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Abstract

There is growing interest in urban air mobility (UAM) as an alternative for passenger and cargo transport around
metropolitan areas in a multimodal transportation system that leverages small, electric aircraft. Ridesharing
has been proposed as a means of making UAM passenger trips more affordable and environmentally friendly.
We present a UAM ridesharing model integrated into an existing computational framework for analyzing daily
work commute trips within a metropolitan area. We leverage this model to estimate the potential demand for
ridesharing-enabled UAM trips within six metropolitan areas across the United States: Chicago, IL; Cleveland,
OH; Dallas, TX; Denver, CO; New York City, NY; and Orlando, FL. We compare results for each metropolitan
area with and without ridesharing. Results indicate that ridesharing enables at least an order of magnitude
more UAM-preferring passengers than without ridesharing, though specifics vary across metropolitan areas
and network sizes. Enabling ridesharing in UAM also considerably lowers the mean and mode value of time
for passengers that select the UAM mode, indicating that ridesharing can help make UAM more economically
accessible to a larger set of the population. An important caveat is that the UAM ridesharing model does not
account for operational constraints, such as aerodrome capacity and aircraft availability, and relies on a perfect
knowledge of passenger movements and mode preferences. This leads to high UAM ridesharing volumes that
are unlikely to reflect real-world UAM operations and thus serves as an upper bound estimate.
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1. Introduction
Over the past decade, the maturing of various aviation technologies, such as electric propulsion and
high degrees of automation, along with the emergence of new business models, such as mobile
application-based ridesharing, have coalesced into new operational concepts known collectively as
advanced air mobility (AAM). AAM pursues safe, sustainable, affordable, and economically acces-
sible aviation for transformational local and intra-regional missions [1]. Many view AAM missions
as ranging from package delivery with small drones to point-to-point, passenger-carrying and cargo
flights with novel aircraft across hundreds of miles.

Our paper addresses a subset of AAM known as Urban Air Mobility (UAM), a concept to transport
passengers around metropolitan areas. Spurred in part by the Uber Elevate White Paper [2], UAM
emphasizes passenger-carrying missions in novel electric vertical takeoff and landing (eVTOL) air-
craft that can augment existing metropolitan transportation networks. Determining when and where
UAM service is superior to existing modes is a key question, particularly in cities that experience
heavy road congestion. The concept of ridesharing, wherein multiple passengers are present on a
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single aircraft operating on any given UAM trip segment, presents a way to increase the affordabil-
ity of UAM services. Ridesharing in the ground-based mode (e.g., carpooling) has been shown to
reduce the cost burden on travelers [3]. We explore the UAM ridesharing concept in this paper by
analyzing potential demand for daily work commute trips within multiple metropolitan areas in the
United States both with and without ridesharing.

We seek to better understand the potential for UAM-based ridesharing by building upon the foun-
dation of several years of research examining UAM operational limits. Operational limits describe
factors that may inhibit the realization and deployment of large-scale UAM operations. In prior work,
we developed a computational analysis framework to model the impact of various identified UAM op-
erational limits [4] and to estimate the proportion of regular work commute trips within a metropolitan
(metro) area that may utilize UAM [5, 6]. This paper seeks to consider ridesharing and its impacts
on potential UAM demand within metro areas, which was not explicitly explored in previous research.
We implement a newly developed UAM ridesharing model that extends the computational framework
to address the following research questions:

1. How does ridesharing impact the number of trips with a UAM segment in a metropolitan area?

2. How are economic-based UAM operational limits affected by the addition of ridesharing?

The remainder of this paper is organized as follows. We first provide an overview of some preceding
work in Section 2.. A discussion of the methods we use to analyze the various metropolitan areas,
including the computational framework and our ridesharing model, is provided in Section 3.. The fol-
lowing section details and discusses case study findings, including comparisons among metropolitan
areas and with results that do not incorporate explicit ridesharing algorithms (Section 4.). Finally, con-
clusions and future work are outlined in Section 5..

