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Abstract 

 As scarf repair has been widely used in composite repair, analysis methods for rapid assessment 

of scarf joints were put forward. Basing on the modified semi-analytical method (MAM), which has 

restored the abrupt stress change caused by the off-axis stiffness distribution of the laminate, a semi-

analytical method that is applicable to the calculation of elastic/plastic stress distribution on arbitrary 

curved scarf surfaces is proposed in this paper. Results derived by the extended method are basically 

consistent with finite element results. Additionally, the plastic strain of the adhesive is taken under 

consideration by introducing bilinear constitutive relation and the von Mises criteria to the adhesive. 

By applying the method to several examples, relations between scarf angle and stress distribution are 

disclosed, which would benefit the design of scarf joints. 
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1.Introduction 

 Though Fiber-reinforced composites have been widely used in aerospace, especially in the main 

bearing structure of aircrafts [1], The impact and other loads during aircraft service (such as hail impact, 

tool drop, sand impact, etc.) will cause latent internal damage to the composite structure, which is yet 

unavoidable, and needs to be repaired in time[2]. Scarf repair has been applied to damaged composite 

laminates as the replacement of the whole part would cost too much, and conventional bolt repair, as 

Figure 1(a) shows, might cause a heavy loss of strength[3, 4]. Scarf repair structures are often analyzed 

in two-dimension as Hart Smith suggested[5]. 

 During the past half century finite element method (FEM)[6], analytical method[7] and semi-

analytical method[8, 9] for the analysis of scarf joint has undergone significant development. The 

tendency of the research was expanding from plane scarf repair of isotropic materials to diverse 

geometry of scarf surfaces applied to composites[8, 10]. In recent years, the exploration of diverse scarf 

surface geometries has further improved the design of scarf joint. Harman[8] introduced average 



reduction method of composite section elastic modulus, and derived a method for calculating stress 

distribution of two-dimensional scarf repaired composites. Additionally, they proposed an optimization 

method to minimize the peak shear stress of adhesive layer by optimizing the bonding angle 

distribution controlled by first order equation. 

 
Figure 1 2D scarf joint 

 In spite of the convenience and versatility of FEM, extremely fine meshes around the thin 

adhesive could cause the surge of computation amount[11, 12]. As for the semi-analytical method 

improved by Harman, the scenario is limited to certain scarf joints, and the accuracy is influenced by 

the through-thickness stiffness variation of composite laminates. In the analysis of scarf joint, a balance 

needs to be struck between the speed of analysis, the scope of application and the accuracy of results. 

Liu[9] improved the method with stiffness-distribution principle and provided a modified analytical 

method (MAM), which has achieved a more precise and believable result in the stress distribution on 

plane scarf surfaces. MAM. And the application of stiffness-distribution principle has been proven 

concise effective by Yan[13] with experiments. 

 In this paper, a semi-analytical stress distribution calculating method that is applicable to arbitrary 

shape surfaces of scarf repaired composites is proposed, which is achieved by setting the scarf angle as 

a function of thickness. The method has been proven relatively accurate by several examples in 

comparison with FEM. And moreover, patterns found in these examples reveal optimization criteria for 

following optimum design of scarf joints. To take not only the cohesive failure caused by shear stress, 

but also the yield of adhesive under consideration, the adhesive is regarded as elastic-plastic material. 

And the introduction of plastic yield implies that the damage tolerance is assignable in conventional 

scarf joints. 

 



2. Stress prediction for arbitrary scarf surfaces 

2.1. Model descriptions 

 Figure 2 illustrates a 2D scarf joint with curved scarf surface. Let the damaged laminate, the 

patch and the adhesive be A, B and C respectively. As the figure shows, the scarf repaired laminate is 

an n-ply composite laminate with a thickness of ℎ. The load applied here is uniaxial tensile stress 𝑇0 on 

the 𝑥 axis, and the stress distribution to be calculated is on the adhesive with a thickness of 𝑡𝑐. To make 

the adhesive arbitrary, the adhesive in this model is considered as a curve controlled by scarf angle 

varies with coordinate on 𝑦.  

