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Abstract

In this paper, trajectory optimization for long-range air-launched gliding vehicles using convex programming is
proposed. The nonlinear dynamics is simplified to compact form by utilizing a novel reformulation technique.
The flight-path angle and angle of-attack are expressed as functions of altitude and derivative of altitude. This
results in a logarithmic velocity dynamics and linear dynamics of altitude and altitude rate where control input
is the second derivative of altitude. Then, the optimal control problem is reformulated into second-order cone
programming(SOCP) problem by introducing new input variables. An optimal guidance command is generated
by successively solving SOCP problem. The effectiveness and performance of the proposed method are
demonstrated by numerical simulations.
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1. Introduction
Proportional navigation(PN) guidance and its variants have been successfully applied to many mis-
sile guidance problems due to their simplicity and effectiveness. In addition to reaching the targets,
PN guidance with bias command can satisfy additional constraints such as impact angle and impact
time[1-4]. The closed-form solutions are derived based on the simplified vehicle dynamics. The veloc-
ity is assumed to be constant by neglecting the aerodynamic drag, and the dynamics are linearized
using small angle approximations. Then, the analytical solution is obtained from Lyapunov func-
tion or optimal control theory with simplified dynamic models[5-7]. Many studies have demonstrated
that these closed-form guidance laws derived from simplified dynamics can be effectively applied in
realistic short-range scenarios where aerodynamic force and gravity are present. However, these
simplified models are not reasonable when the vehicles fly relatively long distances. The velocity
drastically varies during flight because of aerodynamic drag. The variable velocity and aerodynamic
forces result in highly nonlinear dynamics. The aforementioned PN- or Lyapunov-based guidance
laws result in substantial kinematic energy loss when applied to long-range scenarios and the guid-
ance performance can be significantly degraded. In worst cases, PN guidance may fail to reach the
targets.
It is important to secure sufficient velocity (or kinetic energy) at the terminal homing phase to cope
with the target maneuver or increase the effectiveness of the warhead. In order to achieve high veloc-
ity at the end, the vehicle should fly on an efficient flight trajectory while minimizing the aerodynamic
drag. This problem of maximizing the terminal velocity with nonlinear dynamics can be formulated
as an optimal control problem. To handle the highly nonlinear dynamics of long-range engagement
scenarios, new guidance methodologies should be developed. As the computational power of em-
bedded systems has increased, trajectory optimization(or direct method) has been studied as one of
the computational methods[8]. The original optimal control problems are discretized and converted
to the parameter optimization problems. These converted problems are efficiently solved through op-
timization solvers or algorithms developed in the field of mathematical programming. The calculated
trajectory solutions are used as a guidance command. Trajectory optimization can take into account
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many realistic constraints as well as nonlinear dynamics without any approximation. The guidance
command is given in numerical form rather than in closed or analytic form. Therefore, trajectory op-
timization should be performed iteratively for each guidance cycle to compensate for disturbances
occurring during flight. However, the computation time of general nonlinear programming(NLP) al-
gorithms is not bounded and unpredictable. Furthermore, NLP cannot guarantee convergence in
bounded time, which is the main obstacle to the real-time application of trajectory optimization.
As an alternative to general NLP, convex programming can solve convex problems using polynomial-
time algorithms. Since convex programming has predictable and bounded calculation time, it can be
reliably implemented in real time. Recently, many studies have been conducted to solve aerospace
control and guidance problems using convex programming. Convex programming has been ap-
plied to planetary entry[9-10], multiagent path planning[11-12], formation flying[13], powered descent
landing[14-15], missile guidance[16-18] and so on. In this paper, trajectory optimization for long-
range air-launched gliding vehicles using convex programming is proposed. The nonlinear dynamics
is simplified to compact form by utilizing a novel reformulation method. The flight-path angle and
angle-of-attack are expressed as functions of altitude and derivative of altitude, and substituted in ve-
locity dynamics. This results in compact logarithmic velocity dynamics and linear dynamics of altitude
and altitude rate where control input is the second derivative of altitude. By introducing new input vari-
ables, the dynamics are converted to input affine form. Then, the original optimal control problem is
reformulated into second-order cone programming(SOCP) problem through partial linearization and
solved sequentially until convergence. The main contributions of this paper are twofold. First, the
highly nonlinear dynamics are converted to compact form using a novel reformulation method. This
compact dynamics requires only minimal partial linearization to be transformed into SOCP problem.
The main obstacle of sequential convex programming(SCP) is the inconsistency of the linearized
dynamics. Excessive linearization causes oscillations in the iterated solution and slow convergence.
However, stable and fast convergence of SCP can be achieved using the proposed novel reformu-
lation method. Secondly, robust convergence is accomplished with crude initial guess using the
adaptive trust-region method. To alleviate the inconsistency caused by linearized dynamics, the trust
region limits the undue variation of state variables from the previous solutions. Instead of utilizing the
conventional fixed trust region, the norm of state change is bounded by slack variables. These slack
variables are augmented to the objective function with weighting parameters. The adaptive trust re-
gion can assist the stable convergence of SCP even with a crude initial guess. Numerical simulation
demonstrates the effectiveness and robustness of the proposed method.
The remainder of the paper is organized as follows. In Section 2, vehicle dynamics and constraints
are provided to formulate optimal control problem. In section 3, the original optimal control problem is
converted to a convex problem by utilizing the reformulation of dynamics and relaxation. Numerical
simulations are conducted to demonstrate the performance of the proposed method in section 4.
Finally, conclusions are given in Section 5.