2. Background and Previous Research
Since approximately 2018, numerous studies have assessed the market potential for UAM [1, 7] in-
cluding in particular metropolitan areas, to assess the potential market size in those locations [5, 8, 9].
Spawned by early market studies, such as those sponsored by NASA [10, 11], and industry desires
to launch UAM services [2], the research community explored UAM concepts of operations and in-
frastructure [12, 13, 14, 15, 16].

Wu and Zhang explored a notional UAM network in the Tampa Bay, FL area [16]. Their study em-
phasizes the need for well-developed ground infrastructure to optimize the location and quantity of
aerodromes1. They show that integrating this information with a simulated UAM passenger travel
demand dataset can create an improved network. Their study was unique because it employed Ge-
ographic Information System (GIS) 3D LiDAR data to determine feasible aerodrome locations based
on physical (land area) and regulatory requirements. In comparison, we used inbound and outbound
trip totals, median income, and population density to determine potential aerodrome locations guided
by network bounding conditions (e.g., facility proximity, range limits, facility count, and facility type).
Furthermore, Wu and Zhang found that optimized aerodrome reduce travel costs for passengers and
provide a significant reduction in time compared to alternate modes. However, similar to findings from
our own work, only a small percentage of trips were predicted to switch from ground mode to UAM.
Finally, Wu and Zhang conducted sensitivity analysis by varying pricing and the number of aero-
dromes, similar to our team’s efforts to vary aerodrome network sizes and values of time between
passengers [6].

1Although many use the term ‘vertiport’ for UAM or AAM takeoff and landing areas, we use ‘aerodromes’ to provide
a more generic term that encompasses all types of takeoff and landing infrastructure, including vertiports, heliports, and
airports with traditional runways. Although the term ‘airport’ is technically generic enough to encompass all locations from
which aircraft takeoff and land, it is often used to refer specifically to aerodromes with multiple-thousand-foot-long runways.
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Haan et al. [8] estimated the potential UAM market size in 40 cities across the US basing their de-
mand prediction on cell phone data augmented with census data. Their mode choice models were
based on stated-preference surveys to estimate commuter demand for UAM services in each com-
bined statistical area (CSA). Similarly, our ongoing operational limits work uses census data for CSAs
to model passenger demand.

A study conducted by Uber of France (Bennaceur et al.) [17] proposed a framework suitable for im-
plementation by an on-demand air-taxi operator using a mixed-integer linear programming model for
passenger pooling and aircraft scheduling. Their study proposed creating different classes of service
akin to Uber’s current ride-hailing model, where a rider would experience shorter wait times for a
higher fare, in addition to a standard fare. They argue that this may make the service more affordable
and economically accessible. A fundamental difference between the Bennaceur et al. study and our
current study is that the Bennaceur et al. study only considers travelers who have explicitly chosen
to take an air taxi, whereas our current study analyzes all commute trips in a pre-defined set and
assigns each of them a mode preference based on passenger-specific effective cost metric, which
combines the vehicle operating cost shouldered by a traveler with a cost associated with the duration
of travel for that traveler. Our effective cost metric is described in Section 3.1.2.

The impact of ridesharing coupled with an assumed associated increase in waiting time due to
ridesharing was considered by Maheshwari et al. (2020) in [4]. Their ridesharing analysis assesses
up to three passengers traveling from and to the same locations, investigating changes in a passen-
ger’s travel time and operating cost as more passengers are added to an aircraft for ridesharing. Their
study adhered to the assumption that aircraft operating costs are split equally among passengers. In
addition, their study further introduced a ridesharing penalty time to account for the waiting period
for passengers to arrive. In this case, a passenger flying alone does not see a ridesharing penalty,
whereas two-passenger UAM trips will see an arbitrarily chosen ridesharing penalty value of 10 min-
utes added to both passengers. An additional passenger would then incur an additional 10-minute
ridesharing penalty applied to all passengers. Their study found that, given these assumptions, a
UAM service would be increasingly less expensive for individual travelers when more travelers are
added to a UAM flight. However, as even more passengers are added, their study found that the ben-
efits of cost reduction per passenger brought about by ridesharing begins to diminish, as passengers
now have to wait longer due to the additional ridesharing penalty.

