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Abstract 

Load monitoring of aircraft is essential for safe operation. By monitoring loads occurring on the aircraft during 

operation, fatigue life can be predicted, and structural damage and defects can be detected in advance to 

ensure the structural safety of the aircraft. For this, a study is conducted in this paper to accurately estimate 

loads based on flight parameters recorded during flight tests. Flight tests were previously conducted with load 

monitoring sensors attached to the aircraft to obtain flight parameters and sensor data. MLR (Multiple Linear 

Regression) and ANN (Artificial Neural Network) regression models are applied to predict load monitoring 

sensor data using the acquired flight parameters. The regression performance of the two models is 

quantitatively evaluated using RMSE (Root Mean Squared Error) and adjusted R-squared (Adj. R²). As a result, 

the mean Adj. R² values for all targets were 0.9751 for ANN and 0.8858 for MLR, and the mean RMSE values 

were 0.0601 for ANN and 0.2043 for MLR. This indicates that the regression performance of ANN is higher 

than that of MLR. Additionally, the trained MLR and ANN models are tested using new flight test data. The 

performance of ANN is also higher than that of MLR for this new flight test data, confirming that the 

generalization performance of ANN is significantly superior. Through the correlation coefficients and variance 

inflation factors of the flight parameters, it is confirmed that multicollinearity exists among the flight parameters. 

Consequently, the ANN regression model is more suitable than the MLR model for load monitoring using flight 

test data. 
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1. Introduction 

Aircraft are subjected to complex and various loads repeatedly during the operational life, resulting 

in fatigue phenomena such as crack initiation and propagation and decrease of structural strength[1]. 

This causes catastrophic structural damage to aircraft[2], accounting for more than 50% of total 

mechanical structure failures[3]. Therefore aircraft with high cost, complex structure, and safety 

requirements must have high-reliability[4]. For this purpose, a fatigue monitoring system that detects 

structural damage and defects in advance and predicts fatigue life is essential. Load monitoring is 

an important method of fatigue life management[5]. Since it is impossible to directly measure load 

spectrum during flight, a lot of research has been studied to accurately estimate load spectrum based 

on flight parameters recorded during flight for fatigue monitoring[6]. Multiple linear regression 

equations have been used for load monitoring[7,8,9]. However, the prediction accuracy based on 

the multiple linear regression is low, and the nonlinear relationship between flight parameters and 

loads cannot be revealed and established[10]. To address this issue, recent research using machine 

learning has been actively conducted[5,11,12]. In particular, flight parameter based structural load 

monitoring systems using artificial neural networks are being developed to map the input flight 

parameters to the output strain measurements[13,14,15]. Aircraft structural load spectrum are 

calculated from the measured strain gauges attached to the aircraft[16]. However, strain gauges can 

fall off or have missing data[17], so it is necessary to accurately estimate sensor measurements from 
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flight parameters recorded in the flight data recorder. Existing studies have been conducted on 

simple structures such as cantilever beams[14,15], and only aircraft wing prototype, excluding other 

structures[5,11]. Additionally, studies have been conducted using ground test data[5] or simulation 

data[1]. Therefore, in this study, regression models are developed to predict bending moment and 

strain sensor measurements attached to the aircraft wings, horizontal/vertical tails, and fuselage from 

flight parameters recorded during flight testing. The actual flight test data used in this study is not 

sequential vibration data collected at regular time intervals, but event trigger data in which all flight 

parameters and sensors are recorded when any flight parameter changes more than the gate value. 

So the flight test data can be considered as a snapshot. In order to utilize the flight test data with 

these characteristics, we applied not only multiple linear regression (MLR), which has been 

predominantly used for such problems until now, but also artificial neural network (ANN) to real flight 

test data, and compared and analyzed their performance. 

