34™ Congress of the
International Council of

LARGE LANGUAGE MODEL IN AIRCRAFT SYSTEM DESIGN

Petter Krus

Department of Management and Engineering, Linkdping University
58183, Linkdping, Sweden

Abstract

The introduction of large language models in the form of ChatGPT at the end of 2022, marked the beginning
of the widespread democratization of artificial intelligence. This is spawning a entirely new area of research
into application of this technology. This paper presents a novel approach to generate configuration rules, and
design concepts using ChatGPT. The objective is to demonstrate how large language models models can aid
in automating the engineering design process. In this paper the configuration of aircraft hybrid propulsion
systems is studied as an example. It is shown how a system configuration can be generated and presented
in the form of UML component diagrams. Large Language Models usually have an element of randomness
inserted in their response. This makes them inherently non-deterministic, and the result is not always correct.
Therefore, statistical properties are studied such that the probability of getting a correct result can be estimated,
and prompts can be tweaked to provide the best result. This is particularly useful when a prompt is separated
into a general part that can be reused for similar tasks, and one specific part.

It is also shown how these models can used in consecutive step to formulate a simulation model and execute
it within the framework of ChatGPT-4, or be exported to more dedicated simulation models for more advanced
simulations. Also optimization can be included. The study shows promising results, and it shows that there
is an immense potential for Al in engineering system design, and we are just in the beginning of applying this
tools.

Keywords: Large language models, aircraft design, aircraft systems, propulsion systems, modelling and sim-
ulation

1. Introduction

Large Language Models (LLMs) have shown a great capability as few-shot or even single shot learner
[3]. This has opened new avenues in various fields, including engineering system design [4]. This
paper explores the integration of LLMs in the architectural design of fluid power systems used in
construction machinery. The primary contribution of this paper is demonstrating how LLMs can be
employed to transform textual inputs into formal, architectural definitions for system design.

Design rules are fundamental in engineering disciplines, serving as the backbone in Knowledge
based engineering (KBE) for creating complex systems. While traditional methods for generating
design rules are effective, they can be time-consuming and labor-intensive to set up. This paper aims
to explore the use of ChatGPT for automating this process.

Configuration rules are fundamental in engineering disciplines, serving as the backbone for creating
complex systems that are both functional and reliable. Automating the process of generating these
rules can significantly streamline the design phase, reducing the potential for human error.

The introduction of configuration rules means that the design space can be drastically restricted by
removing the unwanted parts, thereby making the conceptualization much more efficient, by auto-
matically suggest a concept from a set of requirements. For this, tools like ChatGPT offer promising
potential for such automation.

ChatGPT excels in understanding natural language queries and generating human-like text responses.
It has a strong ability to interpret complex queries and provide detailed, coherent answers. ChatGPT

Large Language Models in Aircraft System Design

can generate and understand code in various programming languages, including Python. This is
particularly relevant in this paper where there is a focus on generating UML diagrams and Python
code for system designs. ChatGPT can learn from examples and refine its outputs based on user
feedback. This means that we can have pre-defined text that can be used as part of a more specific
prompt. It is also possible to upload files to customized GPT for specific purposes.

Here, we explore the feasibility and methodology of using ChatGPT to automatically generate design
rules, with an aircraft propulsion system as a case study. Through this example, we can go through
the process of defining configuration rules, translating them into UML diagrams, and ultimately gen-
erating Python code that can produce generic design diagrams for varying system configurations.

2. Generating System Architecture

In the literature a range of concepts can be found. Here we used [6], [5], [1], [2]. These form the basis
to create a set of instructions for the Large Language Model, in this case ChatGPT-40. Here is and
example for generating a system architecture for a hybrid propulsion system. First we can just ask
ChatGPT-40 to generate code for UML component diagram for PlantUML using the following prompt.

User:"Generate a hybrid electric aircraft system with a fuel cell. Show the result as code for a UML-
component diagram in PlantUML" " PlantUML have a straightforward textual format that can be con-

veniently visualized.

