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Abstract

An intriguing feature observed during the flight of feathered animals is the formation of gaps between feathers during
the upstroke. These ventilation gaps offer an alternative path with less resistance for air to flow through, reducing the
influence of forces opposing the motion. These channels close during the downstroke, allowing the wing to provide the
required aerodynamic forces. We describe a mechanism to open these channels for feathers located in the innermost
sections of the wing based on the inertial loads imposed by the flapping motion, which increases along the wing-span
and allows the distal feathers to deflect more than its adjacent proximal feather. This effect occurs only in one direction,
as in the opposite direction the deflection is limited by the contact forces in the overlap region. This mechanism requires
modeling the feathers as flexible structural members. Therefore, we develop a model for the flexible feather from a
flapping-wing to investigate the formation of ventilation gaps based on the Absolute Nodal Coordinate Formulation,
which is a multi-body approach suited for the analysis of structures subjected to large displacements and deflections.

Keywords: FWUAV; Ventilation; Multi-Body Dynamics; Absolute Nodal Coordinate Formulation; Contact.

1. Introduction
Competition in nature resulted in the development by some species of the ability to sustain powered flight.
This form of locomotion allows flying animals to spot prey from privileged positions, escape from predators,
build nests in safe locations, and migrate for foraging food. Unlike man-made aircraft, which typically use
propellers to provide thrust, insects and avians flap their wings to provide both the lift and thrust required to
fly. Although flapping can be perceived as more energetically demanding than a fixed-wing configuration, [1]
finds that an optimal flapping pattern on an insect scale is 27% more efficient than an optimized fixed wing by
exploiting the unsteady aerodynamic effects during wing reversal. In addition, the absence of fast-rotating
propellers makes flapping-wing vehicles suitable for applications involving human-vehicle interaction.
A characteristic that distinguishes avians from other flying animals is that their entire body is covered by feath-
ers, providing thermal insulation, directional air permeability [2], and damage tolerance [3]. Wing feathers
are composed of hierarchical structures ranging from the micro to the macroscopic scales that complement
their highly optimized muscular and skeletal system allowing the bird to morph their wings and adapt to the
flying regime for maximum performance [4, 5], resulting in a great biodiversity of avian species specializing
in different aspects of flight such as speed, maneuverability, noise, and range [6].
The scale of birds is limited by biological factors, such as the power that can be developed through muscles
and material limitations to withstand inertial and aerodynamic loads. The largest species, such as the snowy
albatross (Diomedea exulans), can reach a wingspan of 3.5m, while the heaviest species, such as the kori
bustard (Ardeotis kori), can weigh up to 18kg. Therefore, understanding the fundamentals of the biological
design of natural flyers may aid in the development of engineering solutions to address common problems
in the aeronautic industry (e.g., stability, efficiency, performance, noise and comfort).
An interesting phenomenon observed in feathered avians is the formation of gaps that allow air to ventilate
between feathers during the upstroke. These gaps close during the downstroke, forming a smooth and
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impermeable wing surface to provide the required lift and thrust to maintain flight. This ventilation effect is
likely to decrease adverse aerodynamic loads during the upstroke, resulting in an increase in net lift and
thrust forces from the flapping cycle. [7] attribute the formation of gaps to an aeroelastic interaction of
the asymmetric primary feathers that align with the resultant flow. However, gaps can also be observed
between secondary feathers located in the inner sections of the wings, which are symmetric and parallel to
the airflow. On an insect scale, [8] show that the deformation of the wing structure is dominated by inertial
forces, suggesting that a simpler analysis framework based on the structural response of the wing may give
accurate results regarding the geometry of the ventilation channels. Therefore, we investigate a mechanism
for the secondaries based on the structural response of the feathers to the imposed flapping motion.
The remaining part of this work is organized as follows: Section (2.) describes the problem under investiga-
tion. Section (3.) presents the kinematics of the flapping-wing. Section (4.) we discuss a mechanism for the
formation of ventilation channels across the secondary feathers. Section (5.) present the modeling of the
flexible feather using the ANCF. Section 6.presents the numerical solution of the trajectories of the feathered
flapping-wing model. Section (7.) presents the final-remarks.

2. Methodology
The problem addressed herein is the ventilation mechanism observed in the flight feathers (feathers attached
to the wing) of avians, illustrated in Figures 1a and 1b by two snapshots indicating the state of the ventilation
channels between feathers. During the upstroke (Figure 1a), the gaps between the feathers form ventilation
channels that allow air to flow easily through. In the downstroke phase (Figure 1b), these channels close
and the feathers on the wing form a smooth and impermeable surface to capture air. This feature reduces
aerodynamic loads during the upstroke phase, when the direction of these loads adversely influences the
generation of lift and thrust forces.
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Figure 1 – Snapshots from an avian (Ara araraura) during its flight. During the upstroke (a) gaps
between feather are observed, and during downstroke (b) they closes. (c) schematic from the

feathered wing.