 

2. Procedure for Predicting Aircraft Load Based on Flight Parameters 

2.1 Data Preprocessing 

Seven flight tests were conducted on the same aircraft to obtain in-flight data from take-off to landing. 
All seven flight data were combined and randomly split into training/test data for MLR and 
training/validation/test data for ANN, as shown in Figure 1. Flight parameters and sensor data are 
standardized so that all features have a mean of 0 and a standard deviation of 1. 

 

 

Figure 1 – Datasets for MLR and ANN training. 

 

2.2 Multiple Linear Regression Model 

The MLR equation expresses the dependent variable as a linear combination of the independent 

variables and the regression coefficients, as shown in Equation (1). 𝑿 and 𝒚̂ represent independent 

and dependent variables, respectively. 𝑾 is regression coefficients with bias and weights for the 

independent variables. In this study, 𝑿 and 𝒚̂ are 30 flight parameters and 18 sensors, respectively. 

The least square method was used to find the regression coefficients that minimize the error between 

the predicted values derived from MLR and the measured values from the flight test. 

𝒚̂ = 𝑾𝑿 (1) 
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2.3 Artificial Neural Network Regression Model 

Among the artificial neural network structures, the regression model is constructed with a multi -

layer perceptron(MLP). An MLP consists of an input layer, one or more hidden layers, and an 

output layer, as shown in Figure 2. Input data are passed sequentially from the input layer to 

the output layer, where all neurons in each layer are fully connected. All input parameters are 

multiplied by the weights of the neurons composing the first hidden layer, biases are added, 

and then passed through an activation function. The output values of the first hidden layer are 

input into the second hidden layer and go through the same process as the first hidden layer. 

This process is repeated in all hidden layers, and dependent variables are calculated through 

the output layer. The weights and biases at each neuron are referred to as model parameters. 

To obtain model parameters that minimize the error between the predicted value of the ANN 
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model and the measurement, the mean squared error in equation (2) was adopted as the cost 

function, and Adam optimization was adopted as the optimization algorithm. In equation (2), 𝑦𝑖 
is the measurement of the i-th sensor, and 𝑦̂𝑖  is the predicted value of the i-th sensor. 

Additionally, an early stopping algorithm was applied to prevent overfitting.  

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)

𝟐𝑵
𝒊=𝟏

 (2) 

 

 

Figure 2 – Structure of MLP. 

 

3. Performance of trained model 

3.1 Performance Comparison of MLR and Ann Model 

To evaluate the regression performance of MLR and ANN models, the test data in Figure 1 were 

input to the trained models and the predicted values were compared with the actual measurements. 

Figures 3 and 4 are cross plots of MLR and ANN model, respectively, where the x-axis is the 

measurement obtained from the flight test and the y-axis is the predicted value derived from the 

trained model. A cross plot closer to a linear trend indicates higher regression performance. 

Comparing Figures 3 and 4, the graph in Figure 4 is closer to linear than that in Figure 3, so the 

regression performance of ANN is better than that of MLR.  

Table 1 shows the quantitative evaluation of regression performance using Adj. R2 and RMSE. For 

all sensors, the regression performance of ANN is superior to that of MLR. In particular, the mean 

Adj. R2 for the 18 sensors in ANN is a high value of 0.9751, while that in MLR is 0.8858, which is 

lower than the ANN. For sensor 9, which has the lowest performance among all sensors in both 

models, the ANN is 0.9244 and the MLR is 0.6948. The mean RMSE of ANN is 0.0601 and that of 

MLR is 0.2043, indicating that the error of MLR is about 70% greater than that of ANN. 
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Figure 3 – Cross-plot of MLR Model on the Test Data. 

 

  

Figure 4 – Cross-plot of ANN Model on the Test Data. 

 

Table 1 – Performance of Regression Model on the Test Data. 