Hybrid Electric Aircraft System\

=

£
Fuel Cell System

‘ Battery Pack

Stores/Supplies

Electricity Power Dutput

EI}‘ Supplies Power){ £

‘ Power ContrelUnit [~~~ 7~~~ 77 Auxiliary Systems

Controls Power

Y

|
Electric Motors

Drives

A 4

Propulsion System

E ‘

Figure 1 — Hybrid propulsion system with fuel cell. This diagram is generated with a single prompt in
ChatGPT-4

Even though it is impressive that it provide a solution there are some things we would like to make
more well defined. E.g. what type of information that is transferred between the component. Also
there are different styles that the diagram can be generated in, and they may not look the same from
time to time. Furthermore, there might be more serious errors, components missing or not connected.
E.g., In this case there is no hydrogen tank connected to the fuel cell. In order to make the process
more reliable a pre-defined reusable prompt can be uploaded first. This prompt can also be part of a

2

Large Language Models in Aircraft System Design

Custom GPT, which is a facility provided as part of ChatGPT-4 subscription. This is a way in which
specific information can be uploaded that make the Custom GPT more qualified to solve specific
tasks within a field.

An example of such a prompt is shown in Appendix I.

2.1 Prompt Engineering

Here is an example of a prompting to generate a system definition as UML code (for PlantUML),
after the prompt in Appendix | has been uploaded. A key feature in this prompt is the use of micro-
templates that shows examples of how components can be defined. Then this prompt is added:

User: "Generate a hybrid aircraft concept with fuel cell. Use the uploaded prompt and represent the
system as UML code."

The resulting diagram is shown in Fig.

Hybrid Aircraft System with Fuel Cell Propulsion

] 1]
Hydrogen Storage PdotM-> PdotM Fuel Cell PEI -> PEIL DC-DC Controller
PdotM PdotM, PEI PEI1, PEI2, ctrl

PEI2 -> PEI

]

Battery Pack 50c -> 50¢

PEl, sOC,U

Control System
Input, SOC, Refs, ctrl

PEl -> PEI1 ctrl-> ctrl

PMR-> PMR PMX-= PMX

Electric Motor
PEIl, PMR, ctrl

Propeller Aircraft Body
PMR,PMX PMX, Aero, states

]
Figure 2 — Hybrid electric aircraft propulsion system with fuel cell
Modifying the system to have two motors we simply ad this prompt:

User:"Modify the system to have two motors and batteries”

The resulting diagram is shown in Fig. [3]

] |
Hydrogen Storage PdotM-> Pdoti Fuel cell
PdotM PdotM, PEI

ctrl-> ctrl

Hybrid Aircraft System with Dual Motor and Battery Configuration

]
Control System
Input, SOC, Refs, ctrl

ctrl-> ctrl

DC-DC Controller 1
PEI1, PEI2, ctrl

DC-DC Controller 2
PEI1, PEI2, ctrl

50C ->50C ctrl-> ctrl ctrl-> ctrl 50C -> 50C

PEI2 -> PEI PEI2 -> PEI

£1]
Electric Motor 2 PEI > PEIL Battery Pack 2
PEI, PMR, ctrl PEI, SOC, U

Battery Pack 1 PEI > PEIL

PEIl, SOC. U

Propeller 2
PMR PMX

]]
Electric Motor 1 PMR-> PMR Propeller 1
PEI, PMR, ctrl PMR PMX

Aircraft Body
PMX, Aero, states

Figure 3 — Aircraft propulsion system with two electric motors.

Of course the Language model is not restricted to the information it has been fed with in the prompt.
We can also ask it to ad auxiliary systems to the fuel cell such as "Air Supply" and "Cooling System",
and it incorporate it in the right place, see Fig. 4]

Large Language Models in Aircraft System Design

Hybrid Aircraft System with Dual Motor, Air Supply and Cooling

Flow -> Flow

]
Air Supply System
Flow, Filter

]
Hydrogen Storage Fuel Cell
PdotM Pdoth->Pdofifior M, PEI, Heat

ctrl-> ctrl

1
> PEIL

L}]
Electric Motor 1 Propeller 1
PEl, PMR, ctrl PMR->FMRoMR pMx

PEI2 ->"Rg] - 50C ->50C

&1
Cooling System
Coolant, Heat

]
DC-DC Controller 1
PEI1, PEI2, ctrl

Control System
Input, SOC, Refs, ctrl

Propeller 2
PMR,PMX

DC-DC Controller 2 Electric Motor 2
PEI1, PEI2, ctrl PEI, PMR, ctrl

PEIZ -> PE| PEl -> PEIL__~
g

Battery Pack 2
PEI, 50C, U

Battery Pack 1
PEl, SOC, U

Aircraft Body
PMX, Aero, states

Figure 4 — Hybrid electric aircraft propulsion system with fuel cell with auxiliary systems, air supply
and cooling system.

