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Abstract

In three-dimensional hypersonic boundary layers, the crossflow and Görtler instabilities are of great impor-
tance and may trigger transition. Using the numerical simulations, stability theory, and together with some
ideas from classical differential geometry, we found the origin of both crossflow and Görtler instabilities over
a three-dimensional hypersonic boundary layer are because of the bending of local inviscid streamline. The
appearance of which instabilities depends on the ratio between the normal curvature and geodesic curvature.
The study suggests that as the crossflow increase, the geodesic curvature of the inviscid streamline would
become much larger than the normal curvature, which shows that the crossflow instability is the dominative
at larger swept angles. The influences of crossflow and surface curvature on the nonlinear developments are
also discussed.
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1. Introduction
Laminar-turbulence transition of boundary layer flows has obvious influence on the performance of
hypersonic vehicles because of the great differences for surface skin friction and aerodynamic heat-
ing under laminar or turbulent conditions. During the designing, special attentions have been put on
the fundamental instability mechanisms that cause transition of boundary layer at the inlet of scram-
jet. The inlets of scramjet are usually made up by the combination of several three-dimensional
curved surfaces, from the leading edge to the scramjet, which makes it difficult to understand the
transition mechanism directly. Therefore, a simplified three-dimensional boundary layer flow over a
concave wall, which the fundamental characteristics are kept, is used to understand the mechanism.
Under this configuration, two kinds of stationary instability may occur. One is the cross-flow instability
caused by the imbalance between pressure gradient and centripetal acceleration, which appears as
co-rotating vortices whose axes are aligned to the local inviscid streamlines, within a few degrees.
The other is the Görtler instability induced by the imbalance between inertial and centrifugal forces,
which forms the streamwise-oriented, counter-rotating vortices.
In this paper, we want to clarify two questions. The first is to identify which mechanisms are the
dominate in hypersonic boundary layer if both crossflow and the concave surface appear. The second
is to understand the relationship or transformation between these two stationary instabilities.

2. Model and Methodology
2.1 Model and governing equation
The swept model, with a sweep angle Λ, consists of a cylindrical head with radius R1, followed by
a 105 mm-long flared body, generated by a circular curve with a radius R2 and a plate at the end.
The whole computational domain is bounded by the shock and wall surface as sketched in figure 1.
The unit freestream Reynolds number Re∞, the sweep Reynolds number Res, the freestream Mach
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Figure 1 – Sketch of the model and the coordinates. The whole computational domain is bounded
by the shock surface and wall surfaces. A plate region is added at the end of the computational
domain. The mesh on the x− y plane, has been plotted every 7 points in the η direction (surface

normal direction) and every 20 points in the ξ direction (surface tangent direction).

M∞ Ms Mn
∞ Λ Pr γ Re∞ Res T∞ Tw

Case 1 8.5 0.00 8.50 0o 0.72 1.4 1.4586×107 0.0 50.64K 658.32K
Case 2 8.5 0.19 8.47 5o 0.72 1.4 1.4586×107 13.12 50.64K 658.32K
Case 3 8.5 0.39 8.37 10o 0.72 1.4 1.4586×107 26.29 50.64K 658.32K
Case 4 8.5 0.59 8.21 15o 0.72 1.4 1.4586×107 39.54 50.64K 658.32K
Case 5 8.5 0.80 7.99 20o 0.72 1.4 1.4586×107 52.89 50.64K 658.32K
Case 6 8.5 1.02 7.70 25o 0.72 1.4 1.4586×107 66.38 50.64K 658.32K
Case 7 8.5 1.25 7.36 30o 0.72 1.4 1.4586×107 80.03 50.64K 658.32K
Case 8 8.5 1.51 6.96 35o 0.72 1.4 1.4586×107 93.84 50.64K 658.32K
Case 9 8.5 1.8 6.51 40o 0.72 1.4 1.4586×107 107.76 50.64K 658.32K

R1 R2 L1
1mm 2000mm 105mm

Table 1 – Simulation conditions and geometrical parameters.
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number M∞, the sweep Mach number Ms, the normal Mach number Mn
∞ and the recovery temperature

Tr are defined as

Re∞ =
|~V∞|
ν∞

, Res =
W∞δ ∗

νr
, M∞ =

|~V∞|
c∞

, Ms =
W∞

cs
, Mn

∞ =
U∞

c∞

= M∞ cosΛ

Tr = T∞ + ς(T0−T∞),where ς = 1− (1−ξw)sin2
Λ.