 Adj. R2 RMSE 

 ANN MLR ANN MLR 

Sensor 1 0.9934 0.9560 0.0098 0.0254 

Sensor 2 0.9934 0.9598 0.0101 0.0248 

Sensor 3 0.9865 0.9366 0.0032 0.0070 

Sensor 4 0.9890 0.9081 0.0034 0.0097 

Sensor 5 0.9951 0.9240 0.0339 0.1330 

Sensor 6 0.9943 0.9207 0.0322 0.1201 

Sensor 7 0.9876 0.8740 0.0193 0.0614 

Sensor 8 0.9870 0.8722 0.0186 0.0584 
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Sensor 9 0.9244 0.6948 0.0049 0.0098 

Sensor 10 0.9879 0.8524 0.0163 0.0569 

Sensor 11 0.9845 0.8893 0.0632 0.1688 

Sensor 12 0.9904 0.8969 0.0888 0.2915 

Sensor 13 0.9735 0.8368 0.0987 0.2448 

Sensor 14 0.9933 0.9213 0.1732 0.5931 

Sensor 15 0.9908 0.8517 0.2071 0.8329 

Sensor 16 0.9863 0.9141 0.0406 0.1017 

Sensor 17 0.9932 0.9123 0.2030 0.7288 

Sensor 18 0.9804 0.8228 0.0693 0.2087 

Mean 0.9851 0.8858 0.0601 0.2043 

 

The generalization performance of the previously trained ANN and MLR models was assessed using 

new flight test data from additional flight test, not included in the training dataset as shown in Figure 

1. The flight parameters from the new flight test data were input into the trained models and the 

predicted values were compared to the measurements. Figures 5 and 6 are scatter plots of 

measurements and predicted values over time for MLR and ANN, respectively, where blue dots are 

measurements and red dots are predicted values. This shows that the predicted values of the ANN 

follow the trends of the new flight data better than MLR.  

Table 2 shows the quantitative evaluation of the regression performance of MLR and ANN on the 

new flight data. For ANN, Sensors 9, 12, 13, 14, and 15 have Adj. R2 below 0.8, which is relatively 

low compared to other sensors. However, for MLR, most of the sensors have Adj. R2 below 0.8 

except for Sensor 1, 2, and 8. It was confirmed that MLR had lower generalization performance 

compared to ANN. 

 

  

Figure 5 – Scatter Plot of MLR Model on the New Flight Data. 
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Figure 6 – Scatter Plot of ANN Model on the New Flight Data. 

 

Table 2 – Performance of Regression Model on the New Flight Data. 

 Adj. R2 RMSE 

 ANN MLR ANN MLR 

Sensor 1 0.9682 0.8708 0.0185 0.0373 

Sensor 2 0.9672 0.8767 0.0195 0.0378 

Sensor 3 0.9529 0.7849 0.0049 0.0104 

Sensor 4 0.9356 0.6734 0.0055 0.0124 

Sensor 5 0.9846 0.6679 0.0559 0.2599 

Sensor 6 0.9876 0.6321 0.0438 0.2387 

Sensor 7 0.9718 -0.8927 0.0216 0.1768 

Sensor 8 0.9662 -0.9393 0.0220 0.1667 

Sensor 9 0.7210 0.1436 0.0077 0.0136 

Sensor 10 0.9278 0.2463 0.0307 0.0992 

Sensor 11 0.9233 0.7895 0.1082 0.1792 

Sensor 12 0.7557 0.1877 0.1665 0.3035 

Sensor 13 0.5112 0.2895 0.1728 0.2083 

Sensor 14 0.6213 -0.1849 0.4512 0.7982 

Sensor 15 0.4881 -0.1091 0.4211 0.6197 

Sensor 16 0.8689 0.0646 0.0601 0.1604 

Sensor 17 0.9600 0.8467 0.4253 0.8323 

Sensor 18 0.8395 0.1362 0.1541 0.3574 

Mean 0.8528 0.2824 0.1216 0.2507 

 

3.2 Performance Analysis 

Multicollinearity in the flight test data is investigated to analyze why the ANN model has better 

regression performance than the MLR model. Multicollinearity occurs when the regression model 

includes several variables that are significantly correlated not only with the dependent variable but 

also to each other[18]. Multicollinearity increases variance of the regression coefficients making them 

unstable[19]. Figure 7 shows a color map of Pearson's correlation coefficients for pairs of input 

variables. Many components, except for the diagonal component, have Pearson's correlation 
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coefficients close to 1 or -1, confirming the existence of many highly correlated input variable pairs. 