Then we could try to make a system with a gas-turbine driven generator instead of a fuel cell. This
will yield in the diagram in Fig. [5]

Hybrid Aircraft System with Gas Turbine-Driven Generator

1
Fuel Tank
PdotM

Pdotw -> Pdoth
e e [] o [©
Gas Turbine PMR -> MR Generator PEI->PE ' DC-DE Controller

PdotM, PMR ‘ ’| PMR, PEI ‘ " PEIL, PEI2, DCDCctrl
: DCDCetrl -> DCOCetrl “\PEI2 -> PEI
] a a a1

Control System S0C -> 50C Battery Pack PEI -> PEI Electric Motor PMR -> PMR Propeller

Input, SOC, DCDCctrl, ctrl PEI, SOC, U PEI, PMR, ctrl PMR,PMX

PMX - PMX

]
Aircraft Body
PMX, Aero, states

Figure 5 — A hybrid propulsion system with gas-turbine driven generator.

2.2 From Configuration Rules to Python Code: A Process Outline

Another way to further increase the reliability of the configuration is to have Python code generated
that can generate the different possible systems from some input variables. This has been shown in
[7].Interestingly ChatGPT-4 is quite good at generalizing from a few examples and once the code has
been tested and validated, it can be used as a reliable way to generate new concepts.

The following steps outline the process that culminates in the generation of configuration program in
Python that implements the design rules for a specific type of systems.

1. Define Configuration Rules:

The initial step involves defining a set of configuration rules that guide the architecture and
functionalities within the system. For instance, in an aircraft propulsion system, these rules
might detail the types and functions of various components like batteries, fuel cells, motors
etc, as well as their interactions. Also some small examples in the form of micro-templates
are included to show how the result should be presented (here code for UML (Unified Modeling
Language) component diagrams in PlantUML). For the aircraft actuation system it would include
example of components, and rules how they should be interconnected.

2. Validate Rules with UML Diagram:
After the configuration rules have been set, they are validated using a UML diagram generated
by ChatGPT, This serves as a graphical representation of the system and aids in manual vali-
dation of the prompt for the configuration rules. The prompt may have to be reiterated until the
result is satisfactory.

Large Language Models in Aircraft System Design

3. Use ChatGPT to generate Python configuration program:
By instructing ChatGPT with a prompt to understand the design rules and their logical im-
plementation, it can then produce Python configuration code that adheres to these rules and
generates UML-code, with a specified sets of degrees of freedom.

4. Testing and Validation:

The Python code generated undergoes testing to ensure its adherence to the configuration
rules. This validation includes using different inputs to generate different system configuration
to be represented as UML diagrams. These may lead to reiteration of the earlier steps.

5. Finalization:

Upon successful testing and validation, the Python configuration code is finalized. It now serves
as an automated tool for implementing the design rules, thus streamlining what would typically

be a manual design process.

The process is indicated in the Sequence diagram in Fig. [6]

—
[
Ly

AN

User
i

| Design Rules ‘ | ChatGPT ‘ ‘ UML Diagram ‘

1. Define Rules

Insert Rules
e

2. Insert Test Case

-
T >

UML diagram for validation

Generate UML
—_——

3
.3 ;
|

Reiteration?

Generate Code

‘ Python Code‘ ‘ Finalization

2. Insert Test CE!SIES

T
==

|

T
I
I
i
|
|
I
I
i
|
|
I
i
i
|
I
I
i
|
|
I
i
i
|
I
I

=

|

|

| Validation Successful

< 4. Testing and Validation

|
User
Y

Ly

| Design Rules ‘ | ChatGPT ‘ ‘ UML Diagram ‘

.
>

A

‘ Python Ccde‘ ‘ Finalization

Figure 6 — UML Sequence Diagram illustrating the interaction process from configuration rules to
Python configuration code.