The feathered wing is described according to the schematic in Figure 1c. The wing is divided into inner and
outer wings, representing the stiff avian bones. One end of the inner-wing is constrained to the avian body
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by means of a spherical joint, which allows the wing to rotate with respect to any axis, similarly to the human
shoulder joint. The inner wing is subdivided into a short humerus and a long ulna by means of an additional
rotational joint, allowing for folding and extension motions, analogous to an elbow joint. The outer wing is
constrained to the other end of the inner wing by means of a spherical joint, which functions as the wrist joint.
The wings are covered by feathers that, in addition to their biological functions, constitute the airfoil shape
of the wing. The feathers are composed of two parts: a central shaft denoted by the rachis and the vanes.
The rachis is the main structural element and is attached to the bone in a cantilevered configuration. The
feather vanes are composed of numerous microscopic hierarchical structures attached transversely along
the rachis, forming a tightly woven mesh that captures air and can disassemble in the occurrence of large
localized loads.
The feathers attached to the outer wing are denoted as primary feathers 𝑃𝑖, 𝑖 = 1, . . . 𝑛𝑃, with 𝑛𝑃 being
the number of primary feathers. The primaries have asymmetric vanes, with a narrow leading-edge and a
broader trailing-edge, and are attached to the bone at a varying angle that extends further than the bone.
The secondaries, 𝑆𝑖, 𝑖 = 1, . . . 𝑛𝑆, with 𝑛𝑆 being the number of secondary feathers, have symmetric vanes
and are attached to the inner wing perpendicular to the bone axis. The feathers are located such that the
leading-edge vane of the proximal feather overlaps the trailing-edge of the distal feather [9]. This overlap
allows for the morphing feature and plays a crucial role to close the ventilation gaps between the secondaries
during the downstroke.
A mechanism to explain the formation of ventilation channels in the outer wing is the aeroelastic divergence
of the asymmetric primaries [7], which aligns the primary feathers with the incident airflow. However, we
can also observe the separation of the secondary feathers during the upstroke, which are symmetric and
attached parallel to the airflow. On the other hand, the flapping pattern generates inertial forces that can be
tailored to separate the feathers, thus creating the ventilation gaps.

3. Flapping-Wing Kinematics
The model consists of a rigid inner wing whose motion is a prescribed function of time. Attached to it are
flexible structures representing the feathers, which are collocated so that the vanes overlap. The imposed
motion accelerates every point of the feather, resulting in inertial loads that are balanced by a corresponding
elastic restoring force.
The flapping pattern is parameterized by a combination of two rotations: a flapping rotation in the 𝑦 direction
and a pitch rotation in the new

ℬ1
𝑥 direction. An additional rotation with respect to the

ℬ2
𝑧 axis parameterizes

the attachment angle 𝛼𝐺 of the feather. An angle of 𝛼𝐺 = − 𝜋
2 represents a feather attached perpendicular to

the bone axis, whereas a value of zero represents the feathers parallel. The secondary feathers are attached
perpendicularly, whereas the primaries transition from perpendicular to parallel. The rotation matrices that
transform a vector between different coordinate systems are defined as follows.

𝑻𝛼𝐹
=


cos (𝛼𝐹) 0 −sin (𝛼𝐹)

0 1 0
sin (𝛼𝐹) 0 cos (𝛼𝐹)

 , 𝑻𝛼𝑇
=


1 0 0
0 cos (𝛼𝑇 ) sin (𝛼𝑇 )
0 −sin (𝛼𝑇 ) cos (𝛼𝑇 )

 , 𝑻𝛼𝐺
=


cos (𝛼𝐺) sin (𝛼𝐺) 0
−sin (𝛼𝐺) cos (𝛼𝐺) 0

0 0 1

 , (1)

where 𝑻𝛼𝐹
, 𝑻𝛼𝑇

, and 𝑻𝛼𝐺
denotes the flapping, pitch, and attachment angle rotations, respectively.

Two points, 𝑃 and 𝐹, are defined. Point 𝑃 corresponds to the position of the feather attachment point with
respect to the wing bone, and point 𝐹 corresponds to an arbitrary point along the longitudinal axis of the
feather. The positions of these points are parameterized in their local coordinate systems as follows:

ℬ1
𝒓𝑃 =


𝑙𝑝
0
0

 , ℬ3
𝒓𝐹 =


𝑒𝑦
0
0

 , (2)

where 𝑙𝑝 is the distance from the feather to the flapping joint, and 𝑒𝑦 the distance from the point 𝐹 to its
attachment to the bone. The points and rotations are illustrated in Figure 2.
The position of the points 𝑃 and 𝐹 is transformed to the inertial coordinate system through the following
equations.

𝒓𝑃 (𝑡) = 𝑻⊤
𝛼𝐹

(𝑡)
ℬ1

𝒓𝑃 (3)

𝒓𝐹 (𝑡) = 𝑻⊤
𝛼𝐹

(𝑡)
(
ℬ1

𝒓𝑃 +𝑻⊤
𝛼𝑇

(𝑡)
ℬ2

𝒓𝐹
)
, (4)
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Figure 2 – Kinematics of the feather.

The velocity of the points 𝑃 and 𝐹 is obtained by differentiating Equations (3) and (4) with respect to the
time 𝑡:

¤𝒓𝑃 (𝑡) = ¤𝑻⊤
𝛼𝐹

(𝑡)
ℬ1

𝒓𝑃, (5)

¤𝒓𝐹 (𝑡) = ¤𝑻⊤
𝛼𝐹

(𝑡)
(
ℬ1

𝒓𝑃 +𝑻⊤
𝛼𝑇

(𝑡)
ℬ2

𝒓𝐹
)
+𝑻⊤

𝛼𝐹
(𝑡) ¤𝑻⊤

𝛼𝑇
(𝑡)

ℬ2
𝒓𝐹 , (6)

and acceleration at points 𝑃 and 𝐹 are obtained by differentiating Equations (5) and (6) with respect to time:

¥𝒓𝑃 (𝑡) = ¥𝑻⊤
𝛼𝐹

(𝑡)
ℬ1

𝒓𝑃, (7)

¥𝒓𝐹 (𝑡) = ¥𝑻⊤
𝛼𝐹

(𝑡)
(
ℬ1

𝒓𝑃 +𝑻⊤
𝛼𝑇

(𝑡)
ℬ2

𝒓𝐹
)
+2 ¤𝑻⊤

𝛼𝐹
(𝑡) ¤𝑻⊤

𝛼𝑇
(𝑡)