The current ridesharing study presented in this paper builds upon the Maheshwari et al. (2020) study,
adding fidelity by implementing UAM ridesharing analyses across all daily commuter trips within a
metropolitan area (instead of a single route), incorporating an algorithm that pools passengers to-
gether based on their individual arrival time at their departure aerodromes and their calculated maxi-
mum wait times (such pooling algorithms were not considered in their study).

A 2021 study by Maheshwari & DeLaurentis [18] developed and utilized a Markov decision process
framework for ridesharing in on-demand air service operations, focusing on a small subset of trips.
The algorithm facilitated ridesharing operations of up to two passengers per aircraft in keeping the
computational cost to a minimum. However, the objectives of the Maheshwari & DeLaurentis study
are different than that of the current ridesharing study. Specifically, the Maheshwari & DeLaurentis
study put forth a passenger-pooling algorithm tailored to on-demand, real-time operations in which air
services operate without a pre-defined schedule and are instead initiated based on real-time requests
from passengers. This means that the algorithm must respond promptly to these requests, dynami-
cally allocating aircraft resources to fulfill them as quickly as possible. Their study demonstrates that
their passenger-pooling algorithm improves over time in its ability to perform fleet distribution and
trip scheduling decision-making through reinforcement learning techniques. In contrast, the current
ridesharing study is focused on a priori analysis on a pre-defined set of commuter trips to determine
operational limits and provide insight into the magnitude of potential UAM demand and market share
(or mode share) both with and without ridesharing.
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3. Methodology
We have developed a standalone ridesharing model termed the Passenger Aggregated Network
with Very Efficient Listing (PANVEL). PANVEL analyzes a pre-defined set of commuter trips within
a metropolitan area, models wait times for passengers, and is integrated with the pre-existing com-
putational framework to demonstrate the potential for UAM ridesharing in impacting UAM demand
across different aerodrome networks in various metropolitan areas [4, 5, 6]. This section describes
the ridesharing methodology, and Ref. [19] outlines the UAM ridesharing model in further detail.

An overview of the complete analysis process is shown in Fig. 1, and various elements of the analysis
are described in the subsections below.

Figure 1 – Overview of the complete analysis process for AAM operational limits, including an
enhanced computational framework with the PANVEL ridesharing model for analyzing trips within

metropolitan areas, plus additional analysis modules

3.1 Key Components in our Research on UAM Operational Limits
3.1.1 Computational Framework for Analyzing Commuter Trips
Over the past few years, in our research efforts to study UAM operational limits, we developed a
computational framework that models commuter trips for a representative day within metropolitan ar-
eas of interest. The inputs of the computational framework include an aerodrome network dataset, a
commuter trip demand dataset, and a list of parameters that define the notional UAM eVTOL aircraft
used in our modeling, described below.

There are three different aerodrome network datasets for each metropolitan area analyzed in this
study, each corresponding to a different network size. Varying the size of the aerodrome network for
each metropolitan area allows us to model possible future UAM states and operations given uncer-
tainty around constraints in infrastructure and airspace. The largest aerodrome dataset contains the
full aerodrome network, which in prior publications was referred to as the ‘Large’ aerodrome network
[4], and represents all public-use infrastructure that was operational in 2021 as obtained from the
FAA National Flight Data Center database [20]. The full aerodrome networks include infrastructure
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located within the boundaries of the CSA corresponding to each metropolitan area under study plus
a 20 kilometer (12.4 mile) buffer zone beyond the boundary. The metropolitan areas of interest are
Chicago, Cleveland, Dallas, Denver, Orlando, and New York City.