(1)

Here, ξw is a constant for specific freestream conditions (M∞ and Λ) and determined based on the
study of [1]; R1 represents the radius of the leading-edge; ~V∞ stands for the freestream velocity
vectors with U∞,V∞ and W∞ along x,y and z direction, respectively. T∞ and T0 stand for the freestream
and stagnation temperature, respectively. The parameters c∞ and cs are the sound speed before and
after the leading shock, νr represents the kinematic viscosity at Tr. δ ∗ is defined as δ ∗ =

√
νrR1/2U2,

where U2 represents chord-wise velocity behind the shock. The Prandtl number Pr and the specific
heat ratio γ are set following the ideal gas assumption of air. The physical and geometrical parameters
are listed in table 1.
The motion of compressible flows is governed by Navier-Stokes equations. The set of non-dimensional
equations in Cartesian coordinates x1 = x,x2 = y,x3 = z can be written as

∂QQQ
∂ t

+
∂FFF j

∂x j
+

∂FFFv j

∂x j
= 0, (2a)

QQQ =


ρ

ρu1
ρu2
ρu3
Et

 ,FFF j =


ρu j

ρu1u j + pδ1 j

ρu2u j + pδ2 j

ρu3u j + pδ3 j

(Et + p)u j

 ,FFFv j =


0

τ1 j

τ2 j

τ3 j

τ jkuk−q j

 , (2b)

where u1 = u,u2 = v and u3 = w stands for the velocity along the coordinates x,y,z, respectively. t
stands for the time. The total energy Et and the viscous stress τi j are given as, respectively,

Et = ρ

(
T

γ(γ−1)M2 +
ukuk

2

)
, τi j =

µ

Re∞

(
∂ui

∂x j
+

∂u j

∂xi
− 2

3
δi j

∂uk

∂xk

)
. (3)

The pressure p and heat flux qi are obtained from:

p =
ρT

γM2
∞

, qi =−
µ

(γ−1)M2
∞RePr

∂T
∂xi

. (4)

The viscosity is calculated using the Sutherland law

µ = T 3/2 T∞ +C∗

T T∞ +C∗
, (5)

with C∗ = 110.4K.

2.2 Code features
The first code we use to perform computations of unperturbed boundary layer is the high-order finite
difference code developed recently at Tsinghua University [2, 3, 4]. A shock-fitting method [5] is
used to compute steady hypersonic viscous flow together with the high-order accurate non-compact
central finite differences methods. The fifth-order upwind scheme (for inviscid flux Fj) and the 6th-
order centre scheme (for viscous flux Fv j) are used to compute the flow field. A 4th-order Runge-Kutta
method is applied for the time integration, and the simulations are performed until the maximum
residual reaches a small value on the order of 10−15. A full implicit scheme[2] can also be used
for fast convergence. The code works in parallel using MPI libraries over hundreds of thousands of
cores. Validation of the code for calorically perfect gas and thermal-chemical non-equilibrium flow
can be found in our previous studies[2, 3]. Treating the shock wave as a sharp interface allows high
accuracy in the flow field, an essential prerequisite for the stability analysis.
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The second code is a well-validated fluid dynamic shock capture solver OPENCFD, developed by
Li[6], which was mainly used to simulate the nonlinear development of the stationary modes along
the wall surface. Inviscid terms are subject to local Lax-Friedrichs splitting and discretised with a
seventh-order weighted essentially non-oscillatory scheme. The viscous terms are discretised with
an explicit eighth-order centre finite-difference scheme, and time integration is performed using a
third-order total variation diminishing-type Runge–Kutta method.
The cross-validation of the two solvers, the detailed grid distributions for the simulations presented in
this paper, and the verifications of the grid independence are given in the appendix A.