ℬ2
𝒓𝐹 +𝑻⊤

𝛼𝐹
¥𝑻⊤
𝛼𝑇 ℬ2

𝒓𝐹 . (8)

For the ventilation to be effective, it is necessary to open the channels during the upstroke and close them
during the downstroke. According to the rotation matrices and the coordinate system employed for the model,
the downstroke is defined when the angular velocity of the flapping motion is positive, i.e., ¤𝛼𝐹 > 0. Consider
the pair of feathers illustrated in the scheme shown in Figure 3. The proximal feather is positioned in the
wing so that its leading-edge vane overlaps the trailing-edge of the distal feather. The inertial loads acting on
each feather due to the imposed flapping motion are illustrated in Figure 3a. The load on the distal feather
is represented by a larger distribution since it is located further from the rotation axis, allowing the distal
feather to deflect more than the proximal feather in the negative vertical direction, i.e., (−

ℬ3
𝑧), as shown in

Figure 3b.
In the positive direction (+

ℬ3
𝑧), the deflection of the distal feather conforms to the deflection of the proximal

feather due to the overlap, which restricts additional deformation, as represented in Figure 3c.
Thus, the deflection must occur in the downward direction to open the ventilation channels during the up-
stroke. During the downstroke, the distal feather should be pushed against the proximal feather to create a
smooth and closed wing. To maintain this effect throughout the flapping cycle, the acceleration along the
feather should oppose the velocity of the attachment point.
The velocity of a flapping-only motion lags the acceleration by 𝜋/2 radians, as illustrated in Figure 4 for
a sinusoidal signal with unitary frequency and amplitude. Thus, the conditions for opening the ventilation
channels are favorable for half of the flapping cycle, resulting in the adverse effect of opening the ventilation
channels during half of the downstroke. Thus, we search for a combination of a flapping and pitch rota-
tions such that the resulting linear acceleration of a point along the feather is opposing the velocity of its
corresponding attachment point.
The velocity of point 𝑃 and the acceleration of point 𝐹 are mapped to the coordinate system ℬ1 using the
transformation matrices of Equation (1), resulting in the following expressions:

ℬ1
¤𝒓𝑃 (𝑡) =


cos (𝛼𝐹 (𝑡)) 0 −sin (𝛼𝐹 (𝑡))

0 1 0
sin (𝛼𝐹 (𝑡)) 0 cos (𝛼𝐹 (𝑡))



−𝑙𝑝 sin(𝛼𝐹 (𝑡)) ¤𝛼𝐹 (𝑡)

0
−𝑙𝑝 cos(𝛼𝐹 (𝑡)) ¤𝛼𝐹 (𝑡)

 =


0
0

−𝑙𝑝 ¤𝛼𝐹 (𝑡),

 (9)

4



DYNAMICS OF THE MECHANISM FOR VENTILATION ACROSS FEATHERS IN FLAPPING WING UAV

undeformed

flapping joint

rigid wing

inertial

loads

proximal

distal

(a)

upstroke

ventilation

channel

open

(b)

downstroke

closed

ventilation

channels

contact

(c)

Figure 3 – Scheme of formation of the ventilation channels. (a) shows the undeformed feathers and
the inertial loads. (b) shows the upstroke, where the feathers deform to balance their inertial loads.
(c) shows the feathers deformed in the downstroke. Note the contact limiting the deflection of the

distal feather.
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Figure 4 – Velocity and acceleration of a sinusoidal signal. The acceleration is opposing the velocity
during half of the cycle.

ℬ1
¥𝒓𝐹 (𝑡) =


−𝑒𝑦 sin (𝛼𝑇 (𝑡)) ¥𝛼𝐹 (𝑡) −2𝑒𝑦 cos (𝛼𝑇 (𝑡)) ¤𝛼𝐹 (𝑡) ¤𝛼𝑇 (𝑡) − 𝑙𝑝 ( ¤𝛼𝐹 (𝑡))2

𝑒𝑦

(
sin (𝛼𝑇 (𝑡)) ¥𝛼𝑇 (𝑡) + cos (𝛼𝑇 (𝑡)) ( ¤𝛼𝑇 (𝑡))2

)
𝑒𝑦 sin (𝛼𝑇 (𝑡)) ( ¤𝛼𝐹 (𝑡))2 + 𝑒𝑦 sin (𝛼𝑇 (𝑡)) ( ¤𝛼𝑇 (𝑡))2 − 𝑒𝑦 cos (𝛼𝑇 (𝑡)) ¥𝛼𝑇 (𝑡) − 𝑙𝑝 ¥𝛼𝐹 (𝑡)

 . (10)

The vertical component of the velocity from the feather attachment point and the vertical component of the
acceleration from point 𝐹 with respect to ℬ1 are:

ℬ1
¤𝒓𝑃 ·

ℬ1
𝑒𝑘 = 𝑙𝑝 ¤𝛼𝐹 (𝑡). (11)

ℬ1
¥𝒓𝐹 ·

ℬ1
𝑒𝑘 = 𝑒𝑦 sin (𝛼𝑇 (𝑡)) ( ¤𝛼𝐹 (𝑡))2 + 𝑒𝑦 sin (𝛼𝑇 (𝑡)) ( ¤𝛼𝑇 (𝑡))2 − 𝑒𝑦 cos (𝛼𝑇 (𝑡)) ¥𝛼𝑇 (𝑡) − 𝑙𝑝 ¥𝛼𝐹 (𝑡), (12)

The acceleration of the feather opposes the tangential velocity of the attachment point if their product is
negative. Thus, the following kinematic ventilation parameter is defined:

𝑘𝑣 = sign
(
−𝑙𝑝 ¤𝛼𝐹

(
𝑒𝑦𝑠𝛼𝑇

¤𝛼2
𝐹 + 𝑒𝑦𝑠𝛼𝑇

¤𝛼2
𝑇 − 𝑒𝑦𝑐𝛼𝑇

¥𝛼𝑇 − 𝑙𝑝 ¥𝛼𝐹
))
, (13)

which evaluates to:

𝑘𝑣 =

{
+1, if opposite direction,
−1, otherwise.

