flow, this results in a series of streamwise vortical
structures, which are characteristic of steady crossflow modes.
After the expansion corner, the crossflow vortices undergo a discernible transformation, assuming
a more pronounced inclination and concurrently exhibiting an escalated growth rate, as is shown in
Fig.8. The figure presents the comparison of growth rate versus varying spanwise wave numbers at
different streamwise positions. As the baseflow advances downstream, the spanwise wave number
of the most unstable disturbance wave gradually decreases. The growth rate of the most unstable
disturbance mode first decreases gradually with the advancement of the streamwise position and
then starts to increase slowly as the basic flow passes through the expansion corner, which may
possibly promote transition under this circumstance.
To further investigate the stability characteristics of the flow field, Fig.9 provides the linear stability
neutral curve. The abscissa represents the streamwise Reynolds number, and the ordinate repre-
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Figure 4 – Profiles of physical parameters for (a) different sweep angles Λ at s=101.36; (b) different
streamwise positions at Λ=60°.
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Figure 7 – The most unstable mode at s=89.92 (a) eigenvalue spectrum; (b) contour of streamwise
velocity; (c) shape function of perturbation velocity.
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Figure 8 – Growth rate curves at different positions with respect to the spanwise wavenumber.

sents the spanwise wave number. The yellow area represents the stable region where there are no
unstable disturbance modes. When the streamwise Reynolds number is approximately 4.3e5, the
flow passes through the expansion corner, and a new peak in the growth rate can be observed at
this location. This indicates that as the flow advances through the expansion wave, the disturbances
within the boundary layer become more unstable. Furthermore, the neutral curves for different sweep
angles are presented in Fig.10. As the sweep angle increases from 30 degrees to 60 degrees, the
general pattern is consistent, while the maximum growth rate increases significantly as the crossflow
becomes stronger.
Further analysis and comparison are conducted on the specific characteristics of the most unstable
disturbance waves before and after the expansion corner. Fig.11 presents the shape functions and
streamwise velocity contours of the most unstable stationary modes at two typical streamwise posi-
tions. These two modes come from the areas near the two peaks of the growth rates shown in Fig.9.
Observing the disturbance velocity contour maps of both in Fig.11(b), it can be noticed that their main
features are similar, exhibiting the typical characteristics of the crossflow mode. However, from the
specific disturbance velocity characteristic functions in Fig.11(a), significant differences can be found
between them in terms of sign changes.
Theoretical and experimental studies generally suggest that expansion waves can stabilize flows.
Chuvakhov[69] conducted a linear stability analysis of two-dimensional expansion corners and found
that in the absence of sweep angle, the second mode dominates. The main effect of the expansion
corner on stability characteristics is the increase in boundary layer thickness, which significantly re-
duced the frequency of the second mode disturbance waves. The growth rates of the high-frequency
modes decreased sharply across the corner, while the previously stable low-frequency modes be-
came unstable, leading to a more stable flow phenomenon. In contrast, this study on stationary
crossflow modes reaches opposite conclusions. According to Fig.12, on the wedge surface after the
blunt head, as the flow progressed in the streamwise direction, the growth rates of the unstable cross-
flow modes gradually decreased, and the number of general inflection points of the crossflow profile
before the expansion wave decreased from three to one. As the flow passed through the expansion
wave, the expansion wave caused significant changes in the distribution of flow parameters such as
density and temperature, and the number of general inflection points of the crossflow recovered. This

10



STABILITY OF HYPERSONIC CROSSFLOW MODES WITH EXPANSION CORNER

Figure 9 – Neutral curve of the stationary perturbation modes.

Figure 10 – Neutral curve for different sweep angles (a) Λ = 30° (b) Λ = 45° (c) Λ = 60°.

Figure 11 – Comparison of the stationary perturbation modes (a-b) perturbation velocity at
s=89.92,121.79; (c-d) streamwise velocity contour at s=89.92,121.79.
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stimulation of specific boundary layer steady crossflow modes led to increased instability of the basic
flow. In the downstream flat plate stage after the expansion corner, as the boundary layer continued
to develop downstream, the growth rate of disturbances decreased again.

Figure 12 – Growth rate versus streamwise Reynolds number for different spanwise numbers.

4. Conclusion
This work preliminarily investigates the effect of expansion corner on the linear stability of the swept
wing hypersonic boundary-layer flow. The high-accuracy baseflow of a swept wing with an expansion
corner is calculated using the finite difference shock-fitting method. Based on this, linear stability tools
are employed to explore the influence of the expansion corner on the linear instability characteristics
of the stationary crossflow modes in the hypersonic boundary layer.
The shock-fitting method provides accurate and smooth baseflow. At the expansion corner, the po-
sition of general inflection points of the crossflow velocity moves away from the solid surface, which
affects the inviscid instability characteristics of the boundary layer.
Under the working condition of this paper, the most unstable stationary disturbance mode in the
swept wing boundary layer before and after the expansion corner is the crossflow mode. There is a
significant change in the disturbance velocity characteristics of the stationary crossflow mode before
and after the expansion corner.
The stationary crossflow mode before the expansion corner gradually decays in growth rate as it
develops in the streamwise direction. The appearance of the expansion wave makes the stationary
crossflow mode more unstable, and after passing through the expansion corner, the flow stabilizes
again as it develops in the streamwise direction. The result indicates that the existence of the expan-
sion corner may greatly destabilize the laminar base flow and thus promote transition.
In the future, we will continue investigating the non-linear behaviour of unstable modes which have
been identified in this study. We plan to employ secondary instability theory (SIT) to monitor the
change of secondary modes in the neighbourhood of the expansion corner. Furthermore, we would
conduct a DNS study to compare the results with SIT.
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