The remaining aerodrome network datasets describe the ten-aerodrome and three-aerodrome net-
works, which prior publications have referred to as the ‘Medium’ and ‘Small’ aerodrome networks,
respectively. The approach used to determine these three- and ten-aerodrome networks were in-
formed in part by engineering judgement and a siting algorithm described in [12]. As described in
[6], the three-aerodrome network consists of aerodromes hypothetically placed at a major commer-
cial airport within that metropolitan area, a community location close to a major residential area,
and a downtown location close to the city center. Similarly, the ten-aerodrome network consists of
aerodromes deemed to be best placed for UAM operations by drawing upon engineering judgment;
insights from modeling operations in the three-aerodrome network; and other operational charac-
teristics, including population density, income levels, and distance from city center areas. Because
specific siting criteria were considered in the three- and ten-aerodrome networks, these aerodrome
networks contain private-use aerodromes in addition to public-use facilities for the Dallas, Denver,
New York City, and Orlando metropolitan areas, distinguishing them from the full aerodrome network
that includes only public-use aerodromes.

Next, the commuter trip dataset is compiled using the Longitudinal employer-household dynamics
Origin-Destination Employment Statistics (LODES) data available from the national census [21], and
this data is supplemented with equivalent metro-specific surveys for Chicago. We then perform a
UAM trip generation process to identify trips for passengers that entail driving to the nearest aero-
drome, flying in a UAM aircraft, and then driving to the final destination. To identify the arrival times
for each trip, we sampled data from the National Household Travel Survey (NHTS) [22]. An individ-
ual’s value of time (VoT) is derived from that individual’s income, which is obtained from the American
Community Survey (ACS) [23]. The VoT is a critical metric in this study as it determines how much
an individual is willing to spend for the time-saving convenience promised by UAM.

The operating cost of the UAM aircraft is assumed to be divided evenly among the passengers on-
board for any particular segment. In keeping with assumptions and experiment choices utilized in
previous studies, the operating cost rate of the aircraft is assumed to be $605/hr based on estimates
from Uber Elevate [24, 25, 4]. The car operating cost rate is based on the Internal Revenue Ser-
vice’s standard 2019 mileage rate of $0.58/mile [26]. The notional aircraft is further assumed to have
a range of 92.6 kilometers, or 50 nautical miles, a fixed battery recharging duration of 20 minutes,
a taxi-takeoff-climb duration of 3.08 minutes, and a descend-landing-taxi duration of 3.31 minutes.
Finally, a 25-minute total UAM mode transition duration is also assumed for passengers taking the
UAM mode2 [25]. It should be noted that this UAM mode transition duration is completely separate
from the wait times that are modeled within the ridesharing methodology, described in Section 3.2.

3.1.2 Analyzing Commuter Mode Preferences and UAM Operations Limits
In this computational framework, each commuter is assigned a mode preference based on their esti-
mated effective trip cost [27]. This effective trip cost consists of two components—the first of which
is the direct travel cost of the passenger that is found by summing the operating costs of all vehicles
involved in a given mode of travel. The second component, the time cost, is a product of an individ-
ual’s value of time (VoT) and the duration required to complete that individual’s trip.

2This transition duration is derived from the assumption that a passenger would spend 15 minutes in the terminal building
before they depart on a UAM flight (taking into account the time spent by a passenger checking in, walking through the
terminal, undergoing security checks, boarding the aircraft, and safety briefings), plus 10 minutes immediately after UAM
flight arrival (taking into account the time taken for a passenger to disembark and reach their last-mile ground transport
mode.)
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In this study, we consider two transportation mode options for each commuter trip: the car mode and
the UAM mode. The car mode involves an individual traveling from their origin to their destination
fully by private ground transport. The UAM mode involves three segments, with an initial ground
segment between an individual’s origin point A and their departure aerodrome, then a UAM segment
between their departure and arrival aerodromes, followed by another final ‘last-mile’ ground segment
between their arrival aerodrome and their destination point. These two modes are depicted in Fig. 2.
The assignment of mode preferences are determined by an assumption that an individual traveler
would choose the mode with the least overall effective trip cost. Trips that have a lower effective cost
associated with the UAM mode (as opposed to the car mode) are termed UAM-preferred trips [4].

Figure 2 – Network model of commuting mode options within the computational framework: A→B
for the car mode and A→C/G/J→E/I/K→B for the UAM mode.