(14)

The kinematic ventilation parameter provides a simplified measure to determine whether a given flapping
pattern enhances the ventilation effect. Since this parameter is derived from the system’s kinematics, its
computational cost is negligible compared to solving the trajectories of the flexible feather model.
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4. Formation from the Ventilation Gaps
The mechanism for opening the ventilation channels is described by the structural dynamics of the flexible
feathers. Consider a pair of overlapping structures, denoted by 𝑆1 and 𝑆2, representing the proximal and
distal feathers, respectively. The overlap 𝑤𝑜 is defined as:

𝑤𝑜 = 1− ℎ𝑠
𝑤
, (15)

with ℎ𝑠 being the spacing between the feathers and 𝑤 the width of the feather. A value of 𝑤𝑜 = 0 denotes no
overlap and 𝑤𝑜 = 1 denotes complete overlap. The feather 𝑆1 is attached to the wing at a distance 𝑙𝑝 from
the origin. Thus, the feather 𝑆2 is attached to the wing at position

(
𝑙𝑝 + (1−𝑤𝑜)𝑤

)
.

The difference between adjacent feathers in Equation (12) is due to the tangential acceleration induced by
the flapping motion. This is given by the last term of the expression, which evaluates for the proximal feather
as follows:

𝑎
(1)
𝑇

= −𝑙𝑝 ¥𝛼𝐹 (𝑡), (16)

and for the distal feather
𝑎
(2)
𝑇

= −
(
𝑙𝑝 + (1−𝑤𝑜)𝑤

)
¥𝛼𝐹 (𝑡). (17)

By dividing Equation (17) by Equation (16), we define the following amplification ratio 𝑅𝑑𝑡𝑎.

𝑅𝑑𝑡𝑎 = 1+ (1−𝑤𝑜)𝑤
𝑙𝑝

. (18)

Equation (18) is illustrated in Figure 5 for various attachment positions 𝑙𝑝 along the wing. Note that the
amplification is more significant for low values of 𝑙𝑝, which is the case for the secondary feathers, attached
to the inner-most sections of the wing. We suspect that this difference is enough to open the ventilation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.0
1.1
1.2
1.3

𝑙𝑝

𝑅
𝑑
𝑡
𝑎

𝑤0 = 0.25 𝑤 = 0.03𝑚
𝑤0 = 0.15 𝑤 = 0.03𝑚
𝑤0 = 0.25 𝑤 = 0.04𝑚
𝑤0 = 0.15 𝑤 = 0.04𝑚

Figure 5 – Kinematic amplification of the acceleration induced by the flapping motion in a distal
feather.

channels or at least initiate the process if this phenomenon is dominated by aeroelastic effects. Consider
the following reasoning: the inertial loads caused by the flapping motion acting on a flexible feather attached
at 𝑙𝑝 result in a certain deflection. For the distal feather located at 𝑙𝑝 + (1−𝑤𝑜)𝑤, the inertial loads increase
due to the feather being attached farther from the flapping origin and are balanced by a corresponding
increase in deflection. This differential deflection creates gaps that provide an alternative path for air to
flow in the innermost sections of the wing. The size of these gaps can be further amplified if the flapping
frequency is close to the natural frequency of the first bending mode.

5. Flexible Feather Dynamics
The feather is discretized using three-dimensional beam elements from the absolute nodal coordinate for-
mulation (ANCF). This approach is suitable for modeling structures subject to large displacements and de-
flections [10]. The position, velocity and acceleration of an arbitrary particle in the 𝑖th ANCF beam element
are defined as, respectively:

𝒓 (𝑡,𝒙) = 𝑺(𝜉,𝜂, 𝜁)𝒆(𝑡), (19)

¤𝒓 (𝑡,𝒙) = 𝑺(𝜉,𝜂, 𝜁) ¤𝒆(𝑡), (20)

¥𝒓 (𝑡,𝒙) = 𝑺(𝜉,𝜂, 𝜁) ¥𝒆(𝑡), (21)
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where the position of the particle in the local coordinate system, 𝒙 = {𝑥, 𝑦, 𝑧} is normalized with respect to
the element length 𝑙𝑒 by

𝜉 =
𝑥

𝑙𝑒
, 𝜂 =

𝑦

𝑙𝑒
, 𝜁 =

𝑧

𝑙𝑒
. (22)

The shape function of the three-dimensional beam element is defined by [11] as:

𝑺(𝜉,𝜂, 𝜁) =
[
𝑠1𝑰, 𝑠2𝑰, 𝑠3𝑰, 𝑠4𝑰, 𝑠5𝑰, 𝑠6𝑰, 𝑠7𝑰, 𝑠8𝑰

]
, (23)

where 𝑰 is the identity matrix, with dimension 3× 3, and 𝑠𝑖 , 𝑖 = 1, . . . ,8 are the coefficients of the shape
function. The coefficients and derivatives with respect to the local coordinate system are presented in Table 1.

Table 1 – Shape function of the low-order beam element and derivatives with respect to the local
coordinate system.