The result of this process when applied to the aircraft propulsion system is a Python configuration
program that can generate concepts from the resulting design space. The usage is exemplified below

Example: Create a gas turbine aircraft system with FAR25 certification
system = create_system("Gas Turbine Aircraft System",

print (system.generate_plantuml ())

3. Example: Aircraft Hydraulic Actuation System
Another Example is the configuration of aircraft actuation system for e.g. the primary flight control
system. This involves actuation of ailerons, elevators and rudder. in order to ensure redundancy
there are two parallel circuits connected to the functions, so that, e.g., an elevator has two actuator

connected to it in case of failure in one of them.

primary_fuels=["gas_turbine"

Large Language Models in Aircraft System Design

a 1
Fuel Tankl Control System
PdotM

Input, SOC, ctrl

]
Fuel Tank2
PdothM

PdotM - PdotM . ctrl - ctrl ~etrl -t PdotM - ot

1

1
Gas Turbine2
PdotM, PMR, ctrl

PMR - PMR IPMR - PMR

) [
Electric Motor Gengtl PEL-PEL | Batteryl
PEL, PVR, ctrl PEL, SOC

Gas Turbinel
PdotM, PMR, ctrl

Electric Motor Gengt2 PEL-PEL | Batteryz PEL-PEL
PEL, PMR, ctrl

‘ PEL, SOC ‘

Electric Motor Gen2
‘ PEL. PMR, ctrl

PMR - PMR1
]
Electric Motor Gen1 Gearbox2
PEL, PMR, ctrl PMR1, PMR2
PMR2 - PMR
Gearbox1
PMR1, PMR2
()
pMRz - pMR | Propellerz
PMR, PMX

propellerl
PMR, PMX

PMX - PMX

Alrcraft Body
PMX, Aero, states

Figure 7 — Series hybrid generated from the example, by the generated Python configuration code

When a satisfactory program has been generated it can be used to create .i.e. a lager system than

in the training example. Below is an example of the usage of the code. Here also inboard ailerons
have been added.

Example usage:

functions = ["Aileron Left", "Aileron Right","Inboard Aileron Left",

"Inboard Aileron Right", "Elevator Left",
"Rudder"]

circuits = ["Circuit 1",

"Elevator Right",
"Circuit 2"]

plantuml_code = generate_plantuml (functions,

circuits)

=]
Pressure Controlled Pump
PR

wlator \
3 \
on hon \MP/MR A Vi
\
Sy . \
— \
\ P — \
‘ ~—— | \
X e N eor | \
~_ - T\
ervo Val - Servo Valve ~ Servo Valve Servo Valve Servo Valve
Ero BRI B B B
L. | {
SN - fama -
/ LY / \
= = = o
Cyiner Cyiner Cyiner oy
e e e et
> T a] =] s
. A — . —
A B eron Rlgrt B et s g BES

Figure 8 — Actuation system generated from generated configuration program in Python

3.1 Expanding a Configuration Code

We can then continue to ad additional functionality to the Python program step by step. E.g. we can
ad the possibility to have additional functions by prompting

Large Language Models in Aircraft System Design

Prompt: "Also ad the possibility to have additional actuators (like flaps and landing gear) that are
using a subset of the circuits".

Example usage:

functions = ["Aileron Left", "Aileron Right", "Elevator Left", "Elevator Right",

additional_actuators = {
"Flaps Left": [1],
"Flaps Right": [1],
"Landing Gear Nose": [2]
"Landing Gear Left": [2]
"Landing Gear Right": [2

]
}

circuits = ["Circuit 1", "Circuit 2"]

Figure 9 — Actuation system with extra functions (flaps and landing gear) added

4. Simulation

The generated UML code can be used as input to define a simulation model. This is just a matter
of mapping the components to the corresponding component in a simulation library of the simulation
software, and to map the connections between the components. In this example, a notation has
been forced on ChatGPT so that components have ports. Ports can have more than one variable
going through them and they can be bi-directional. This is supported in modern simulation software
such as Dymola, Simscape, OpenModelica and Hopsan. Of course more information has to be
added such as parameter values for the component and setting up and defining the simulation case.
No doubt, these tools are likely to adopt Al as part of the user interface, but there is also another
possibility. Since ChatGP-4 can generate and execute Python code directly, it is also possible to
generate simple simulation models directly inside ChatGPT. Here we could try to just simulate the
propulsion system in cruise condition, and with just battery electric propulsion.

To generate this the following prompt can be used.