The computational framework computes the distance, duration, carbon dioxide (CO2) emissions gen-
erated, vehicle operating cost, as well as effective cost for each segment in both the UAM mode
and the car mode for all commuter trips in a metropolitan area, which form part of the computational
framework outputs. After obtaining data for mode preferences and other information for each trip from
the computational framework, further analyses can be conducted. Examples of past analyses include
estimating the aggregate CO2 emissions caused by UAM operations [28] and evaluating constraints
imposed on UAM operations due to adverse weather [29]. Another past study demonstrated the op-
erational limits on capacity and throughput at aerodromes based on gate availability, touchdown-liftoff
pad or runway availability, aircraft availability, and the initial distribution of aircraft on ground through-
out a UAM network [6].

The authors encourage readers to refer to Refs. [30, 25, 4, 31, 5, 6, 12] for a chronological under-
standing of the development of the computational framework, including the processes for trip and
network generation, assigning departure and arrival aerodromes to trips, calculating effective costs,
and the selection of existing infrastructure for aerodrome networks.

3.2 Ridesharing Considerations
A previous study by Maheshwari et al. performed parametric sweeps of operating cost to investi-
gate the impact of reducing vehicle operating cost on the number and mode share of UAM-preferred
trips for a given metropolitan area [5]. Although these experiments were intended to demonstrate
possibilities given lower eVTOL operating costs, they were also used as an approximation for the
potential benefits of ridesharing. For example, a 50% operating cost reduction could also be viewed
as a UAM ridesharing scenario with two passengers onboard each aircraft, a 67% operating cost
reduction could be viewed as a three-passenger UAM ridesharing scenario, and so forth. By dividing
the operating cost of the aircraft among the passengers onboard, the operating cost burden on an
individual passenger is reduced, which can increase the number of UAM-preferred trips in a partic-
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ular metro area. However, this simple cost-reduction method does not account for several important
characteristics associated with ridesharing, such as longer wait times for passengers and the need
to have multiple passengers desiring to travel at the same time between the same locations, which
we explore in this paper.

To explore the impacts of ridesharing on traveler mode choice within a metropolitan area, we de-
veloped and implemented a ridesharing model we refer to as Passenger Aggregated Network with
Very Efficient Listing (PANVEL) [19]. The PANVEL model aims to aggregate passengers traveling
between the same origin and destination onto a single UAM flight. It utilizes passenger data such as
VoT, mode-dependent effective cost, and trip duration to estimate the number of passengers with ef-
fective cost metrics that indicate preference for the UAM mode. This model divides vehicle operating
costs evenly among all passengers onboard and seeks to group the highest number of individuals
possible for a given UAM flight.

The PANVEL model initializes the passenger order based on arrival times at a given departure aero-
drome then re-orders the passenger list by the latest arrival time possible with respect to passengers’
combined wait time and arrival time. Each traveler’s maximum wait time at the origin aerodrome is
calculated by determining the amount of time at which the effective cost of the UAM mode and base
mode would be equivalent for the passenger, assuming the aircraft costs are divided among the maxi-
mum number of passengers possible on the aircraft, which is taken to be N. The latest departure time
for each traveler is then determined from the individual’s maximum wait time and arrival time at the
aerodrome. The model examines the first N passengers scheduled to arrive at the origin aerodrome
with the same destination aerodrome and assesses whether this group of N passengers is suitable
for sharing a ride; specifically, if any of the N passengers fail to arrive prior to the latest departure
time for all passengers, the current group of N is considered incompatible. Then, the passenger with
the lowest maximum wait time is excluded in favor of the next passenger, and the process is repeated
until a compatible group is found or the passenger list for that origin-destination pair is exhausted.

Once the passenger list for a given origin-destination pair is exhausted considering N passengers in
the aircraft, the model resets and calculates wait times again, this time considering N −1 passenger
operations in an N-seat aircraft, for all the unallocated passengers who could not be accommodated
on ridesharing trips with N passengers. The model again iterates chronologically through the unal-
located passenger list, considering their original arrival times at the origin aerodrome. This analysis
continues until at least two passengers are being considered. Remaining passengers not allocated to
any two-, three-, or four-passenger UAM trips undergo a separate comparison of their effective costs
between the car mode and the single-passenger UAM mode, akin to previous studies [4, 5]. Those
passengers with a lower UAM mode effective cost are then assigned a single-passenger UAM flight
in our modeling.