𝑠𝑖
𝜕𝑠𝑖

𝜕𝜉

𝜕𝜉

𝑥

𝜕𝑠𝑖

𝜕𝜂

𝜕𝜂

𝜕𝑦

𝜕𝑠𝑖

𝜕𝜁

𝜕𝜁

𝜕𝑧

𝑠1 1−3𝜉2 +2𝜉3 1
𝑙𝑒

(
−6𝜉 +6𝜉2) 0 0

𝑠2 𝑙𝑒
(
𝜉 −2𝜉2 + 𝜉3) 1−4𝜉 +3𝜉2 0 0

𝑠3 𝑙𝑒 (𝜂− 𝜉𝜂) −𝜂 1− 𝜉 0
𝑠4 𝑙𝑒 (𝜂− 𝜉𝜁) −𝜁 0 1− 𝜉
𝑠5 3𝜉2 −2𝜉3 1

𝑙𝑒

(
6𝜉 −6𝜉2) 0 0

𝑠6 𝑙𝑒
(
−𝜉2 + 𝜉3) (

−2𝜉 +3𝜉2) 0 0
𝑠7 𝑙𝑒𝜉𝜂 𝜂 𝜉 0
𝑠8 𝑙𝑒𝜉𝜁 𝜁 0 𝜉

A limitation of the beam element used is the problem of Poisson’s locking, which can lead to inaccurate re-
sults [12]. To avoid this issue, high-order polynomials can be used to parameterize transversal deformations,
as in [13] or in [14]. However, using high-order elements also increases the computational time. Therefore,
we set the Poisson coefficient to zero to avoid this problem.
The nodal coordinates of the ANCF three-dimensional beam element consist of the positions and slopes of
the nodes 𝐴 and 𝐵 with respect to the absolute coordinate system, resulting in a total of 12 coordinates per
node. Therefore, each element is represented by 24 nodal coordinates, as shown in the following expression:

𝒆(𝑡) =
{
𝒓⊤
𝐴

𝜕𝒓𝐴
𝜕𝑥

⊤ 𝜕𝒓𝐴
𝜕𝑦

⊤ 𝜕𝒓𝐴
𝜕𝑧

⊤
𝒓⊤
𝐵

𝜕𝒓𝐵
𝜕𝑥

⊤ 𝜕𝒓𝐵
𝜕𝑦

⊤ 𝜕𝒓𝐵
𝜕𝑧

⊤}⊤
. (24)

5.1 Mass Matrix
The kinetic energy of the ANCF beam element is defined by:

𝒯 =
1
2

∫
𝑉𝑒

𝜌 ¤𝒓⊤ ¤𝒓𝑑𝑉. (25)

Substituting Equation 20 into Equation 25, the kinetic energy is:

𝒯 =
1
2

∫
𝑉𝑒

𝜌 ¤𝒆⊤𝑺⊤𝑺 ¤𝒆𝑑𝑉. (26)

The nodal coordinate vector is constant within the element volume, such that it is factored out of the integral,
resulting in the following expression:

𝒯 =
1
2
¤𝒆⊤

[
𝜌

∫
𝑉𝑒

𝑺⊤𝑺𝑑𝑉

]
¤𝒆, (27)

and the term inside the bracket is the constant mass matrix:

𝑴 = 𝜌

∫
𝑉𝑒

𝑺⊤𝑺𝑑𝑉. (28)

The coefficients for the beam element are obtained by solving the quadrature and compared with the values
obtained in [15].

7
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5.2 Structural Forces
The potential elastic energy is obtained from a continuum mechanics approach [16] by relating the com-
ponents of the deformation gradient with the Lamé’s constants defining the material properties using the
following expression:

𝒰𝑒 =

∫
𝑉𝑒

𝜆+2𝐺
2

(
𝜖2

11 + 𝜖
2
22 + 𝜖

2
33

)
+𝜆 (𝜖11𝜖22 + 𝜖11𝜖33 + 𝜖22𝜖33) +2𝐺

(
𝜖2

12 + 𝜖
2
13 + 𝜖

2
23

)
𝑑𝑉, (29)

where the Lamé’s constants are defined for an isotropic elastic material as:

𝜆 =
𝐸𝜈

(1+ 𝜈) (1−2𝜈) , 𝐺 =
𝐸

2(1+ 𝜈) . (30)

The elastic force is obtained by differentiating Equation (29) with respect to the nodal coordinates:

𝒇𝑒 (𝒆(𝑡)) = −𝜕𝒰𝑒

𝜕𝒆
. (31)

The procedure presented by [17] using invariant matrices is used to avoid computing a numerical quadrature
for each time that the elastic forces must be obtained, significantly improving the computational time. A
similar procedure is used to model the damping forces [18].

5.3 Mesh Assembly
The feather mesh is composed of a total of 𝑛 beam elements, connected such that the node of one element
is the starting node of the next. This results in a total of 12(𝑛+1) nodal coordinates per structure. Thus, the
nodal coordinates of the 𝑖th feather are defined as:

𝒆 (𝑖) (𝑡) =
{(
𝒆 (𝑖)1,𝐴

)⊤ (
𝒆 (𝑖)2,𝐴

)⊤
. . .