User: Make UML code for a simulation model of this system. It should also include a simulation
manager that controls the simulation and connects to all the component models. Also ad a speed
control system that regulates the motor to let the aircraft follow a reference speed with a feedback
from the aircraft. (We also need to add a little more detail prompt for the aerodynamics model).

The resulting diagram is shown in Fig. [T0]

Simulation Manager is the central component responsible for controlling and managing the simula-
tion. It has connections to all other components to manage their states and control signals. Aircraft
Body, Battery, Electric Motor, and Propeller are represented as individual components, each with
their specific ports and attributes. The Simulation Manager has control and management links to all
the components, indicating its role in the simulation process.

7

"

Large Language Models in Aircraft System Design

]
Simulation Manager
Control, Data

Data-= 50C Control-= RefSpeed

£
Control-=> ctrl Speed Control System
Refspeed, Feedback, ctrl

Data-= states

£

Battery ctrl-= ctrl Speed-= Feedback
PEI, SOC

4] | 4]
PMR-=> PMR Propeller PMX-> PMX Aircraft Body

Electric Motor
PEIl, PMR, ctrl PMR,PMX PMX, Aero, states, Speed

Figure 10 — Simulation model for a battery electric aircraft.

This UML diagram effectively illustrates the structure of a simulation model for a battery electric
aircraft, highlighting the interaction between the simulation manager and the component models.
Finally we need to set up the simulation in Python and to run it. This is done by instructing ChatGPT
what equations to use. We can actually do much of this in a dialogue with ChatGPT. However, we
can also load a pre-defined prompt that is shown in Appendix II.

With this we can ask ChatGPT-4 to set up a simulation model. Admittingly this takes a few correcting
prompt to get everything satisfactory, not least regarding parameter values where we can start with
asking ChatGPT for reasonable values to start with. Anyway after some iterations we can arrive to
the simulation results in Fig. Obviously we can also ask ChatGPT also to do optimization. This
shows that conceptual design to a great deal can be carried out inside ChatGPT.

State of Charge Over Time Speed Over Time
0
100 ol
95
_ 90f 7 80
& E
o B85 s
g g0
w
80 &
75 60
70

0 500 1000 1500 2000 2500 3000 3500 0 300 1000 1300 2000 2500 3000 3500
Tirne (s) Time is)
Power Consumption Over Time Thrust Over Time
10000+
500+
= 07 8000+
= =
= 00t =
H = 6000F
S 350 =
300 A000 - ’
Z50¢ i i L H H . I I H
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Time (s) Time (s)
Figure 11

Large Language Models in Aircraft System Design

5. Discussion

The results indicate that large language models like ChatGPT have the potential to significantly con-
tribute the process of conceptual design. However, there are limitations, e.g. the capability to input
very complex rules. This can be mitigated by working iteratively and gradually increase the complex-
ity. In particular, generating Python code for the design rules and then use ChatGPT to build on the
code generated in the previous step for another step, where additional rules are added seems a very
useful strategy. Here the output generated was code for UML component diagrams in PlantUML.
This is a very simple format that was selected for it minimalist format and ease of use. however, other
format can of course als obe used.

The fact that a system architecture can be defined in this way meant that it can be manipulated and
and be handed over e.g., to perform system simulation. There is a fairly straightforward process
of mapping components in the UML diagram to components in the library of a simulation package.
However, very intriguing is also the possibility to make simpler simulations inside ChatGPT-40 that
can already be done for simple system, and this capability is only likely to improve.

5.1 Conclusions

In this paper the use of GPT-40 for generating configuration rules coded in software is demonstrated.
The examples are hybrid aircraft propulsion system and an aircraft actuation systems. The method
involves defining design rules, validating them with UML diagrams, and coding them in a configuration
program in Python. It was also shown how a simulation simulation model (of an electric aircraft) could
be used to simulated inside ChatGPT using the built in Python environment. It shows that Large
language models can be expected to have a profound impact on system design, and at this point we
are only in the beginning.

6. Copyright Statement

The authors confirm that they, and/or their company or organization, hold copyright on all of the original material
included in this paper. The authors also confirm that they have obtained permission, from the copyright holder
of any third party material included in this paper, to publish it as part of their paper. The authors confirm that
they give permission, or have obtained permission from the copyright holder of this paper, for the publication
and distribution of this paper as part of the ICAS proceedings or as individual off-prints from the proceedings.