2. Problem Formulation
In this section, the optimal control problem for an air-launched gliding vehicle is formulated. First,
the dynamics and constraints of glide vehicles are provided. Then, the optimal control problem is
formulated by introducing the performance index of velocity maximization.

2.1 Vehicle Dynamics and Constraints
Consider a two-dimensional engagement geometry in the vertical plane as shown in Fig.1, where
the gliding vehicle and target are denoted by M and T . Downrange, altitude, velocity, and flight-path
angle are denoted by x, h, V , and γ, respectively. Gravitational acceleration and mass are denoted by
g and m. Angle-of-attack, which is the control input, is denoted as α. Aerodynamic lift and drag are L
and D. The vehicle dynamics are given as

ẋ =V cosγ (1)

ḣ =V sinγ (2)

V̇ =−D
m
−gsinγ (3)

2



INSERT RUNNING TITLE HERE

γ̇ =
L

mV
− gcosγ

V
(4)
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Figure 1 – Engagement geometry in vertical plane

Aerodynamic lift and drag are modeled using drag polar as Eqs. (5) and (6).

L = qSrefCLαα (5)

D = qSref
(
CD0 +KC2

Lαα
2) (6)

where q = 1/2ρV 2

where q(= 1/2ρV 2) is dynamic pressure and ρ is density. Density is modeled as an exponential
function of altitude as

ρ(h) = ρ0exp
(
− h

hs

)
(7)

where hs is a density parameter that is determined by the standard atmospheric model. Then, initial
and terminal conditions are given as follows.

x(t0) = x0, h(t0) = h0, γ(t0) = γ0, V (t0) =V0 (8)

x(t f ) = x f , h(t f ) = h f , γ(t f ) = γ f (9)

The target is assumed to be located at terminal position (x f ,h f ). The vehicle’s terminal flight-path an-
gle is constrained to satisfy the desired impact angle γ f to enhance the effectiveness of the warhead.
The terminal velocity is not constrained since it is used as a performance index.

2.2 Optimal Control Problem
To ensure warhead effectiveness and sufficient kinetic energy, the terminal velocity should be maxi-
mized. The performance index for the optimal control problem is set to be

J =−V (t f ) (10)

By aggregating the vehicle dynamics, constraints, and performance index, the following optimal con-
trol problem is formulated.
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Problem A : minimize J =−V (t f )
subject to Eqs. (1)− (4), (8), (9)

(11)

It is difficult to directly solve Problem A by indirect methods such as the shooting method since
Problem A has highly nonlinear dynamics. By utilizing the reformulation of dynamics and convex
relaxation, this problem can be handled in successive convex programming frameworks. The detailed
process is explained in the next section.

3. Convex Programming Approach
In this section, the original optimal control problem is converted to a convex programming problem.
First, the dynamics is reformulated into compact form using a novel technique. Then, the convex
programming problem is derived by utilizing input relaxation and the trust-region method.

3.1 Reformulation of Dynamics
To reformulate the vehicle dynamics, the independent variable is changed to the downrange variable
x. If Eqs. (2)- (4) are divided by Eq. (1), the following dynamics is obtained.

dh
dx

= tanγ (12)

dV
dx

=−ρV Sref(CD0 +KC2
Lα

α2)

2mcosγ
− gtanγ

V
(13)

dγ

dx
=

ρSrefCLαα

2mcosγ
− g

V 2 (14)

From Eq. (12), the following relations can be obtained.

d2h
dx2 = sec2

γ
dγ

dx
(15)

cosγ =
1√(dh

dx

)2
+1

(16)

Eq. (7) can be rearranged with respect to angle-of-attack α as follows.