For the aircraft considered in this work, operations are simulated on four-seater aircraft considering
four, three, and two passengers at a time for ridesharing. This method also prioritizes higher load fac-
tors based on the rationale that, with sub-optimal load factors, the passengers actually flying would
have to pay more to cover the cost of the empty seats. Since the revenue models for such UAM
operations are beyond the scope of this paper, it was deemed prudent to maximize load factors. The
flowchart in Fig. 3 demonstrates the methodology of the PANVEL ridesharing model.

Though perhaps counterintuitive, our analysis indicates that passengers with a high VoT may be will-
ing to wait longer in the presence of other competitive travel modes. This is due to the high time cost
in the ground travel mode that outweighs the increased vehicle operating costs in the UAM mode in
the effective cost calculations3.

3The VoT-based exclusion criterion is further discussed in [19]
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Figure 3 – Operational flow of the PANVEL ridesharing model [19]

In reality, UAM operators and passengers would not possess foresight regarding the arrival times of
all passengers; therefore, the PANVEL model represents an idealized case in which a near-maximum
number of individuals select the UAM mode. Because of this, different ridesharing models would be
required by UAM operators to apply in their operations. We further acknowledge that results from
studies leveraging PANVEL are likely to predict much larger improvements brought about by en-
abling UAM ridesharing than expected in practice. However, our intent is to reasonably estimate a
rough upper limit on possible ridesharing-enabled UAM trips to provide insight on the importance of
ridesharing on UAM market share.

4. Case Studies
Case studies of ridesharing-enabled UAM operations were performed using the PANVEL-enabled
computational framework across six U.S. metropolitan areas (Chicago, Cleveland, Dallas, Denver,
New York City, and Orlando) for three different aerodrome networks in each metro area. The sub-
sections below detail the various inputs and other experiment choices used in each study, as well
as our findings on ridesharing-enabled UAM operations and the implications of ridesharing on the
potential market share of UAM.

Note that the ridesharing figures presented in this paper do not take into account aerodrome through-
put and capacity operational constraints caused by the availability of gates, touchdown-liftoff (TLOF)
pads and/or runways, and aircraft. Therefore, the UAM operations described below are considered
unconstrained (i.e., not constrained by aerodrome throughput operational limits). Research is ongo-
ing to analyze constrained ridesharing-enabled UAM operations across the metropolitan areas, and
these are also expected to be presented in future publications.

8
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4.1 Aerodrome Network and Aircraft Parameters
The networks of existing infrastructure (e.g., vertiports, airports, and other facilities) that may be
utilized for UAM operations, referred to as aerodromes, are the same networks developed in pre-
vious research [6, 12]. Diagrams of full aerodrome networks, ten-aerodrome networks, and three-
aerodrome networks, as well as CSA bounds for all metropolitan areas, can be found in [6], where
the aerodrome networks were referred to as ‘Large’, ‘Medium’, and ‘Small’, respectively.

We continue to utilize the $605/hour operating cost for a notional eVTOL aircraft consistent with prior
studies, which is based on an estimate from Uber in their ‘Launch’ cost scenario [24, 25, 4]. We
also assume that the notional aircraft used in this study has a maximum capacity of four passen-
gers. Therefore, the PANVEL ridesharing model used in this study has been optimized for one- to
four-passenger (pax) trips. Although the incorporation of the PANVEL ridesharing model allows us to
account for ridesharing of up to four passengers, it does not account for ground traffic delays, reposi-
tioning, airspace constraints, or re-routing measures. The model has also not considered ridesharing
on ground transportation modes, which may reduce the effective cost of performing a trip fully on
ground.

4.2 Impacts of UAM Ridesharing on Estimated UAM Demand
We present a summary of non-ridesharing and ridesharing-enabled UAM operations across six
metropolitan areas, each comprising three aerodrome network types, in Table 1. Note that for the
non-ridesharing scenarios, the estimated number of UAM-preferred passenger-trips will be equivalent
to the estimated number of flights, since the sole passenger has the eVTOL aircraft to themselves.