References

[1] K. Abu Salem, V. Cipolla, G. Palaia, V. Binante, and D. Zanetti. Conceptual Study of Hybrid-Electric Box-
Wing Aircraft Towards the Reduction of Aviation Effects on Local Air Quality and Climate Change. In 33rd
Congress of the International Council of the Aeronautical Sciences, ICAS 2022, volume 2, pages 787-811,
2022.

[2] A. Batra, R. Raute, and R. Camilleri. Series or Parallel Hybrid-Electric Aircraft Propulsion Systems? Case
Studies of the Atr42 and Atr72. In 33rd Congress of the International Council of the Aeronautical Sciences,
ICAS 2022, volume 2, pages 812-827, 2022.

[3] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, |. Sutskever, and D. Amodei. Language models are few-shot learners. Advances in Neural
Information Processing Systems, 2020-Decem, 2020.

[4] K. Ma, D. Grandi, C. Mccomb, and K. Goucher-Lambert. Conceptual design generation using large lan-
guage models. arXiv, abs/2306.0:1-12, 2023.

[5] V. Marciello, M. Ruocco, F. Nicolosi, and M. Di Stasio. Market Analysis, Tlars Selection and Preliminary
Design Investigations for a Regional Hybrid-Electric Aircraft. In 33rd Congress of the International Council
of the Aeronautical Sciences, ICAS 2022, volume 1, pages 587-606, 2022.

[6] F. Nicolosi, V. Marciello, V. Cusati, and F. Orefice. Technology Roadmap and Conceptual Design of Hybrid
and Electric Configurations in the Commuter Class. In 33rd Congress of the International Council of the
Aeronautical Sciences, ICAS 2022, volume 2, pages 1298-1313, 2022.

[7] M. Pradas, Alejandro, Krus, Petter, Panarotto and O. Isaksson. Large Language Models in Complex
System Design. In Design 2024, 2024.

Large Language Models in Aircraft System Design

Appendix
This is the user pre-defined prompt used as background information for the generation of UML-
component code for aircraft propulsion system.

Aircraft Propulsion System Configuration

This section details the standard configuration for connecting components
in an aircraft propulsion system, focusing on hybrid systems that
incorporate gas turbines, fuel cells, batteries, and electric machines.

Component Descriptions

- **xGas Turbinexx: Converts chemical power (\(\dot{P}_M \)) from a fuel
source (Fuel Tank or Hydrogen Storage) into rotational power (MR). The
MR port can only be connected to one component.

— *xxFuel Cellxx: Converts chemical power (\(\dot{P}_M \)) from Hydrogen
Storage into electric power (EL).

— *xPropeller**: Converts rotational power into linear power, i.e., thrust.

- xxGearboxxx: Connects one or more rotational power sources (MR) to a
single output rotational power (MR).

- xxElectric Motor/Generator**: Converts electric power (EL) from a Battery
into mechanical rotational power (MR) or vice versa. The MR port can only
be connected to one component.

— xxBattery Packxx: A storage unit that provides electric power (EL). It
can have multiple connections.

Component Connection Principles

— xxPort Matching**: Ensure that ports on each component are connected
to ports of a similar type on other components. For example, electric
power ports (EL) should connect to other EL ports, while mass flow
ports (\(\dot{P}_M \)) should connect to other \(\dot{P}_M \) ports.
Only include components that are used.

— *xDashed Connections*x: When using dashed lines ("-[dashed]-"), do not
specify direction (e.g., up, down, right, or left).

Energy Storage Requirements

— At least one form of energy storage is mandatory in the system. This
could be Hydrogen Storage, a Fuel Tank, or a Battery Pack.

— If there is a gas turbine, it must be connected to a chemical energy
source from a Fuel Tank or Hydrogen Storage.

— Ensure there is a maximum of one energy source, in addition to the battery.

Use Requirements

- Ensure there is at least one path from an energy storage component to
the propeller through power ports, to the Aircraft Body.

10

Large Language Models in Aircraft System Design

- Ensure sufficient redundancy in the case of more than one propeller.
Power and Control Separation

— Clearly differentiate between power distribution components (like
Electric Motor Generators) and energy storage (Battery).

— The Controller regulates components (using ctrl) such as Electric Motor
Generator, Gas Turbine, and Fuel Cell, and monitors e.g., SOC in Battery.
There are also external input Refs.