 
Figure 2 Scarf joint model with arbitrary scarf surface 

 Let 𝜎 and 𝜀 be the stress and strain of the laminate on the three axes, and the subscript index of 

which be the direction, that is 𝑥, 𝑦 and 𝑧. Before the derivation, the basic assumption of 2D model 

should be made. The plate theory assumes that: no strain occurs on the z-axis, stress on the y-axis could 

be ignored, and strain on the y-axis is determined by Poisson effect. The assumption is summarized as, 

𝜀𝑧 = 0 (1) 

𝜀𝑦 ≠ 0 (2) 

𝜎𝑦 = 0 (3) 

 Additionally, the constant scarf angle α is replaced by function α(y), which depicts an arbitrary 

shaped scarf surface and provides an easily controlled argument for optimum design. 

2.2. Stress analysis of the joint 

 The whole method was built on the basis of strain compatibility on the x-axis between the 

laminate, the adhesive and the patch. In order to get strains, the stress should be reached first. By 

decomposing the stress on the adhesive to normal stress 𝜎(𝑦) and shear stress 𝜏(𝑦), equations below 



are derived: 

𝜎(𝑦)𝑐𝑜𝑠𝛼(𝑦) = 𝜏(𝑦)𝑠𝑖𝑛𝛼(𝑦) (4) 

𝜎(𝑦)𝑠𝑖𝑛𝛼(𝑦) + 𝜏(𝑦)𝑐𝑜𝑠𝛼(𝑦) = 𝜎𝑇(𝑦) (5) 

 Where 𝜎𝑇(𝑦) represents the component of stress on the adhesive on the x-axis. By integrating 

𝜎𝑇(𝑦), the load on the adhesive along the y-axis 𝑇(𝑦) could be obtained, 

𝑇(𝑦) = ∫
𝜏(𝑦)𝑑𝑦

𝑠𝑖𝑛𝛼(𝑦)𝑐𝑜𝑠𝛼(𝑦)

𝑦

0

(6) 

 As Liu’s idea is followed to acquire higher accuracy, stiffness distribution is introduced, which 

requires calculating stress distributions of A and B when assuming that strains on the section are the 

same, as Figure 3 shows. Let 𝐸𝑥𝐴(𝑦) and 𝐸𝑥𝐵(𝑦) be stiffness distributions of A and B along y-axis, 

stress distributions  𝜎𝑥𝐴(𝑦) and 𝜎𝑥𝐵(𝑦) could be expressed as, 

𝜎𝑥𝐴(𝑦) =
𝑇𝑥𝐴(𝑦)

𝑑𝑦
𝐾𝐴(𝑦) (7) 

𝜎𝑥𝐵(𝑦) =
𝑇0 − 𝑇𝑥𝐴(𝑦)

𝑑𝑦
𝐾𝐵(𝑦) (8) 

 Where 𝑇𝑥𝐴(𝑦) represents the load on the whole section of A, and 𝑇𝑥𝐵(𝑦) is equal to 𝑇0 − 𝑇𝑥𝐴(𝑦), 

specifically 

𝑇𝑥𝐴(𝑦) = ∫
𝜏(𝑦)𝑑𝑦

𝑠𝑖𝑛𝛼(𝑦)𝑐𝑜𝑠𝛼(𝑦)

𝑦

0

(9) 

 𝐾𝐴(𝑦) and 𝐾𝐵(𝑦) represents contribution factors in stiffness contribution theory, which are 

𝐾𝐴(𝑦) =
∫ 𝐸𝑥𝐴(𝑦)𝑑𝑦
𝑦+𝑑𝑦

𝑦

∫ 𝐸𝑥𝐴(𝑦)𝑑𝑦
ℎ

𝑦

(10) 

𝐾𝐵(𝑦) =
∫ 𝐸𝑥𝐵(𝑦)𝑑𝑦
𝑦

𝑦−𝑑𝑦

∫ 𝐸𝑥𝐵(𝑦)𝑑𝑦
𝑦

0

(11) 

2.3. Strain compatibility equation 

The elementary strain compatibility equation in scarf joint is 

𝜀𝑥𝐴(𝑦) − 𝜀𝑥𝐵(𝑦) = 𝜀𝑥𝑐(𝑦) (12) 