Table 3 shows the variance inflation factor (VIF) of each input variable. 18 of the input variables have 

a VIF greater than 10, which is a common diagnostic for multicollinearity. The Pearson's correlation 

coefficients and VIFs confirm that multicollinearity occurs in the flight parameters used for training.  

From this analysis result, it can be confirmed that the multicollinearity of the flight test data used in 

this study prevents MLR from accurately estimating the load spectrum from flight parameters, while 

ANNs provide relatively accurate estimates of the load spectrum despite the presence of the 

multicollinearity. This means that for data with multicollinearity like the flight test data used in this 

study for fatigue monitoring based on flight parameters, ANN is a more suitable choice. 

 

 
Figure 7 – Correlation Matrix of Input Variables. 

 
Table 3 – VIF Results. 

Features VIF Factor 

1 32099.35 

2 808.8099 

3 563.2947 

4 493.1282 

5 329.0442 

6 299.2042 

7 289.1409 

8 278.0586 

9 232.3188 

10 215.8488 

11 169.6191 
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12 159.6653 

13 120.7618 

14 109.0287 

15 67.19487 

16 30.47343 

17 26.37923 

18 17.9257 

19 7.983609 

20 6.147515 

21 5.771975 

22 2.197556 

23 1.723659 

24 1.659886 

25 1.646627 

26 1.483857 

27 1.149743 

28 1.135374 

29 1.120338 

30 1.018936 

 

4. Conclusion 

In this study, machine learning techniques were employed to estimate the load spectrum for aircraft 

fatigue monitoring from flight parameters. A MLR model and an ANN regression model were 

constructed to predict bending moment and strain sensor data from flight parameters obtained from 

actual flight tests, and the regression performance of the trained models was evaluated using test 

data that was not used for training. Additionally, the generalization performance of both models was 

assessed using new flight test data from additional flight test. The results show that the accuracy of 

ANN is superior to MLR. Multicollinearity was investigated in the flight parameters of the flight test 

data through Pearson’s correlation coefficient and VIF, and this shows that MLR is not suitable for 

constructing a regression model for flight test data. ANN also simplifies the load monitoring process 

as it does not require variable selection to eliminate flight parameters with multicollinearity, which is 

required for MLR. Through this study, it was confirmed that the ANN regression model can accurately 

generate load spectrum for aircraft fatigue monitoring from flight parameters. 

5. Acknowledgments 

This study was conducted with support from Korea Aerospace Industries, Ltd. (Project number 

CT20100057). 

6. Contact Author Email Address 

Eun Gyo Park: eungyo6377@inha.edu 

Seon Ho Jeong: seonho.jeong@koreaaero.com 

Jin Yeon Cho: cjy@inha.ac.kr 

Jeong Ho Kim: JeongHoKim@inha.ac.kr 

7. Copyright Statement 

The authors confirm that they, and/or their company or organization, hold copyright on all of the original material 

included in this paper. The authors also confirm that they have obtained permission, from the copyright holder 



INSERT RUNNING TITLE HERE 

9 

 

 

of any third party material included in this paper, to publish it as part of their paper. The authors confirm that 

they give permission, or have obtained permission from the copyright holder of this paper, for the publication 

and distribution of this paper as part of the ICAS proceedings or as individual off-prints from the proceedings. 