2.3 Boundary conditions
A no-slip boundary condition and the isothermal wall over the surface are employed for shock fitting
and capture simulations. At the end of streamwise or surface tangential direction for the computa-
tional domain, characteristic non-reflect boundary conditions are imposed.
As one of the primary focus of the present study is to characterize the general behavior of the sec-
ondary instabilities of stationary vortices in a relative real hypersonic boundary layer, the disturbances
are introduced by using steady wall-normal blowing and suction strip regions. The generator strip is

vn(x,y,z) = A sin3(π
x− xs

xe− xs
)cos(β z) , xs 6 x 6 xe, (6)

where vn is perturb velocity along wall normal directions, A is the amplitude of the disturbance. xs

and xe indicate the region of the strip. Several groups used the same function for studying the Görtler
instabilities. Due to the shorter flow distance of the model, to ensure that the disturbance can develop
to saturation within this distance, we chose a larger initial disturbance for the nonlinear and secondary
instability analysis, with the disturbance amplitude reaching 15% of the free stream velocity.

2.4 Stability Theory
Over the concave surface, the global streamwise curvature, K = −(Re∞R2)

−1, is −3.4× 10−8. The
region of interest is over the concave surface, where x ∈ [1,106]mm, resulting in Rel =

√
Re∞x ∈

[120,1243] and a Görtler number G = Rel
√

δx/R2 ∈ [0.246,8.12]. Here, δx =
√

x/Re∞ stands for a
rough estimation of the boundary layer length scale. The linear navier-stokes equations around a
stationary state QQQ0 can be represented by the combination of linearised operators and perturbation
ppp = (ρ̂, û, v̂, ŵ, T̂ ) field. This process forms a linear system that can be expressed as

ΓΓΓ
∂ ppp
∂ t

+AAA
∂ ppp
∂x

+BBB
∂ ppp
∂y

+CCC
∂ ppp
∂ z

+DDDppp =

HHHxx
∂ 2 ppp
∂x2 +HHHxy

∂ 2 ppp
∂x∂y

+HHHxz
∂ 2 ppp
∂x∂ z

+HHHyy
∂ 2 ppp
∂y2 +HHHyz

∂ 2 ppp
∂y∂ z

+HHHzz
∂ 2 ppp
∂ z2 ,

(7)

where the coefficient matrix ΓΓΓ,AAA,BBB,CCC,DDD,HHHxx,HHHxy,HHHxz,HHHyy,HHHyz,HHHzz can be found in our previous stud-
ies. We further assume that the perturbations take the harmonic forms as

ppp(ξ ,η ,z) =

{
ppp′(η)exp [i(αξ +β z)]+ c.c., Local theory,

ppp′(η ,z)exp [i(αξ )]+ c.c. Bi-Global theory,
(8)

where (ξ ,η) are defined in figure 1. With the assumptions, the whole system can be transformed
into a large linear complex eigenvalues systems, which can be solved very efficiently using iterative
eigenvalue solvers together with the linear solvers such as MUMPS in modern high-performance
computing systems.
The evolution of stationary perturbations along the model surface is computed by solving the fully
three-dimensional compressible Navier-Stokes equations, which results in steady vortices over the
surface.
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Figure 2 – Sketch of the cross-flow coordinate. Uξ is the velocity along ξ direction, Uτ stands for the
velocity along inviscid stream line outside of the boundary layer and Uc defines the cross-flow.

3. Mean flow analysis
The cross flow is defined based on the direction of inviscid stream line outside of the boundary layer
and the edge of the boundary layer is defined at the location where the spanwise velocity W reaches
99% of the external velocity W2. For simplicity, all the variables on the edge of boundary layer are
denoted with the superscript e. As shown in figure 2, the velocity Uτ and Uc are defined as

Uτ =Uξ cosθ +W sinθ ,

Uc =Uξ sinθ −W cosθ ,
(9)

where the local streamline angle θ is defined as

θ = arctan
(

W e/Ue
ξ

)
. (10)

The typical pressure distribution is depicted in figure 3, where the flow commences from the stag-
nation point and progresses downstream, accompanied by a decrement in pressure. Under the
influence of the favourable pressure gradient, the fluid experiences a gradual acceleration. With the
augmentation of the swept angle, there is a comprehensive reduction in the pressure level across the
entire region. This reflects the phenomenon where an increase in the swept angle results in a greater
proportion of the incoming fluid’s energy being converted into kinetic energy along the direction of
the swept. As the flow further progresses, the flow field extends to the subsequent concave surface,
as shown in figure 3 (b). Owing to the high pressure generated in the region of the leading head, the
flow continues to develop under a favourable pressure gradient at the front of the concave surface.
Conversely, at the rear of the concave surface, the favourable pressure gradient gradually diminishes,
and under conditions of a larger swept angle, a slight adverse pressure gradient may even emerge.