(
𝒆 (𝑖)
𝑛,𝐴

)⊤ (
𝒆 (𝑖)
𝑛,𝐵

)⊤}⊤
. (32)

5.4 Flapping Motion
The flapping pattern is defined according to [1]. The smooth triangular function is used to parameterize the
flapping motion:

𝛼𝐹 (𝑡) =
𝑎𝐹

sin−1 (𝐾)
sin−1 (𝐾 sin (𝜔𝐹 𝑡)) , (33)

where 𝑎𝐹 is the flapping amplitude, 𝜔𝐹 is the flapping angular frequency, and 𝐾 ∈ [0,1] is a smoothing
parameter. The pitch motion has the same angular frequency and is defined by the following function:

𝛼𝑇 (𝑡) =
𝑎𝑇

tanh𝐶𝜂

tanh
(
𝐶𝜂 sin (𝜔𝐹 𝑡 −𝜙𝑇 )

)
+ 𝛼̄𝑇 (34)

where 𝑎𝑇 denotes the pitch amplitude, 𝛼̄𝑇 the incidence angle of the feather, 𝐶𝜂 is the pitch smooth param-
eter, and 𝜙𝑇 ∈ [0,2𝜋[ defines the phase difference of the pitch with respect to the flapping motion. Although
the flapping pattern is defined by aerodynamic requirements, we vary the phase 𝜙𝑇 and evaluate the kine-
matic ventilation parameter to gain insight into whether a given flapping pattern is favorable for opening the
ventilation channels.
For a given flapping pattern, each point along a feather yields an optimal phase in terms of the kinematic
ventilation parameter. Figure 6 shows the influence of the phase on the kinematic ventilation parameter.
Figures 6a and 6b illustrate the flapping pattern and the obtained kinematic ventilation parameter for a pitch
in phase with the flapping motion, i.e., 𝜙𝑇 = 0◦. Note that the parameter is positive during the first half of the
stroke.
On the other hand, Figures 6c and 6d illustrate the phase of 𝜙𝑇 = 120◦. Note that the kinematic ventilation
parameter is positive for most of the cycle, with negative values occurring slightly before the stroke reversal.
Parameters other than the phase, such as the pitch amplitude, can also be adjusted to increase the duration;
however, this is a subject of analysis from other disciplines.
The flapping motion is imposed on each feather by prescribing both the position and orientation of the
attachment node. The position of node A from the 𝑖th feather is prescribed in terms of the flapping motion
as:

𝒓 (𝑖)1,𝐴(𝑡) = 𝑻⊤
𝛼𝐹

(𝑡)
ℬ1

𝒓𝑃
(𝑖) , (35)

8
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Figure 6 – Flapping pattern and the kinematic ventilation parameter considering a point at 𝑒𝑦 = 0.2m,
𝑙𝑝 = 0.3m. (a) and (b) are obtained considering a phase of 𝜙𝑇 = 0◦, and (c) and (d) for 𝜙𝑇 = 120◦.

and the slopes corresponding to the columns of the transformation matrix:[
𝜕𝒓 (𝑖)1,𝐴(𝑡)
𝜕𝑥

⊤
𝜕𝒓 (𝑖)1,𝐴(𝑡)
𝜕𝑦

⊤
𝜕𝒓 (𝑖)1,𝐴(𝑡)
𝜕𝑧

⊤]
= 𝑻⊤

𝛼𝐹
(𝑡)𝑻⊤

𝛼𝑇
(𝑡)𝑻⊤

𝛼𝐺
(𝑡). (36)

5.5 Contact Monitor
The points of the contact surfaces are monitored using the closest point projection [19, p.114]. The upper-
surface of the distal feather is denoted as the contactor surface Γ

(2)
𝑐 , whereas the lower-surface of the

proximal feather is the target surface Γ
(1)
𝑐 . For a point 𝑖 located at 𝒓 (2)

𝑖
∈ Γ

(2)
𝑐 , the minimum distance from

the target surface 𝒓 (1) ∈ Γ
(1)
𝑐 is obtained by solving

𝒙 (1)
𝑐

(
𝒙 (2)
𝑖

)
= argmin

𝒙(1) ∈Γ (1)
𝑐

∥𝒓 (2) (𝒙 (2)
𝑖

) − 𝒓 (1) (𝒙 (1) )∥. (37)

The gap is the projection from the points relative position to the normal direction from the target surface,
obtained according to the following equation [20]:

𝑔𝑖

(
𝒓 (1)

(
𝒙 (1)
𝑐

(
𝒙 (2)
𝑖

))
, 𝒓 (2)

(
𝒙 (2)

))
=

(
𝒓 (2)

(
𝒙 (2)

)
− 𝒓 (1)

(
𝒙 (1)
𝑐

(
𝒙 (2)

)))⊤
𝒏(1) , (38)

9
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where 𝒏(1) denotes the unit vector normal to the target surface at 𝒙 (1)
𝑐 . Thus, if the set of points 𝒙 (2)

𝑖
∈ Γ

(2)
𝑐 ,

𝑖 = 1, . . . ,𝑚, are monitored, the following gap vector is defined:

𝒈𝑛 =



𝑔1

(
𝒓 (1)

(
𝒙 (1)
𝑐

(
𝒙 (2)

1

))
, 𝒓 (2)

(
𝒙 (2)

1

))
𝑔2

(
𝒓 (1)

(
𝒙 (1)
𝑐

(
𝒙 (2)

2

))
, 𝒓 (2)

(
𝒙 (2)

2

))
...

𝑔𝑚

(
𝒓 (1)

(
𝒙 (1)
𝑐

(
𝒙 (2)
𝑚

))
, 𝒓 (2)

(
𝒙 (2)
𝑚

))

. (39)

The impenetrability condition states that 𝑔𝑖 ≥ 0, 𝑖 = 1, . . . ,𝑚 [20, p.380], implying that the contactor point
cannot cross the target surface. However, the continuous contact framework allows for a local indentation
in the contact region by simultaneously including a set of opposing forces on each point [21]. This model
requires accurate estimates of the contact-time to avoid unrealistic indentation that results in excessive
contact forces [22].

5.6 Event Detection
The event detection procedure consists of monitoring the signal from Equation 39. Whenever the sign of
any component of 𝒈𝑛 changes, an event occurs, which can be points contacting or separating. The following
expression is evaluated for every component of the gap vector.