 

References 

[1] Min Ji Jeong, Seon Ho Jeong, Cho Jin Yeon, Jeong Ho Kim, Jihan Kim, Development of Load Spectrum 
Generation Technique Using Artificial Neural Network, Journal of the Korean Society for Aeronautical 
and Space Sciences, 2023, 51 (7), 433-442. 

[2] Wild, G., Pollock, L., Abdelwahab, A. K. & Murray, J. The need for aerospace structural health 
monitoring: a review of aircraft fatigue accidents. Int. J. Progn. Health Manag. (2021). 

[3] Zimmermann, N. & Wang, P. A review of failure modes and fracture analysis of aircraft composite 
materials. Eng. Fail. Anal. 115, 104692 (2020). 

[4] Nicolai, L. M. & Carichner, G. E. in Aircraft Design 435–465 (American Institute of Aeronautics and 
Astronautics, 2010). 

[5] Peiyao Wang, Mingxin Yu, Guang Yan, Jiabin Xia, Jiawei Liu and Lianqing Zhu, A deep learning-based 
method for calculating aircraft wing loads, Measurement and Control 2023, Vol. 56(7-8) 1129-1141. 

[6] Ramon Fuentes, Elizabeth Cross, Andrew Halfpenny, Keith Worden, Robert J. Barthorpe, Aircraft 
parametric structural load monitoring using gaussian process regression, EWSHM-7th European 
workshop on structural health monitoring. 2014. 

[7] H. Kaneko, T. Furukawa, Operational Loads Regression Equation Development for Advanced Fighter 
Aircraft 

[8] Qiaoqiao H and Qingyong Z. An improved regression algorithm for load calibration test data. Eng Test 
2018; 58: 22–24. 

[9] Yan C, Zhang S and Zhuo N. Mechanical model and data processing of load measurement test for the 
airplane’s wing structure. Acta Aeronautica Et Astronautica Sinica 2000; 21: 56–59. 

[10]  Montel, M.; Thielecke, F. Efficient and accurate technology for aircraft loads estimation. CEAS 
Aeronaut. J. 2020, 11, 461–474.  

[11]  T.H. Loutas, A. Panopoulou, D. Roulias, V. Kostopoulos, Intelligent health monitoring of aerospace 
composite structures based on dynamic strain measurement, Expert System with Application, 39 (9) 
(2012) 8412-8422 

[12]  Chenxi Sun, Hongyan Li, Hongna Dui, Shenda Hong, Yongyue Sun, Moxian Song, Derun Cai, Baofeng 
Zhang, Qiang Wang, Yongjun Wang and Bo Liu, A multi-model architecture based on deep learning for 
aircraft load prediction, communications engineering 2 (47) (2023) 

[13]  Reed SC. Development of a parametric-based indirect aircraft structural usage monitoring system using 
artificial neural networks. The Aeronautical Journal . 2007;111(1118):209-230. 

[14]  Cao X, Sugiyama Y and Mitsui Y. Application of artificial neural networks to load identification. Comput 
Struct 1998; 69(1): 63–78.  

[15]  Li J, Yan J, Zhu J, et al. K-BP neural network-based strain field inversion and load identification for 
CFRP. Measurement 2022; 187: 110227. 

[16]  Fürstenau, N., Janzen, D. D. & Schmidt, W. Flight Tests of Fiber-Optic Interferometric Strain Gauges for 
Load Monitoring of Aircraft Structures, 305–309 (Springer US, Boston, MA, 1995). 

[17]  Marinaro, D. G., Mcmahon, P. & Wilson, A. Proton radiation effects on mems silicon strain gauges. 
IEEE Trans. Nucl. Sci. 55, 1714–1718 (2008). 

[18]  Young, D.S., Handbook of regression methods, CRC Press, Boca Raton, FL, 2017, 109-136. 

[19]  Keith, T.Z., Multiple regression and beyond: An introduction to multiple regression and structural 
equation modeling (2nd edition), Taylor and Francis, New York, 2015. 