α =
2mcosγ

ρSrefCLα

(
g

V 2 +
d2h
dx2 cos2

γ

)
(17)

By substituting Eqs. (16)- (17) into Eq. (13), the following velocity dynamics is obtained. The derived
velocity dynamics is a function of altitude and its derivatives.

dV
dx

=−k1ρV
√

1+(h′)2 − k2
V

ρ

√
1+(h′)2

(
g

V 2 +
h′′

1+(h′)2

)2

− gh′

V

where k1 =
SrefCD0

2m
, k2 =

2Km
Sref

(18)

In Eq. (18), ()′ denotes the derivative with respect to x. Since the gliding vehicle is boosted after
being air-launched, the velocity is significantly high. From this observation, Eq. (18) is approximated
by neglecting the gravity effect as

dV
dx

=−k1ρ(h)V
√

1+(h′)2 − k2
V (h′′)2

ρ(h)
(

1+(h′)2
)5/2 (19)
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By dividing both sides of Eq. (19) by velocity V ,

1
V

dV
dx

=
d(logV )

dx
=−k1ρ (h)

√
1+(h′)2 − k2

(h′′)2

ρ (h)
(

1+(h′)2
)5/2 (20)

The velocity dynamics can be simplified by introducing the new state variable P(= logV ) and ω(= h′).
The vehicle dynamics is reformulated using new states [P,h,ω]T as follows.

dP
dx

=−k1ρ (h)
√

1+ω2 − k2
(h′′)2

ρ (h)(1+ω2)5/2 (21)

dh
dx

= ω (22)

dω

dx
= h′′ (23)

where the second derivative of altitude h′′ is regarded as a control input.

3.2 Lossless Relaxation and Linearization
To convert the dynamics of Eqs. (21)- (23) into control affine form, the following new control inputs of
u1 and u2 are utilized.

u1 =
(
h′′
)2
, u2 = h′′ (24)

Since u1 and u2 are not independent variables, the following additional constraint should be imposed.

u1 = u2
2 (25)

Then, this additional constraint of Eq. (25) is relaxed to convex inequality as

u1 ≥ u2
2 (26)

which is a quadratic constraint. This constraint can be handled in quadratically constrained quadratic
programming(QCQP) or second-order cone programming(SOCP). Relaxation of Eq. (26) results in a
wider feasible solution space than the original constraint of Eq. (25). However, it can be mathemat-
ically proven that this relaxation leads to the same optimal solution as the original problem[16-17],
which is lossless relaxation. The detailed proof is omitted in this paper. Then, the dynamics of
Eqs. (21)- (23) is converted to the following control affine form.

dz
dx

= f(z)+b(z)u

where z = [P h ω]T , u = [u1 u2]
T

f(z) =

 −k1ρ(h)
√

1+ω2

ω

0

 ,b(z) =


−k2

ρ(h)(1+ω2)
5/2 0

0 0
0 1


(27)

The dynamics of Eq. (27) should be linearized to be applied to a convex programming framework.
The linearized dynamics are given as
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dz
dx

= A(zk)z+B(zk)u+C(zk)

where A(z) =

 0 −k1
∂ρ(h)

∂h

√
1+ω2 −k1

ρ(h)ω√
1+ω2

0 0 1
0 0 0

 , B(z) =


−k2

(1+ω2)
5/2 0

0 0
0 1

 ,
C (z) = f(z)−A(z)z

(28)

In Eq. (28), zk represents a specific linearization point, which is constant. In successive convex
programming framework, zk is the solution obtained at the previous iteration. Then, the dynam-
ics in the continuous time domain is transcribed to a finite-dimensional domain. In this study, the
pseudo-spectral(PS) method is utilized for transcription of dynamics[20,21]. PS method is one of the
direct collocation methods that uses a global interpolation function to approximate states and control.
PS method does not exhibit Runge phenomenon problem and shows a quasi-exponential conver-
gence rate. There are three types of collocation points in PS method: Legendre-Gauss-Lobatto(LGL),
Legendre-Gauss(LG), and GaussRadau(LGR) point. LGR points are used in this study. A detailed
explanation and description can be found in many literatures[22-24]. Only the transcription results for
the PS method are presented as follows.