3.1 Estimations of the instability based on streamline curvatures
Based on previous studies, the origin of both the crossflow and Görtler instability is due to the imbal-
ance between the pressure gradient and centripetal/centrifugal forces. As the centripetal/centrifugal
forces result from a locally circular motion, evaluating the forces by fluid movements is natural. More-
over, based on boundary layer theory, the pressure remains nearly unchanged across the boundary
layer. Therefore, the inviscid streamline, which reflects both the movements of fluid and the surface
pressure distributions, becomes a reliable choice for evaluating these factors. Moreover, if the invis-
cid streamline keeps straight, neither Görtler nor crossflow instability would occur. Thus, we further
assume that the bending of the inviscid streamlines over the surface can be used to evaluate the
strength of Görtler or crossflow instability.
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Figure 3 – Steady pressure distribution along the model surface. (a) stands for the cylindrical head
with radius R1 and (b) represents the following flared body with radius R2. In figure (b), the region

(s ∈ [60,110]) is enlarged for clarity.
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Figure 4 – The profiles of cross-flow velocity Uc along the surface, for Case 9. (a) stands for the
cylindrical head with radius R1 and (b) represents the following flared body with radius R2. The

arrows indicate the direction of increasing s.
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Figure 5 – The profiles of variables along wall normal direction at locations (s = 60,80 and 90) from
the wall surfaces to the shock surfaces, for Case 9. (a)− (d) stand for the profiles of density ρ,
surface parallel velocity Uξ , spanwise velocity W and temperature T . The region of boundary is

enlarged in (b),(c) and (d).
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For the three-dimensional boundary layer in this study, the bending of the streamline is caused by
two factors. One is due to the bending of the curved surface, which can be measured by the normal
curvature Kn concerning the direction of specific streamlines. The other is due to the bending of the
streamline inside the surface, which is described by geodesic curvature Kg. These two curvatures,
together with the general curvature K of this streamline, can form the classical geometric relation[7]
below:

K 2 = K 2
n +K 2

g . (11)

The preceding discussion merely constitutes a qualitative analysis. To delve deeper into a quan-
titative elucidation of how these curvatures influence the associated disturbances, we present the
equations for the local disturbance, considering both geodesic and normal curvatures on the curved
surface. For this purpose, we have chosen to employ a local geodesic coordinate system. In this lo-
cally orthogonal coordinate system, (g1, g2, g3), one axis, g1, aligns with the tangent direction of the
inviscid streamline, as shown in figure 2. In contrast, another axis, g2, aligns with the normal vector
of the curved surface along the direction of the inviscid streamline’s tangent. In conjunction with the
first two, the third axis, g3, forms a comprehensive right-handed system. In non-orthogonal curvilinear
coordinates, the differentiation between covariant and contravariant components is a well-established
concept. Nonetheless, this distinction becomes non-existent within the context of orthogonal curvi-
linear coordinate systems. The scale factors h1,2,3 of the coordinate system can be expressed as

h2
1 =

(
∂x
∂g1

)2

+

(
∂y
∂g1

)2

+

(
∂ z

∂g1

)2

,

h2
2 =

(
∂x
∂g2

)2

+

(
∂y
∂g2

)2

+

(
∂ z

∂g2

)2

,

h2
3 =

(
∂x
∂g3

)2

+

(
∂y
∂g3

)2

+

(
∂ z

∂g3

)2

,

(12)

Then, the general curvature components K = κi j for arbitary three-dimensional coordinate can be
expressed as

K =



1
h1h1

∂h1

∂g1
,

1
h1h2

∂h1

∂g2
,

1
h1h3

∂h1

∂g3

1
h2h1

∂h2

∂g1
,

1
h2h2

∂h2

∂g2
,

1
h2h3

∂h2

∂g3

1
h3h1

∂h3

∂g1
,

1
h3h2

∂h3

∂g2
,

1
h3h3

∂h3

∂g3


(13)