 𝜀𝑥𝐴(𝑦), 𝜀𝑥𝐵(𝑦) and 𝜀𝑥𝑐(𝑦) are strains of A, B and C on the same y coordination. According to 

generalized Hooke’s law and plate theory assumptions above, 

𝜀𝑥 =
𝜎𝑥
𝐸𝑥

(1 − 𝜇𝑥𝑧𝜇𝑧𝑥) (13) 

 For 𝜎𝑥𝐴(𝑦) and 𝜎𝑥𝐵(𝑦) have been derived above, by substituting them into Eq.(13), we find 

strains of A and B adjoining the adhesive, 



𝜀𝑥𝐴(𝑦) =
𝑇𝐴(𝑦)𝐾𝐴(𝑦)

𝐸𝑥𝐴(𝑦)𝑑𝑦
(1 − 𝜇𝑥𝑧𝐴(𝑦)𝜇𝑧𝑥𝐴(𝑦)) (14) 

𝜀𝑥𝐵(𝑦) =
(𝑇0 − 𝑇𝐴(𝑦))𝐾𝐵(𝑦)

𝐸𝑥𝐵(𝑦)𝑑𝑦
(1 − 𝜇𝑥𝑧𝐵(𝑦)𝜇𝑧𝑥𝐵(𝑦)) (15) 

 As 𝜎𝑥𝐴(𝑦) and 𝜎𝑥𝐵(𝑦) change along the adhesive, 𝜀𝑥𝐴(𝑦) and 𝜀𝑥𝐵(𝑦) actually represent rates of 

displacement along the adhesive. 

 

Figure 3 Elements for stiffness distribution 

 According to the physical significance of 𝜀𝑥𝑐(𝑦) , which is the displacement rate of C. It’s 

noteworthy that 𝜀𝑥𝑐(𝑦) should be derived with respect to x for displacement on the x-axis are 𝜀𝑥𝐴(𝑦)𝑑𝑥 

and 𝜀𝑥𝐵(𝑦)𝑑𝑥 . The displacement 𝛥𝑢𝑥𝑐(𝑦)  could be simplified by relation between 𝜎(𝑦)  and 𝜏(𝑦) , 

which is, 

𝛥𝑢𝑥𝑐(𝑦) =
𝜎(𝑦)

𝐸𝑐
𝑡𝑐𝑠𝑖𝑛𝛼(𝑦) +

𝜏(𝑦)

𝐺𝑐
𝑡𝑐𝑐𝑜𝑠𝛼(𝑦) = [

𝑠𝑖𝑛2𝛼(𝑦)

𝑐𝑜𝑠𝛼(𝑦)𝐸𝑐
+
𝑐𝑜𝑠𝛼(𝑦)

𝐺𝑐
] 𝜏(𝑦)𝑡𝑐 (16) 

 Since 
𝛿𝑦

𝛿𝑥
= 𝑡𝑎𝑛𝛼(𝑦), by differentiating Eq. (16), 

𝜀𝑥𝑐(𝑦) =
𝛿𝛥𝑢𝑥𝑐(𝑦)

𝛿𝑥
=
𝛿𝛥𝑢𝑥𝑐(𝑦)

𝛿𝑦

𝛿𝑦

𝛿𝑥

= (
2𝑠𝑖𝑛2𝛼(𝑦)𝑐𝑜𝑠2𝛼(𝑦) + 𝑠𝑖𝑛4𝛼(𝑦)

𝑐𝑜𝑠3𝛼(𝑦)𝐸𝑐
−

𝑠𝑖𝑛2𝛼(𝑦)

𝑐𝑜𝑠𝛼(𝑦)𝐺𝑐
)𝛼′(𝑦)𝜏(𝑦)𝑡𝑐 + (

𝑠𝑖𝑛3𝛼(𝑦)

𝑐𝑜𝑠2𝛼(𝑦)𝐸𝑐
+
𝑠𝑖𝑛𝛼(𝑦)

𝐺𝑐
)𝜏′(𝑦)𝑡𝑐(17)

 