Ridesharing brings a marked increase in the estimated number of unconstrained UAM-preferred
passenger-trips (or UAM-preferring passengers) across most metropolitan areas and aerodrome net-
works, even when the non-ridesharing scenario sees zero UAM-preferred trips, as is the case with
the Cleveland metropolitan area. The one exception to this is the Cleveland three-aerodrome net-
work, where no trips were assigned any UAM segments based on the effective cost metric within the
computational framework. These results indicate why ridesharing is necessary to enable large-scale
UAM operations and reduce operating costs on a per passenger-mile basis.

The breakdown of UAM flight occupancies (between one and four passengers) vary by metro area
and network size, but in most cases a majority of flights (above 94%) are four-passenger flights, as
four-passenger flights result in the lowest operating costs shouldered per passenger. This also trans-
lates into high average load factors for a majority of these networks (above 98%). The lone exception
to this is the Dallas three-aerodrome network, with 78.5% of flights being four-passenger flights, and
a 93% estimated load factor.

Below, we present and discuss case studies on selected metropolitan areas and network sizes to
shed more light on the landscape of ridesharing-enabled UAM operations. We compare the three-
aerodrome network and the ten-aerodrome network in selected metropolitan areas to account for
future UAM infrastructure states and investigate impacts caused by augmenting the number of aero-
dromes to be used for UAM services.

4.2.1 Case 1: Chicago full aerodrome network
We assessed 8,627,698 unique passenger-trips within the Chicago metropolitan area, with a full com-
plement of 70 public-use aerodromes available for UAM services. Of these passenger-trips, 2,907 of
them are UAM-preferred without ridesharing, flown on 2,907 flights. Enabling ridesharing increases
UAM preference to an estimated 154,093 passenger-trips flown on 38,996 flights, for a network-wide
load factor of nearly 99% with 96.5% of flights being four-passenger flights. Table 2 shows a break-
down of one- to four-passenger UAM flights for this network.
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Table 1 – Summary table of estimated UAM-preferring passenger demand and number of UAM flights
for both the non-ridesharing and ridesharing-enabled scenarios, showing increases to varying de-
grees when ridesharing is enabled across all networks.

Metropolitan
Area

Aerodrome
Network Size

Non-ridesharing Ridesharing
# UAM-

preferred
% UAM

mode share
# UAM-

preferred
% UAM

mode share

Chicago

8,627,698
total pax

3
49 pax

49 flights
0.001%

9,168 pax
2,305 flights

0.106%

10
815 pax

815 flights
0.009%

92,740 pax
23,263 flights

1.07%

70
(full)

2,907 pax
2,907 flights

0.034%
154,093 pax
38,996 flights

1.79%

Cleveland

1,987,966
total pax

3
0 pax

0 flights
0%

0 pax
0 flights

0%

10
0 pax

0 flights
0%

48 pax
12 flights

0.002%

72
(full)

0 pax
0 flights

0%
214 pax
54 flights

0.011%

Dallas

6,570,232
total pax

3
1 pax
1 flight

<0.001%
346 pax
93 flights

0.005%

10
41 pax

41 flights
0.001%

8,026 pax
2,021 flights

0.122%

113
(full)

534 pax
534 flights

0.008%
46,381 pax

11,822 flights
0.706%

Denver

2,504,562
total pax

3
0 pax

0 flights
0%

1,037 pax
261 flights

0.041%

10
175 pax

175 flights
0.007%

52,709 pax
13,253 flights

2.10%

27
(full)

1,629 pax
1,629 flights

0.065%
86,474 pax

21,694 flights
3.45%

New York City

17,082,594
total pax

3
146 pax

146 flights
0.001%

15,763 pax
3,966 flights

0.092%

10
4,071 pax

4,071 flights
0.024%

129,358 pax
32,467 flights

0.757%

113
(full)