Not all of them appear in the present coordinates. One can find that the axes g2 and η are both in the
surface normal direction. Therefore, the scale coefficient h2 remains a unit in the abovementioned
relationship. The remaining curvature terms can be divided into two sets: the in-plane curvature
terms and surface curvature terms, which can be expressed as

in-plane curvature terms: κ13 =
1

h1h3

∂h1

∂g3
,κ31 =

1
h1h3

∂h3

∂g1
,

surface curvature terms: κ12 =
1

h1h2

∂h1

∂g2
,κ32 =

1
h3h2

∂h3

∂g2
,

(14)

with some simple analysis based on classical differential geometry, we can express these curvature
terms as a function of local streamline angle θ and the distance h away from the surface :

Kg = κ13 =
∂θ

∂ξ
cos(θ),κ31 =−

∂θ

∂ξ
sin(θ),

Kn = κ12 =−
cos2(θ)

R2 +h
,κ32 =−

sin2(θ)

R2 +h
,

(15)
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and the scale factors can be expressed as
h1 = (1+Kgg3)(1+Kng2),

h2 = 1,

h3 = (1+κ31g1)(1+κ32g2),

(16)

3.1.1 Inviscid analysis
Before further analysis, we look at the inviscid equation in this new coordinate. The inviscid equation
can be written as

1
h1

∂ (ρug)

∂g1
+

∂ (ρvg)

∂g2
+

1
h3

∂ (ρwg)

∂g3
+κ31ρug +(Kn +κ32)ρvg +Kgρwg = 0,

ρ

(
ug

h1

∂ug

∂g1
+

vg

h2

∂ug

∂g2
+

wg

h3

∂ug

∂g3
+Knugvg +Kgugwg−κ31wgwg

)
=− 1

h1

∂ p
∂g1

,

ρ

(
ug

h1

∂vg

∂g1
+

vg

h2

∂vg

∂g2
+

wg

h3

∂vg

∂g3
−κ32wgwg−Knugug

)
=− ∂ p

∂g2
,

ρ

(
ug

h1

∂wg

∂g1
+

vg

h2

∂wg

∂g2
+

wg

h3

∂wg

∂g3
+κ31ugwg +κ32vgwg−Kgugug

)
=− 1

h3

∂ p
∂g3

,

ug

h1

∂T
∂g1

+
vg

h2

∂T
∂g2

+
wg

h3

∂T
∂g3
− (γ−1)

ρ
Ma2

(
ug

h1

∂ p
∂g1

+
vg

h2

∂ p
∂g2

+
wg

h3

∂ p
∂g3

)
= 0.

(17)

in which the terms related to curvature are highlighted in blue and blue. If ignoring the bending effects
of the third axis g3 (κ31 = κ32 = 0), and remembering that in this coordinate, in the inviscid limit, the
major velocity terms over the surface are ug and wg, the contributions to the variations of meanflow
can be seen as the consequences of the red terms, in which the geodesic curvature and normal
curvature are directly shown.

3.1.2 Production analysis
Then, we drive the production term Pdis

g of the perturbation energy Edis
g . Following the equations in

the analysis of compressible turbulence, the perturbation energy here is defined as

Edis
g =

1
2

ρ̂
(
û2 + v̂2 + ŵ2) (18)

Therefore, the general production terms for disturbances can be expressed as

Pdis
g =−ρσi jS̃ ji. (19)

Given the stationary mean flow without perturbations, it can be simplified for the present cases as

Pdis
g =−ρσi jS ji, (20)

In accordance with the widely accepted local parallelism assumption prevalent in local theoretical
frameworks, upon excluding terms devoid of curvature contributions, it becomes feasible to assess
the influence of curvature on the system quantitatively. The curvature contributions Pcur

g can be ex-
pressed as

Pcur
g =−ρµ



(
K 2

g +K 2
n +

4
3

κ
2
31

)
u2

g +

(
−2Kn

∂ug

∂g2

)
ug+(

κ
2
31 +κ

2
32 +

4
3
K 2

g

)
w2

g +

(
−2κ32

∂wg

∂g2

)
wg+

2
3
Kgκ31ugwg,

 (21)

in which ug,wg are the velocity along g1 and g3. In the ensuing analysis, this expression (21) is divided
into two scenarios. The first scenario exclusively considers the condition with surface curvature
but without in-plane curvature, wherein the corresponding steady flow instability is governed by the
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Figure 6 – Variations of growth rate to span-wise wave length at different location for the unswept
case.