 As 𝜀𝑥𝐴(𝑦), 𝜀𝑥𝐵(𝑦) and 𝜀𝑥𝑐(𝑦) are derived, according to Eq. (12), the governing equation of 𝜏(𝑦) 

is, 

𝑇𝐴(𝑦)𝐾𝐴(𝑦)

𝐸𝑥𝐴(𝑦)𝑑𝑦
(1 − 𝜇𝑥𝑧𝐴(𝑦)𝜇𝑧𝑥𝐴(𝑦)) −

(𝑇0 − 𝑇𝐴(𝑦))𝐾𝐵(𝑦)

𝐸𝑥𝐵(𝑦)𝑑𝑦
(1 − 𝜇𝑥𝑧𝐵(𝑦)𝜇𝑧𝑥𝐵(𝑦))

= (
2𝑠𝑖𝑛2𝛼(𝑦)𝑐𝑜𝑠2𝛼(𝑦) + 𝑠𝑖𝑛4𝛼(𝑦)

𝑐𝑜𝑠3𝛼(𝑦)𝐸𝑐
−

𝑠𝑖𝑛2𝛼(𝑦)

𝑐𝑜𝑠𝛼(𝑦)𝐺𝑐
)𝛼′(𝑦)𝜏(𝑦)𝑡𝑐 + (

𝑠𝑖𝑛3𝛼(𝑦)

𝑐𝑜𝑠2𝛼(𝑦)𝐸𝑐
+
𝑠𝑖𝑛𝛼(𝑦)

𝐺𝑐
)𝜏′(𝑦)𝑡𝑐

(18)

 

 In order to adapt the equation to known boundary condition 𝑇(𝑦), relations between 𝜏(𝑦), 𝜏′(𝑦) 

and 𝑇′(𝑦), 𝑇′′(𝑦) are built. By differentiating Eq. (9), 



𝑇′(𝑦) =
𝜏(𝑦)

𝑠𝑖𝑛𝛼(𝑦)𝑐𝑜𝑠𝛼(𝑦)
(19) 

𝑇"(𝑦) =
𝜏′(𝑦)

𝑠𝑖𝑛𝛼(𝑦)𝑐𝑜𝑠𝛼(𝑦)
+ (

1

𝑐𝑜𝑠2𝛼(𝑦)
−

1

𝑠𝑖𝑛2𝛼(𝑦)
)𝛼′(𝑦)𝜏(𝑦) (20) 

 Thus, 𝜏(𝑦) and 𝜏′(𝑦) are, 

𝜏(𝑦) = 𝑠𝑖𝑛𝛼(𝑦)𝑐𝑜𝑠𝛼(𝑦)𝑇′(𝑦) (21) 

𝜏′(𝑦) = 𝑠𝑖𝑛𝛼(𝑦)𝑐𝑜𝑠𝛼(𝑦)𝑇"(𝑦) − [𝑠𝑖𝑛2𝛼(𝑦) − 𝑐𝑜𝑠2𝛼(𝑦)]𝛼′(𝑦)𝑇′(𝑦) (22) 

 After replacing 𝑇′(𝑦) and 𝑇′′(𝑦) in Eq. (18) by 𝜏(𝑦) and 𝜏′(𝑦), the governing equation of 𝑇(𝑦) is, 

𝑝(𝑦)𝑇"(𝑦) + 𝑞(𝑦)𝑇′(𝑦) + 𝑟(𝑦)𝑇(𝑦) + 𝑔(𝑦) = 0 (23) 

 Where 

p(y) =
𝑡𝑐

𝐸𝑐𝐺𝑐
(
𝑠𝑖𝑛4𝛼(𝑦)

𝑐𝑜𝑠𝛼(𝑦)
𝐺𝑐 + 𝑠𝑖𝑛2𝛼(𝑦)𝑐𝑜𝑠𝛼(𝑦)𝐸𝑐) 

q(y) =
𝑡𝑐𝛼

′(𝑦)

𝐸𝑐𝐺𝑐
(3𝑠𝑖𝑛3𝛼(𝑦)𝐺𝑐 − 2𝑠𝑖𝑛3𝛼(𝑦)𝐸𝑐 + 𝑠𝑖𝑛𝛼(𝑦)𝑐𝑜𝑠2𝛼(𝑦)𝐸𝑐) 

r(y) = −(
1 − 𝜇𝑥𝑧𝐵(𝑦)𝜇𝑧𝑥𝐵(𝑦)