𝑔𝑖 (𝑡𝑘)𝑔𝑖 (𝑡𝑘+1) < 0. (40)

After the event is detected, two instants are identified: the pre-event −𝑡, and the post-event +𝑡. In between
these instants occurs the event at 𝑡𝑐. The solution obtained at +𝑡 is inaccurate, as the system dynamic
changed after 𝑡𝑐. Thus, the following procedure is used to obtain 𝑡𝑐.
Consider the event detected for the 𝑖th component of Equation (39). The approach velocity, ¤𝑔𝑖, between the
contactor and the target points is obtained by differentiating Equation 38 with respect to time 𝑡. Assuming
the approach velocity approximately constant between −𝑡 and 𝑡𝑐, the following equation is obtained by a first
order expansion of 𝑔𝑖 at −𝑡:

ℎ𝑒 = −
𝑔𝑖

(−𝑡)
¤𝑔𝑖
(−𝑡) , (41)

where ℎ𝑒 is the estimated time-step required for the system to intercept 𝑔𝑖 = 0.
Thus, after an event is detected at +𝑡, the system configuration is rewind to−𝑡. Then a single integration step
with ℎ𝑒 is performed.

5.7 Contact Forces
The contact force is applied to the nodes as generalized forces [23]. For each component of Equation (39),
a corresponding contact force is computed in terms of the penetration amount and the material properties
as:

𝒇𝑐 =

{
−𝐾𝑐𝑔𝑖𝒏

(1) , if 𝑔𝑖 < 0,
0, if 𝑔𝑖 ≥ 0.

(42)

where 𝐾𝑐 is the local contact stiffness. The generalized forces acting on the proximal and distal feathers
are, respectively:

𝒇 (1)𝑐 = −𝑺 (1) (𝜉𝑐, 𝜂𝑐, 𝜁𝑐)⊤ 𝒇𝑐, (43)

𝒇 (2)𝑐 = 𝑺 (2) (𝜉𝑟 , 𝜂𝑟 , 𝜁𝑟 )⊤ 𝒇𝑐 . (44)

5.8 Equation of Motion
The equation of motion for each nodal coordinate of the 𝑖th feather is obtained by applying the Euler-Lagrange
equation to the Lagrangian functional ℒ = 𝒯 −𝒰𝑒 [24]. The result is the following set of second-order
differential equations that model the dynamics of the flexible feather model:

𝑴 (𝑖) ¥𝒆 (𝑖) (𝑡) = 𝒇 (𝑖) (45)
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𝒇 (𝑖) = 𝒇 (𝑖)𝑒 + 𝒇 (𝑖)
𝑑

+ 𝒇 (𝑖)𝑐 , with 𝒇 (𝑖)𝑒 being the vector of nodal elastic forces obtained in Equation 31, 𝒇 (𝑖)
𝑑

the
vector of damping forces, and 𝒇 (𝑖)𝑐 the contact nodal forces from Equation 43 or 44. This system of equations
is split into two sets, representing the prescribed coordinates and free coordinates denoted by the subscript
𝑝 and 𝑓 , respectively: [

𝑴 (𝑖)
𝑝𝑝 𝑴 (𝑖)

𝑝 𝑓

𝑴 (𝑖)
𝑓 𝑝

𝑴 (𝑖)
𝑓 𝑓

] {
¥𝒆 (𝑖)𝑝

¥𝒆 (𝑖)
𝑓

}
=

{
𝒇 (𝑖)𝑝 + 𝒇𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝒇 (𝑖)
𝑓

}
. (46)

Since the acceleration of the prescribed nodes is known due to the imposed flapping motion, the remaining
𝑓 variables are solved by the following equation

𝑴 (𝑖)
𝑓 𝑓

¥𝒆 (𝑖)
𝑓
(𝑡) +𝑴 (𝑖)

𝑓 𝑝
¥𝒆 (𝑖)𝑝 (𝑡) = 𝒇 (𝑖)

𝑓
(𝒆 (𝑖) (𝑡)) (47)

6. Results
The feathers consist of two identical rectangular beams that overlap and are subjected to an imposed flapping
pattern. The equation of motion is solved using the implicit generalized-𝛼 method [26]. It is unconditionally
stable and allows for the use of large time steps by filtering high-frequency modes associated with the finite
element mesh [27]. The value and description of the material and algorithmic parameters are given in Table 2.

Table 2 – Parameters employed for evaluating the ventilation dynamics.

usage symbol description value unit

material properties
𝜌 specific mass 2810 kg / m3

𝐸 Young modulus 71.7 GPa
𝜈 Poisson coefficient 0.0 -

geometry

𝑙𝑝 attachment position 0.2 m
𝑙 𝑓 feather length 0.3 m
𝑤 feather width 25 mm
ℎ feather height 0.5 mm
𝑤𝑜 feather overlap 0.15

flapping pattern

𝑎𝐹 flapping amplitude 30 degrees
𝑎𝑇 pitch amplitude 15 degrees
𝛼̄𝑇 mean pitch 10 degrees
𝜔𝐹 flapping angular frequency 4𝜋 rad/s
𝐾 smoothing parameters 0.95 -
𝐶𝜂 pitch smooth 0.4 -

contact 𝐾𝑐 contact stiffness 20 N/m
mesh 𝑛 number of elements 10 -

algorithic parameters
ℎ time step 0.01 sec
𝜌∞ spectral radius 0.8 -
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Figure 7 – Modal analysis from the feather structure. (a) illustrate the convergence of the 10 first
natural frequencies of the mesh and an inset illustrating the boundary condition. (b) shows the

frequency response function of the vertical displacement of nodes along the feather.