Di ·Z = κ

[
A(zk

i )zi +B(zk
i )ui +C(zk

i )
]
, (i = 1, ...,N)

where Z =
[
zT

0 zT
1 · · · zT

N
]T
, κ =

x f − x0

2

(29)

where Di is the differentiation matrix or differential operator derived via Lagrange polynomial and
LGR collocation points[25]. N is the number of collocation points. Note that the number of discretized
states is N +1 since LGR collocation points include initial points.
The linearized dynamics can cause solution divergence or oscillation in the solution profile because
of the inconsistency of dynamics. To handle the inconsistency of dynamics, the following modified
trust-region method is utilized. [

zi − zk
i

]T [
zi − zk

i

]
≤ si, (i = 1, ...,N) (30)

Generally, trust-region with constant bound is used in some studies[9,16]. However, it is not trivial to
select the appropriate bound. The problem with improper bound may become infeasible. Instead, the
modified trust-region of Eq. (30) utilizes slack variables si to prevent excessive change in the current
solution from the previous one. The slack variables si(≥ 0) are augmented to performance index as

J̄ =−V (x f )+wtrust

N

∑
i=1

si (31)

The weighting parameter wtrust should be chosen to be small enough not to affect the original perfor-
mance index −V (x f ). As the solution converges, slack variables si converge to zero. The initial and
terminal conditions are redefined by the independent variable of the downrange x and new states.

P(x0) = logV0, h(x0) = h0, ω(x0) = tan(γ0) (32)

h(x f ) = h f , ω(x f ) = tan(γ f ) (33)

Finally, the second-order cone programming problem can be formulated as follows.

Problem B : minimize J̄ =−V (x f )+wtrust
N
∑

i=1
si

subject to Eqs. (29)− (30), (32)− (33)
(34)
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Problem B is a convex problem that can be efficiently and rapidly solved by an interior-point algo-
rithm[26].

3.3 Successive Convex Programming
An optimal solution to Problem A(the original problem) can be obtained by solving Problem B suc-
cessively until the solution converges. The termination condition of the successive process is given
as

max
i

∣∣zk
i − zk−1

i

∣∣< εz or

∣∣J̄k − J̄k−1
∣∣

|J̄k−1|
< εJ

where εz = [εP εh εω ]

(35)

The successive process terminates when all state variables or performance index have not changed
significantly from the previous iteration. The tolerance parameters εP, εh, and εω can be easily se-
lected by observing the physical scale of each state variable. Parameter εJ is selected as 0.01% in
this study. The solution process for successive convex programming can be summarized as follows.

Successive Convex Programming

1. Set initial guess of states z0
i (i = 0,1, ...,N) at every collocation point. And set k = 1.

2. For k ≥ 1, obtain a new solution zk
i ,uk

i (i = 0,1, ...,N) by solving Problem B with the previous
solution zk−1

i (i = 0,1, ...,N).

3. Check the termination condition of Eq. (35). If Eq. (35) is satisfied, complete the iterative pro-
cess and set the optimal solution to z∗i = zk

i ,u∗
i = uk

i (i = 0,1, ...,N). Otherwise, set k = k+1 and
go back to step 2.

States should be initialized to start the successive convex programming process. We used a simple
way to initialize the states. P is initialized by a line connecting logV0 and (logV0)/2. h is initialized by
a line connecting the initial and terminal conditions. ω is set to be zero.
To apply the proposed method as a guidance law, an angle-of-attack command should be generated
from the solution of successive convex programming. From Eq. (17), the angle-of-attack command
can be generated at each guidance cycle as follows.

αcmd = αcvx +αgrav

where αcvx = η(u∗2)0cos2
γ, αgrav = η

g
V 2

η =
2mcosγ

ρSrefCLα

(36)

where (u∗2)0 denotes the optimal solution of u2 at first collocation point. Since the proposed method ig-
nores the gravitational acceleration when approximating the dynamics in Eq. (19), the bias command
αgrav is augmented to compensate gravity effect.

4. Numerical Simulations
In this section, the proposed method is applied to the guidance of the long-range air-launched glid-
ing vehicle. The following parameters in Table 1 are used in the simulations. The optimality and
effectiveness of the proposed method are demonstrated by the two representative simulations. First,
the convergence profile of the proposed method is presented. Second, the simulation results of the
proposed method are compared to the solution of a nonlinear trajectory optimization.