𝐸𝑥𝐵(𝑦)𝑑𝑦
𝐾𝐵(𝑦) +

1 − 𝜇𝑥𝑧𝐴(𝑦)𝜇𝑧𝑥𝐴(𝑦)

𝐸𝑥𝐴(𝑦)𝑑𝑦
𝐾𝐴(𝑦)) 

g(y) =
1 − 𝜇𝑥𝑧𝐵(𝑦)𝜇𝑧𝑥𝐵(𝑦)

𝐸𝑥𝐵(𝑦)𝑑𝑦
𝐾𝐵(𝑦)𝑇0 

2.4. Introduction of plastic strain 

 As Cheng’s study indicates, repaired composite laminates don’t crack all of a sudden, on the 

contrary, it starts in high-stress sections and gradually expands to adjoining adhesive[14]. Therefore, 

under a circumstance that the adhesive is plasticized, which is usual for epoxy adhesive nowadays, the 

failure tolerance could be theoretically improved by distributing the peak stress to surrounding linear 

elastic regions[15]. In order to restore the plasticity of the adhesive in our model, bilinear model is used 

to which to describe its constitutive relationship. For it being a typical isotropic elastic/plastic analysis, 

von Mises criterion is used to calculate where the local plastic yield would occur. Principal stresses 

𝜎1(𝑦), 𝜎2(𝑦) and 𝜎3(𝑦) are: 

𝜎1(𝑦) =
𝜎(𝑦)

2
+ √𝜏(𝑦)2 +

𝜎(𝑦)2

4
(24) 

𝜎2(𝑦) = 0 (25) 

𝜎3(𝑦) =
𝜎(𝑦)

2
− √𝜏(𝑦)2 +

𝜎(𝑦)2

4
(26) 

Which leads to the von Mises stress on the adhesive 𝜎𝑣, 



𝜎𝑣(𝑦) = √
1

2
[(𝜎1 − 𝜎2)

2 + (𝜎2 − 𝜎3)
2 + (𝜎3 − 𝜎1)

2] = √𝑡𝑎𝑛2𝛼(𝑦) + 3 × 𝜏(𝑦) (27) 

According to the criterion, when 𝜎𝑣(𝑦) ≥ √3𝜏𝑝𝑙𝑎𝑠𝑡𝑖𝑐 , local plastic strain occurs on the part of the 

adhesive, displacement equation 𝛥𝑢𝑥𝑐(𝑦) is, 

𝛥𝑢𝑥𝑐(𝑦) = [
𝑠𝑖𝑛2𝛼(𝑦)

𝑐𝑜𝑠𝛼(𝑦)𝐸𝑐
+
𝑐𝑜𝑠𝛼(𝑦)

𝐺𝑐
]√

3

𝑡𝑎𝑛2𝛼(𝑦) + 3
𝜏𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑡𝑐

+[
𝑠𝑖𝑛2𝛼(𝑦)

𝑐𝑜𝑠𝛼(𝑦)𝐸𝑐𝑝𝑙𝑎𝑠
+
𝑐𝑜𝑠𝛼(𝑦)

𝐺𝑐𝑝𝑙𝑎𝑠
] [𝜏(𝑦)

−√
3

𝑡𝑎𝑛2𝛼(𝑦) + 3
𝜏𝑝𝑙𝑎𝑠𝑡𝑖𝑐]𝑡𝑐 (28)

 

 Differentiate 𝛥𝑢𝑥𝑐(𝑦) as it is done above, 

𝜀𝑥𝑐(𝑦) = (
2𝑠𝑖𝑛2𝛼(𝑦)𝑐𝑜𝑠2𝛼(𝑦) + 𝑠𝑖𝑛4𝛼(𝑦)

𝑐𝑜𝑠3𝛼(𝑦)𝐸𝑐𝑝𝑙𝑎𝑠
−

𝑠𝑖𝑛2𝛼(𝑦)