6.1 Flexible Feathers
The trajectories of the flexible feathers without the contact model have been obtained. Figure 8 shows the
position of the tips of the proximal and distal feathers. During the first second of the flapping cycle, the
flapping pattern is modulated using a smoothstep function. After this period, the system oscillates according
to the imposed motion. The large difference in the 𝑥 coordinate between feathers in Figure 8a correspond
to the fact that the distal feather, 𝑆2, is attached far from the flapping joint. Part of the difference observed in
Figure 8c is attributed to the increased amplitude of motion. The other part is due to the increased inertial
loads.
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Figure 8 – Trajectories of the tip of the isolated flexible feathers model.

The gap between the tip of the distal feather and the closest projection on the surface of the proximal feather
is presented in Figure 9. The positive gap indicates that the tip of the distal feather is below the surface of
the proximal feather, while the negative values indicate that the tip is penetrating the surface of the proxi-
mal feather, thus violating the impenetrability condition. The gray region in the figure illustrates when the
condition is violated. The continuous contact model is implemented to limit the physical inconsistency of the
penetrating bodies.
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Figure 9 – Gap between the tip of the distal feather and the surface of the proximal feather without
considering the contact.

6.2 Contact Feathers
The contact between feathers is modeled using the continuous contact formulation presented in Section 5.7.
The position of the tip of each feather with respect to the time is presented in Figure 10. We also show the
configuration of the system in the space at two instants of time, during the upstroke, as shown in Figure 11a,
and during the downstroke, shown in Figure 11b.
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Figure 10 – Trajectories of the tip using the contact model.
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𝑧
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m
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(a) 𝑡 = 1.35s, 𝛼𝐹 = −28.4◦, 𝛼𝑇 = 20.5◦,
¤𝛼𝐹 = −167.8◦/s, ¤𝛼𝑇 = −135.4◦/s.

0.00 0.20 −0.20
0.00−0.10

0.00
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𝑥 - [m] 𝑦 - [m]

𝑧
-[
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(b) 𝑡 = 1.58s, 𝛼𝐹 = 23.6◦, 𝛼𝑇 = −2.97◦,
¤𝛼𝐹 = 247.9◦/s, ¤𝛼𝑇 = 92.3◦/s.

Figure 11 – Snapshots of the feathers configuration during the flapping stroke. (a) and (b) shows the
structure configuration during the upstroke and downstroke, respectively.

The gap between feathers with contact is presented in Figure 12 by the solid black line. Compared with
the gap obtained by the model without contact, illustrated by the dashed red line, the continuous contact
model reduces the amount of penetration. However, the value of contact coefficient requires further tuning
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to provide an accurate measurement of the geometry of the ventilation channels during the flapping cycle.
The model in [21] introduces a damping coefficient that depends on the velocity before impact and the
coefficient of restitution.
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Figure 12 – Gap between the tip of the distal feather and the surface of the proximal feather using
the continuous contact model.

The geometry of the ventilation channels is measured by positioning an observer rotating solidary with the
feather and pointing to the

ℬ3
𝑦 direction. Then, the deflection of each feather can be visualized in the

ℬ3
𝑥
ℬ3
𝑧

plane. Figure 13 shows the side of the distal feather and the projection of the proximal feather along the
local coordinate system. The open and closed ventilation channels are presented in Figures 13b and 13a,
respectively.
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Figure 13 – Deflection of feathers 𝑆1 and 𝑆2 seen by an observer looking at the
ℬ3
𝑥
ℬ3
𝑧 plane. (a)

illustrate the closed channel between each feather and (b) the channel open.

The area between the curves in Figure 13 gives a measure of the geometry of the ventilation channels. For
each instant of time, the absolute difference of the areas computed for each feather is presented in Figure 14.
The negative values correspond to when the distal feather penetrates the surface of the proximal feather.
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Figure 14 – Area of ventilation across the feathers. The areas in blue represent the downstroke
whereas the areas in orange represent the upstroke.

7. Conclusion
The purpose of this work is to investigate the mechanism of formation of ventilation gaps observed during
flight of feathered birds. This ventilation strategy is expected to increase the overall efficiency of a feathered
flapping-wing UAV. The upstroke phase of the flapping cycle contributes negatively to the generation of thrust
and lift forces. Therefore, by reducing the influence of this phase, an increase in the mean lift and thrust
should be achieved.
The flapping motion induces an inertial load that increases for feathers positioned further from the flapping
joint. In a feather pair, the increased load on the distal feather is balanced by a corresponding increase in its
deflection, thus separating it from the proximal feather and allowing air to easily flow through this created gap.
This effect is restricted during the downstroke because the overlap stops the distal feather from deflecting
more than the proximal feather.
A kinematic analysis shows that modulating the phase of the pitch motion is an effective way to tailor the
inertial loads so that the ventilation gaps open and close during the appropriate strokes. However, the
kinematic model is limited because it essentially ignores the deformation on each feather. Therefore, a
dynamic analysis is required to obtain and measure the desired ventilation gaps.
The Absolute Nodal Coordinate Formulation is used to model feather flexibility under an imposed flapping
pattern. We monitor the gap between the distal feather and the proximal feather surface as a measure of
the ventilation effect. Our findings demonstrate that the flexible model captures the separation between the
feathers during both the upstroke and the downstroke. However, the obtained negative gaps are physically
inconsistent due to violation of the impenetrability condition.
To solve this issue, the approach consists of monitoring the gap function; when a negative value is first
detected, the system is rewound to the previous configuration to obtain an accurate estimate of the contact
and loss of contact instants. This procedure avoids computing unrealistically high values of penetration that
degrades the stability of the numerical solver. After the instant of contact is detected, the contact forces
are evaluated to obtain the response of the system. However, further studies are required to determine the
contact stiffness and model the coefficient of restitution during the impact.
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