Görtler mechanism. In the second scenario, we solely consider the condition with in-plane curvature
but without surface curvature, at this juncture, the steady flow instability is controlled by the crossflow
mechanism. Therefore, we have the following relationship

Part 1


Kg = κ31 = 0,

Pcur,1
g =−ρµ

[
K 2

n u2
g−2Kn

∂ug

∂g2
ug +κ

2
32w2

g−2κ32
∂wg

∂g2
wg

]

Part 2


Kn = κ32 = 0,

Pcur,2
g =−ρµ

[(
K 2

g +
4
3

κ
2
31

)
u2

g +

(
4
3
K 2

g +κ
2
31

)
w2

g +
2
3
Kgκ31ugwg

] (22)

This expression clearly delineates that the normal curvature of the surface along the direction of
inviscid streamline is positively correlated with the disturbance intensity induced by the corresponding
Görtler mechanism. Furthermore, the geodesic curvature of the inviscid streamline within the curved
surface is also positively correlated with the disturbance induced by the corresponding crossflow
mechanism.

4. Stability analyses
4.1 primary instability
The primary instability analysis are performed to identfiy the basic features of the perturbations.
At first, we look at the local behaviour of the three-dimensional boundary layer over the whole surface
that we care about. Figure 6 shows the variation of local growth rate to spanwise wave length λz at
three typical stream-wise location for unswept case. One can found that the growth rates reach their
peaks at around the region [4mm,6mm], and then decrease at larger wave length. As in this case, no
swept angle is presented, the only mechanism that leads to steady disturbance is due to the Görtler
mechanism. Tracing the behaviour of the most unstable one, we choose the λz = 5.53mm as the
typical parameter for the primary instability analysis.
Then we put all cases together in figure 7 and one can identify two trends as soon as possible, the
black group and the blue one. The black line for case 4 can be seen as a general boundary for the
‘transition’ of the two trend. The case 1 to case 3, the growth rate increase with the increasing of
swept angle and can be seen as the effects of Görtler mechanism. Also, as the swept angle incease,
the growth rate become much smaller. On the other hand, the blue lines with respect to case 5 to
case 8 are due to the crossflow mechanism. From this figure, we can roughly identify that as the
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Figure 7 – Variations of growth rate to different stream-wise location for different swept angles.
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Figure 8 – Comparison of the normal curvature and geodesic for cases with swept angle Λ = 5o and
Λ = 35o

swept angle increase, the Görtler mechanism will be depressed by the crossflow mechanism and the
at larger swept angle, the crossflow mechanism will become the dominate.
Therefore, we can partially understand our results from geometrical point of view, as shown in figure
8. As the swept angle increase, the normal curvature will decrease, which is directly connected to
the decrease of growth rate of the unstable mode due to the Görtler effect. Meanwhile, the geodesic
curvature increases and when the geodesic curvature become the dominate one (as shown in figure
8 (b)), the crossflow effect will become the dominate.

4.2 Nonlinear saturations and secondary instabilities
4.2.1 Nonlinear developments
The nonlineaer saturations for both cases are simulated by solving the Navier-stokes equations di-
rectly, with the steady blowing and suction perturbations of the spanwise wavelength 6mm. The rela-
tive evolutions are shown in figure 9 and figure 10, with the help of contours of temperature T/T∞ at
the side slices as well as the velocity component u1/|~V∞|. As the initial perturbations are large enough
(about 15% of the freestream velocity), the perturbations are grow rapidly beyound the linear region
and reach their nonlinear saturations in a short distance, as shown in the heat fluxes in appendix A.
From figure 9 and figure 10, a clear trends of the transformations between the Görtler vortices and
Crossflow vortices can be identified.
After obtaining a general understanding of steady perturbations, we introduce the concept of pertur-
bation energy E(ppp0, ppp) for a more precise description of the nonlinear development of the perturba-
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Figure 9 – Nonlinear development of steady vortices. (a) Λ = 0o, (b) Λ = 5o, (c) Λ = 10o, (d) Λ = 15o.
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Figure 10 – Nonlinear development of steady vortices. (a) Λ = 20o, (b) Λ = 25o, (c) Λ = 30o,
(d) Λ = 40o.
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tions. It is important to note that these perturbations ppp are defined relative to the laminar basic flow
ppp0. The corresponding perturbation energy is defined based on a weighted integral over a spatial
plane perpendicular to the wall, as a norm:

E(ppp0, ppp) =
1
3

∫∫
η ,z

(
pppT MMMppp

)
dzdη , (23)

where

ppp0 = (ρ,u,v,w,T )T , ppp0 =
(
ρ̂, û, v̂, ŵ, T̂

)T
,MMM =


T

γρM2
∞

ρ

ρ

ρ
ρ

γ(γ−1)T M2
∞

 .
The coefficient 1/3 is used here as there are three obvious streaks in the present paper. Based on
the norm definition, both kinetic energy and the thermodynamic energy of the perturbations are taken
into account. The distributions of perturbation energy for different cases along the surface are shown
in figure 11. The evolution processes of the disturbance energy are normalized by the disturbance
energy E0 at x = 10 (the artificial unsteady disturbance is added in the interval x ∈ [5,10]) to facilitate
a more rational comparison of disturbance evolution under different conditions. Except for the two
cases with the largest sweep angles, disturbances exhibit significant transient growth characteristics
in the downstream region after being excited under other conditions, manifested as an exponential
increase in disturbance energy. In the cases corresponding to sweep angles of 35 and 40 degrees,
the disturbances show a distinct attenuation characteristic in the downstream region. After the distur-
bance propagates downstream along the flow direction for some time, the attenuation rate gradually
decreases, followed by a noticeable increase in disturbance energy. Due to the relatively large distur-
bances added, the corresponding streaks quickly reach a saturation state. According to the nonlinear
evolutions of the corresponding streaks, in the absence of other influencing mechanisms, the satu-
rated streaks will continue to decay unless secondary instabilities occur. However, in the working
condition of our study, the surface is concave, thus presenting a negative curvature in the ξ direction.
Under the effect of this negative curvature, the decay process of the disturbance streak energy is
suppressed, leading to a subsequent increase in the corresponding disturbance energy. It should
also be noted that there exists a very weak pressure gradient on this concave surface. The evolution
process of the corresponding streaks should be the result of the combined effects of the pressure
gradient and curvature.

5. Conclusions
This study has delved into the intricacies of hypersonic boundary layer instabilities, a pivotal factor
in the design of hypersonic vehicles, by conducting detailed numerical simulations and theoretical
analyses. Our work has highlighted the complex interplay between crossflow and Görtler instabilities
in three-dimensional flows over concave surfaces, with a particular emphasis on the role of streamline
curvature. The research indicates that crossflow instability generally prevails in shaping the transition
from laminar to turbulent flow, especially when the flow encounters significant swept angles.
The critical influence of the streamline curvature’s normal and geodesic components has been un-
derscored, revealing that their ratio is a determining factor for the onset of instabilities. Interestingly,
the Görtler instability, while typically secondary to crossflow, can become a primary concern under
specific conditions where the normal curvature overtakes the geodesic curvature in influence.
Furthermore, the dynamics between the instabilities are not isolated; our findings suggest that as
the flow evolves, secondary instabilities may influence the transition process, particularly during the
nonlinear stages. The implications of this study are far-reaching, offering essential insights for the
hypersonic community. These insights lay the groundwork for future experimental setups and provide
guidance for the optimization of vehicle surface designs to mitigate transition risks.
Looking ahead, there is a rich landscape of opportunities for research to broaden the understanding
of instability mechanisms under varying geometries and operational conditions. Developing strate-
gies to effectively manage the laminar-turbulent transition remains a key objective, with the potential
to significantly improve the aerodynamic performance and efficiency of hypersonic vehicles.
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Figure 11 – The distributions of perturbation energy for different cases along the surface.
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A Validations and verifications
1.1 Grid distributions for shock-fitting solver
The basic grid number used for shock-fitting simulations is Nξ ×Nη ×Nz = 1201× 141× 8. The dis-
tribution of the grid points in the wall-normal direction is controlled through a function that provides
clustering towards the wall, with two parameters him and σs. The distribution function, which maps η

to h, can be expressed as

h = Hshk
ay(1+Y )
(by−Y )

,by = 1+2ay, ay =
him

1−2him
,

Y = 2
[1− tanh(σs)]