Micro Templates
Here are some micro templates that show the style of the UML diagram.
Propeller Connected to an Aircraft

\ ' 'plantuml

@startuml

’ Define the components with ports

component "Aircraft Body\nPMX, Aero, states" as AircraftBody
component "Propeller\nPMR,PMX" as Propeller

’ Connections

Propeller —-down- AircraftBody: PMX- PMX

" Diagram Title

title Aircraft System with Aircraft Body and Propeller
@enduml

\\\\
Connection Between a Battery and a Motor

\'''‘plantuml

@startuml

" Define the components with ports

component "Battery\nPEL, SOC" as Battery

component "Electric Motor Gen\nPEL, PMR, ctrl" as ElMotorGen
component "Propeller\nPMR,PMX" as Propeller

component "Gearbox\nPMR1,PMR2" as Gearbox

" Connections

Battery —-right- ElMotorGen: PEL- PELI1

ElMotorGen —-down- Gearbox: PMR- PMRI1

Gearbox -right- Propeller: PMR- PMR

" Diagram Title

title Aircraft System with Electric Motor and Propeller
@enduml

\\\\
Turbo Prop Connection

\'“‘plantuml

@startuml

" Define the components with ports
component "Propeller\nPMR,F" as Propeller
component "Gearbox\nPMR1,PMR2" as Gearbox

11

Large Language Models in Aircraft System Design

component "Fuel Tank\nPdotM" as FuelTank

component "Gas Turbine\nPdotM, PMR, ctrl" as GasTurbine
’ Connections

FuelTank -right- GasTurbine: PdotM - PdotM

GasTurbine —-down- Gearbox: PMR- PMR1

Gearbox —-down— Propeller: PMR2- PMR

" Diagram Title

title Aircraft System with Gas-Turbine and Propeller
@enduml

\\\\
Fuel Cell Example

\'“‘plantuml

@startuml

" Define the components with ports

component "Hydrogen Storage\nPDotM" as HydrogenStorage
component "Battery\nPEL, SOC" as Battery

component "Fuel Cell System\nPdotM, PEL,ctrl" as FuelCell
component "Control System\nInput, SOC,ctrl" as ControlSystem
" Define connections

HydrogenStorage —-right- FuelCell: PdotM-> PdotM

FuelCell -right- Battery: PEL- PELl

Battery -[dashed]-> ControlSystem: SOC- SOC

ControlSystem -[dashed]-> FuelCell: ctrl- ctrl

" Add a title for the diagram

title Fuel Cell Connected to a Battery

@enduml

\\\\
Gas—-Turbine Generator Example

\'''‘plantuml

@startuml

" Define the components with ports

component "Fuel Tank\nPdotM" as FuelTank

component "Gas Turbine\nPdotM, PMR, ctrl" as GasTurbine
component "Generator System\nPMR, PEL,ctrl" as Generator
component "Battery\nPEL, SOC" as Battery

component "Control System\nInput, SOC,ctrl" as ControlSystem
'’ Define connections

FuelTank —-right- GasTurbine: PdotM- PdotM

GasTurbine -right- Generator: PMR- PMR

Generator -right- Battery: PEL2- PELl

Battery -[dashed]-> ControlSystem: SOC- SOC
ControlSystem —-[dashed]-> GasTurbine: ctrl- ctrl
ControlSystem -[dashed]-> Generator: ctrl- ctrl

" Add a title for the diagram

title Gas-Turbine Series Hybrid

@enduml

\\\\

System Outline and Validation

12

Large Language Models in Aircraft System Design

**xSelect maximum one non-electric energy storage.x*x

**Ensure inclusion and connection of the Aircraft Body.x*x*

**Include one battery for each electric motor generator.x*x

**Ensure gas turbines have a chemical energy source from a Fuel Tank

S W N

or Hydrogen Storage.*x
Final Solution
1. Outline the system and check it against the instructions.

2. Validate the architecture against the instructions.
3. Write the final solution as code for a component UML diagram in PlantUML.

13

	Introduction
	Generating System Architecture
	Prompt Engineering
	From Configuration Rules to Python Code: A Process Outline

	Example: Aircraft Hydraulic Actuation System
	Expanding a Configuration Code

	Simulation
	Discussion
	Conclusions

	Copyright Statement