𝑐𝑜𝑠𝛼(𝑦)𝐺𝑐𝑝𝑙𝑎𝑠
)𝛼′(𝑦)𝜏(𝑦)𝑡𝑐

+(
𝑠𝑖𝑛3𝛼(𝑦)

𝑐𝑜𝑠2𝛼(𝑦)𝐸𝑐𝑝𝑙𝑎𝑠
+
𝑠𝑖𝑛𝛼(𝑦)

𝐺𝑐𝑝𝑙𝑎𝑠
) 𝜏′(𝑦)𝑡𝑐

+2√3𝑠𝑖𝑛2𝛼(𝑦)(1 + 2𝑐𝑜𝑠2𝛼(𝑦))
−
3
2[(2 + 𝑐𝑜𝑠2𝛼(𝑦)) · (

1

𝐸𝑐
−

1

𝐸𝑐𝑝𝑙𝑎𝑠
)

−(1 + 𝑐𝑜𝑠2𝛼(𝑦)) · (
1

𝐺𝑐
−

1

𝐺𝑐𝑝𝑙𝑎𝑠
)]𝛼′(𝑦)𝜏𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑡𝑐 (29)

 

 Considering that 𝜀𝑥𝐴(𝑦)  and 𝜀𝑥𝐵(𝑦)  stay the same, the governing equation of  𝑇(𝑦)  can be 

obtained: 

𝑝𝑝𝑙𝑎𝑠(𝑦)𝑇"(𝑦) + 𝑞𝑝𝑙𝑎𝑠(𝑦)𝑇
′(𝑦)+𝑟𝑝𝑙𝑎𝑠(𝑦)𝑇(𝑦) + 𝑔𝑝𝑙𝑎𝑠(𝑦) = 0 (30) 

 Where: 

pplas(y) =
𝑡𝑐

𝐸𝑐𝑝𝑙𝑎𝑠𝐺𝑐𝑝𝑙𝑎𝑠
(
𝑠𝑖𝑛4𝛼(𝑦)

𝑐𝑜𝑠𝛼(𝑦)
𝐺𝑐𝑝𝑙𝑎𝑠 + 𝑠𝑖𝑛2𝛼(𝑦)𝑐𝑜𝑠𝛼(𝑦)𝐸𝑐𝑝𝑙𝑎𝑠) 

qplas(y) =
𝑡𝑐𝛼

′(𝑦)

𝐸𝑐𝑝𝑙𝑎𝑠𝐺𝑐𝑝𝑙𝑎𝑠
(3𝑠𝑖𝑛3𝛼(𝑦)𝐺𝑐𝑝𝑙𝑎𝑠 − 2𝑠𝑖𝑛3𝛼(𝑦)𝐸𝑐𝑝𝑙𝑎𝑠 + 𝑠𝑖𝑛𝛼(𝑦)𝑐𝑜𝑠2𝛼(𝑦)𝐸𝑐𝑝𝑙𝑎𝑠) 

rplas(y) = −(
1 − 𝜇𝑥𝑧𝐵(𝑦)𝜇𝑧𝑥𝐵(𝑦)

𝐸𝑥𝐵(𝑦)𝑑𝑦
𝐾𝐵(𝑦) +

1 − 𝜇𝑥𝑧𝐴(𝑦)𝜇𝑧𝑥𝐴(𝑦)

𝐸𝑥𝐴(𝑦)𝑑𝑦
𝐾𝐴(𝑦)) 

gplas(y) =
1 − 𝜇𝑥𝑧𝐵(𝑦)𝜇𝑧𝑥𝐵(𝑦)

𝐸𝑥𝐵(𝑦)𝑑𝑦
𝐾𝐵(𝑦)𝑇0 + 2√3𝑠𝑖𝑛2𝛼(𝑦)(1 + 2𝑐𝑜𝑠2𝛼(𝑦))−

3
2[(2 + 𝑐𝑜𝑠2𝛼(𝑦))

· (
1

𝐸𝑐
−

1

𝐸𝑐𝑝𝑙𝑎𝑠
) − (1 + 𝑐𝑜𝑠2𝛼(𝑦)) · (

1

𝐺𝑐
−

1

𝐺𝑐𝑝𝑙𝑎𝑠
)]𝛼′(𝑦)𝜏𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑡𝑐 

 