7
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Table 1 – Simulation parameters

Parameter Value
Surface density, ρ0 1.225 kg/m3

Density parameter, hs 8420
Zero-lift drag coefficient, CD0 0.25
Induced drag factor, K 0.06
Lift coefficient slope, CLα 15
Reference area, Sref 0.025
Mass, m 100 kg
Weighting factor of trust region, wtrust 1/100
Number of collocation points, N 30
Tolerance parameters, (εP,εh,εω ,εJ)

(
10−3 log(m/s), 0.3 m, 10−3 m/s, 0.01 %

)
First, the convergence characteristics of the proposed method are shown. Figure 2 shows the con-
vergence of the solution. Figure 2(a) demonstrates that the trajectory rapidly converges to the optimal
solution. Although the initial trajectory is roughly guessed as a line connecting the initial and terminal
position, the solution converges quickly to the optimal one in 8 iterations. It takes only 6 to 10 msec
to solve Problem B at each iteration using Intel Core i5-12500 at 3GHz. The solution can converge
in less than 0.1 sec total. To reduce computation time, the iteration can be reduced by increasing
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Figure 2 – Convergence characteristics of the proposed method : (a)Trajectories,
(b)Performance index, (c)Lossless relaxation, (d)Change of states
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the tolerance parameter at the expense of some optimality. If the proposed method is applied to
the guidance algorithm, the previous converged solution can be used as a new initial guess, which
means a warm start for successive convex programming. Using a warm initial guess, 2 or 3 itera-
tions are enough for convergence. Figure 2(b) shows the performance index. It can be seen that
the performance index stably converges to the optimal value. Furthermore, it can be validated that
convex relaxation of Eq. (26) is lossless, i.e. Eq. (26) is active, from Figure 2(c). This figure denotes
u1−u2

2 value which is almost zero. The maximum change in state variable from the previous solution
is presented in Figure 2(d), which shows stable convergence.
Secondly, the simulation results of the proposed method are compared to the solution of a nonlinear
trajectory optimization. The simulation results of the proposed method are obtained via applying αcmd
of Eq. (36) as a guidance law. The optimal solution is obtained from general-purpose optimal control
software(GPOPS-II), and is used as a reference for optimality validation of the proposed method. Fig-
ure 3 compares the simulation results of the proposed method and the optimal solution of GPOPS-II
with the same parameters and initial/terminal conditions. It can be seen that the proposed method
guides the vehicle to intercept the terminal position with a desired impact angle of −50 deg. Fur-
thermore, the proposed method shows similar flight trajectories and flight-path angle profiles. Even
though there is some deviation in the angle-of-attack profile, the velocity profile is nearly identical.
The terminal velocity is 951.5 m/s for the proposed method, and 960.1 m/s for GPOPS-II, respec-
tively. It can be seen that the terminal velocity difference is only 0.9 %, which denotes the optimality
of the proposed method.

 

(a) (b) 

(c) (d)

Figure 3 – Results of simulation 1 : (a)Trajectories, (b)Velocity,
(c)Flight-path angle, (d)Angle-of-attack

An additional simulation is conducted with the same initial/terminal condition except for the terminal
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downrange. Similar to the previous simulation, the proposed method produces an analogous trajec-
tory to the optimal solution of GPOPS-II. The terminal velocity is 917.2 m/s for the proposed method
and 927.6 m/s for GPOPS-II, respectively. The terminal velocity difference is only 1.12 % in this sim-
ulation. When the proposed method is applied as a guidance law, it successfully achieves terminal
conditions and optimality of velocity maximization. Through numerical simulations, it is demonstrated
that the proposed method can achieve optimality with real-time application capability.

 

(a) (b) 

(c) (d)

Figure 4 – Results of simulation 2 : (a)Trajectories, (b)Velocity,
(c)Flight-path angle, (d)Angle-of-attack

5. Conclusions
In this paper, trajectory optimization for long-range air-launched gliding vehicles using convex pro-
gramming is proposed. The original nonlinear dynamics is simplified to compact form by utilizing a
novel reformulation technique. The flight-path angle and angle-of-attack are expressed as functions
of altitude and altitude rate, and substituted in velocity dynamics. This technique results in the loga-
rithmic velocity dynamics and linear dynamics of altitude and altitude rate where control input is the
second derivative of altitude. Then, the optimal control problem is converted to second-order cone
programming(SOCP) problem by introducing new control variables and conducting partial lineariza-
tion. Optimal guidance command is generated by successively solving the SOCP problem. The
effectiveness and performance of the proposed method are demonstrated by numerical simulations.
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