1+η

2

1− tanh
(

σs
1+η

2

) −1,
(24)

where Hshk is the local shock height and is solved as a dependent variable with the flow field in shock-
fitting methods, η is a uniform grid distribution along the region [−1.0,1.0], h is the actual wall-normal
grid distributions. The values of him and σs are chosen to be 0.2 and 0.95 for the fitting simulations
presented in this paper.
Along the wall surface, the surface grid s(x,y) is clustered at the round head with the function

s
S
=

aξ (1−ξ )

bξ −ξ
,bξ = 1+2aξ ,aξ =

sim

1−2sim
, (25)

where sim is chosen to be 0.05 for the simulations based on shock-fitting methods, s is the local sur-
face curve length along the model surface, and S is the total model surface curve length. Note that the
surface grid does not change during the calculation. In our computations, we adopt periodic bound-
ary conditions in the spanwise direction, hence the corresponding computational grid is uniformly
distributed.
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Nξ , Nη , Nz Solver
Distribution 1 1801 221 150 Shock-capture
Distribution 2 2201 321 150 Shock-capture
Distribution 3 2201 421 150 Shock-capture

Table 2 – Three grid numbers for grid convergence study.

1.2 Grid distributions for capture solver
The basic grid numbers used for shock-capture simulations is Nξ ×Nη×Nz = 2201×421×150. Unlike
the fitting solver, for the capture solver, the wall-normal grid needs clustering towards the wall and in
the shock region. Therefore, the wall-normal grid is divided into three parts. The first part is at the
region [0,0.48Hshk]. The second part is a transition region which connects the near-wall region and
the shock region and is located at the region [0.48Hshk,0.72Hshk]. The final region stands for the part
used to capture the shock and is located at the region [0.72Hshk,1.2Hshk]. As the local shock height
Hshk is solved by the fitting solver in advance, the grid lines are adapted well to both the body and the
shock shape. The first region has 301 grid points, with the distributions h1 as

h1 = 0.48Hshk
1+η1

2−η1
, (26)

where η1 is the uniform distributions in region [−1,1]. The third region has 81 grid points with a
uniform distribution. The second region has 41 grid points and is used to link grids with different
grid spacings using a Hermite function obtained by imposing C3 continuity of the resulting stretching
function.
We have partitioned the surface grid into five distinct flow regions. The first and second regions
are located on the cylinder at the head of the model, the third region corresponds to the complete
concave surface, while the fourth and fifth regions pertain to the flat plate at the model’s tail. From the
symmetry plane to the first two-thirds of the cylinder surface, the first region is uniformly populated
with 161 grid points. The third region is uniformly populated with 1921 grid points, while the fifth region
is arranged with 51 grid points, with the grid spacing gradually increasing to absorb and reduce non-
physical disturbances. The second and fourth regions are respectively arranged with 21 and 51 grid
points, in which the C3 continuous smooth functions connect the grids of different intervals to ensure
a smooth transition in grid spacing. The spanwise distributions remain the same as in the fitting
solver.

1.3 Grid convergence
Several different grid distributions were tested to ensure the results, especially for the nonlinear satu-
rated Görtler or crossflow vortexes. The unswept configuration was chosen as a test case, and three
different grid distributions were used for the grid convergence study. The grid numbers are shown in
table 2. The spanwise-average heat fluxes calculated over the three different grid distributions are
shown in figure 12, as well as the basic state streamwise velocity contours. Excellent agreement be-
tween the solutions was found even in the relatively stringent comparisons involving velocity contours
across the cross-sectional area of the Görtler vortices.

1.4 Cross validation and verifications of the solvers
We also chose the unforced unswept case as a test case. The calculations were performed over two
typical basic grids discussed above with shock-fitting and shock-capture solver. As only the laminar
case is considered, the results is obtained through spanwise average. The profiles of several different
stations along the x coordinate are shown in figure 13, based on the solution at different x-positions.
Figure 13 shows a good agreement between the given grids for different methods is reached.
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Figure 12 – (a) and (b) The average total/perturbation surface heat flux calculated by three different
grid distributions. (c) and (d) stands for the basic state meridional velocity contours at X = 50 and
X = 100. The red dashed line shows the solution based on grid distribution 3, and the solid line is

the grid distribution 2.
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Figure 13 – Comparison of the physical quantity profiles calculated by the Shock-Fitting and
Shock-Capture methods over basic grids at different x positions.
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