2.5. Solution of governing equations 

 Finite difference method is adopted to calculate the numerical solution of governing equations 

derived above, specifically Eq. (23) and Eq. (30). Finite difference method divides 𝑇(𝑦) into n portions 



equally, and for any node 𝑇(𝑦𝑖+1) in 𝑇(𝑦), it could be expressed as, 

𝑇(𝑦𝑖+1) =
[4𝑝(𝑦𝑖) − 2ℎ2𝑟(𝑦𝑖)]𝑇(𝑦𝑖) − 2ℎ2𝑔(𝑦𝑖)

2𝑝(𝑦𝑖) + ℎ𝑞(𝑦𝑖)
− 𝑇(𝑦𝑖−1) (31) 

 Where ℎ represents increment between the nodes. As for boundary conditions, they are obviously 

𝑇(0) = 0 and 𝑇(ℎ) = 𝑇0.The normal stress 𝜎(𝑦) and shear stress 𝜏(𝑦) of the adhesive can be obtained 

by the deformation of Eqs. (4) and (6) respectively, that is, 

𝜏(𝑦) = 𝑇′(𝑦)𝑠𝑖𝑛𝛼(𝑦)𝑐𝑜𝑠𝛼(𝑦) (32) 

𝜎(𝑦) = 𝑇′(𝑦)𝑠𝑖𝑛2𝛼(𝑦) (33) 

3. Examples and results of several scarf joints 

3.1. Parameters of the model 

 Though models chosen here vary in layups and geometries of scarf surfaces, most of their 

mechanical properties and basic geometries are the same. For the laminate, set the thickness  ℎ = 3𝑚𝑚, 

for the adhesive, set the thickness 𝑡 = 0.2𝑚𝑚. The mechanical properties of both the laminate and the 

adhesive, which refer to IM7/977-33 CFRP and FM73 film adhesive[16], are shown in Table 1. A 

constant axial load of 𝑇0 = 1200𝑁 is applied to the model. 

Table 1 Mechanical properties of the laminate and the adhesive 

Properties Composite laminate Adhesive 

Young’s modulus (GPa) 162 1.15 

Transverse modulus (GPa) 16.2  

Shear modulus (GPa) 7.2 0.4423 

Longitudinal Poisson’s ratio 0.3 0.3 

Transverse Poisson’s ratio 0.03  

 

3.2. FEM and semi-analytical method in plane scarf scenario 

 Firstly, the reliability of the method is preliminary verified by comparing the analysis results of 5° 

flat scarf joint processed by FEM, Harman’s method and the modified method. Examples used in this 

section are from[9], in which the layup is: [45/-45/90/0/0/0/45/0/0/-45/90]S. And the output is the shear 

stress 𝜏(𝑦) on the middle of the adhesive, which is the worthiest data indicating adhesive failure. The 

ratio of local shear stress 𝜏(𝑦) to the average shear stress 𝜏𝑎𝑣  on the adhesive is introduced to represent 

the distribution of shear stress, where, 

𝜏𝑎𝑣 =
𝑇0
ℎ
𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼 (34) 

 Figure 4 shows shear stress distribution on the adhesive. Table 2 shows Harman’s, the modified 



method and FEM results and the relative errors respectively. In this example, the modified method 

shows better accuracy in local peak values and low stress regions than Harman's method. Moreover, the 

trend is basically in line with the FEM result, which reflects the stiffness of the laminate, and the error 

is within the acceptable range. 

 

Figure 4 The shear stress distribution of 21-ply example calculated by modified semi-analytical 

method, FEM and Harman’s method 

Table 2 The shear stress distribution and relative errors of 21-ply example 

 

Ply 

Angle/(°) 
Sequence FEM 

modified semi-

analytical method 

modified semi-

analytical method 

Error/% 

Harman 
Harman 

Error/% 

45 1 0.20 0.30 53.7 0.31 57.1 

-45 2 0.36 0.45 26.1 0.66 83.5 

90 3 0.66 0.78 18.9 0.98 49.0 

0 4 1.37 1.25 -8.4 1.19 -13.2 

0 5 1.62 1.32 -18.7 1.29 -20.5 

0 6 1.42 1.28 -10.4 1.27 -10.4 

45 7 1.29 1.21 -6.1 1.20 -7.0 

0 8 1.32 1.20 -9.1 1.10 -16.8 



0 9 1.14 1.15 0.8 1.02 -10.3 

-45 10 0.72 1.06 47.8 0.96 34.0 

90 11 0.57 1.03 78.8 0.97 69.6 

3.3. Semi-analytical method for arbitrary scarf surfaces 

 Several geometries of scarf surfaces are analyzed by the method, and some patterns between the 

scarf surface and shear stress distribution have been found. To make a concise and clear example, the 

layup is specified as [45/0/-45/90]2s. Two constant scarf angles of 3° and 5° are selected, other angle 

distributions make dimensions occupied on the x-axis be the same as 3° or 5° plane scarf repair. Figure 

5 shows the distribution of scarf angles adopted here versus y-axis. The angle distributions are 

quadratic functions of 𝑦, for the average scarf angle of 5°, the functions are, 

𝛼(𝑦) = −𝑦2 + 3𝑦 + 3.6 

𝛼(𝑦) = −2𝑦2 + 6𝑦 + 2.42 

 For the average scarf angle of 3°, 

𝛼(𝑦) = −𝑦2 + 3𝑦 + 1.67 

Shear stress distributions caused by different scarf angle distributions are illustrated in Figure 6. 

The most notable difference is caused by average scarf angle, as it decreases, the overall level of shear 

stress is significantly reduced. The reason leading to appearance above is that a smaller scarf angle 

provides a larger scarf surface to share load, which has been uncovered by several researches[17, 18]. For 

the relation between local shear stress and scarf angle, at a certain average scarf angle, it can be seen 

that the shear stress drops where the scarf angle decreases, and vice versa. In this example, peak shear 

stresses are controlled by scarf angle. However, the stress would not disappear, but merely be 

redistributed to other regions where scarf angle increases. This conclusion proves that it is a feasible 

optimization idea to control the shear stress distribution by a more complex scarf angle distribution 

equation, so as to average the stress distribution and minimize the peak value. 



 

Figure 5 Preset scarf angle distribution 

 
Figure 6 Shear stress distribution of adhesive under different scarf angle distribution 

3.4. Examples introducing local plastic yield 

 The mechanical properties and loading methods used are the same, layup selected here is still 

[45/0/-45/90]2s. A bilinear elastic/plastic constitutive model is introduced to the adhesive, the elastic 

part remains the same. And after the elastic limit, the stiffness of the plastic part is 1/10 of the elastic 

part. The distribution of shear stress 𝜏(𝑦) and von Mises stress 𝜎𝑣(𝑦) is shown in Figure 7, the dotted 

line version of the distributions are results of elastic scenario, and the elastic limit of von Mises stress is 



marked as yellow dotted line. 

 
Figure 7 Distributions of von Mises stress and shear stress before and after the introduction of local 

plastic yield in 16-ply laminate 

 It can be seen that the introduction of local plastic yield makes the portion of von Mises stress 

above the elastic limit reduce due to a significant reduction in stiffness, which caused the peak stress be 

distributed to elastic regions nearby. Under a certain allowable stress, plastic yield is unacceptable in 

the routine service of scarf joints. However, patterns uncovered by the analysis indicates that the 

damage tolerance of conventional scarf joints is appreciable, and there’s a significant potential bearing 

capacity waiting to be developed. 

 

4. Conclusions 

 This paper proposed a semi-analytical method to provide rapid and relatively accurate analysis for 

scarf joint with arbitrary scarf surfaces. Stiffness distribution was introduced to restore the stress 

concentrations in laminates, and the influence caused by local plastic yield of the adhesive was 

considered. The reliability of the proposed method was verified by comparing with FEM and Harman's 

results in several typical examples. By constructing functions of scarf angle, patterns between scarf 

angle and shear stress were found, and those patterns provided enlightening thought for optimum 

design of scarf joints. The introduction of local plasticity indicates that the damage tolerance of scarf 

repair structures is relatively considerable, and the research on the bearing capacity of the plastic stage 

is promising. 
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