14,136 pax
14,136 flights

0.083%
367,686 pax
92,769 flights

2.15%

Orlando

2,609,774
total pax

3
0 pax

0 flights
0%

138 pax
35 flights

0.005%

10
9 pax

9 flights
<0.001%

43,117 pax
10,797 flights

1.65%

49
(full)

278 pax
278 flights

0.011%
192,626 pax
48,330 flights

7.38%

Table 2 – Chicago full aerodrome network UAM ridesharing-enabled operations: a breakdown of one-
to four-passenger UAM flights. Of the 8,627,698 total trips modeled in the Chicago metropolitan area,
154,093 are UAM-preferred, while 8,473,605 are car-preferred.

Trip Type 4-pax 3-pax 2-pax 1-pax UAM Total UAM-preferred (%)
# Flights 37,643 913 342 98 38,996 –

# Passengers 150,572 2,739 684 98 154,093 1.79%
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These UAM-preferring passengers are carried on 754 unidirectional (one-way) aerodrome pairs, or
flight routes, between 44 aerodromes within the Chicago full aerodrome network. This leaves 26
aerodromes without UAM-preferring passengers. These flight routes and aerodromes are shown on
Fig. 4a, where it can generally be seen that UAM passengers and flights are concentrated closer to
the Chicago city center, likely in and around population centers. Fig. 4a also shows that the aero-
dromes that see no UAM-preferring passenger service at all are among the furthest away from these
population centers.

As a point of comparison, Fig. 4b shows the UAM-preferred landscape in the Chicago full aerodrome
network when ridesharing is disabled. The 2,907 UAM-preferring passengers in this case are carried
on 451 unidirectional aerodrome pairs between 43 aerodromes. In both sub-figures on Fig. 4, all
flight routes are represented by line widths that scale with the square root of the total number of UAM
passengers in both directions. This scaling was done purely for the purposes of data visualization to
reduce the contrast between the highest and lowest total passenger numbers.

We define total aircraft movements within an aerodrome as the sum of aircraft arrivals into and de-
partures out of that aerodrome. A similar definition is applied for total passenger movements. The
five busiest aerodromes in this network with UAM ridesharing using these measures are outlined in
Table 3. Among all aerodromes represented in the Chicago full aerodrome network, we found the
busiest aerodrome, Chicago Midway International (MDW), to be closest to the Chicago city center.

Table 3 – Busiest aerodromes by estimated total daily UAM aircraft and passenger movements in the
Chicago full aerodrome network with UAM ridesharing.

Aerodrome Aircraft Movements Passenger Movements
Chicago Midway (MDW) 10,307 40,713
Chicago Executive (PWK) 7,368 29,331
Lake in the Hills (3CK) 5,612 22,252
Bolingbrook’s Clow (1C5) 5,131 20,320
Tinley Park Helistop (TF8) 4,835 19,232

Four of these aerodromes constitute the two busiest bidirectional aerodrome pairs:

1. Lake in the Hills (3CK) ⇔ Chicago Midway (MDW)

• 66.4 km (35.9 nmi) straight-line distance

• 47.3 minutes UAM segment duration

• 3CK–MDW: 3,084 passengers on 772 flights

• MDW–3CK: 3,037 passengers on 791 flights

2. Chicago Executive (PWK) ⇔ Tinley Park (TF8)

• 62.2 km (33.6 nmi) straight-line distance

• 46.2 minutes UAM segment duration

• PWK–TF8: 2,108 passengers on 527 flights

• TF8–PWK: 2,100 passengers on 525 flights

11
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(a) Ridesharing-enabled UAM operations in the Chicago full 70-aerodrome network. 44
aerodromes see UAM-preferring passenger service carrying 154,093 passengers.

(b) Non-ridesharing UAM operations in the Chicago full 70-aerodrome network. 43
aerodromes see UAM-preferring passenger service carrying 2,907 passengers.

Figure 4 – A comparison of UAM operations in the Chicago metropolitan area under the full
aerodrome network with and without ridesharing. Aerodromes with passenger service are denoted

by orange circles. Remaining aerodromes are denoted by red circles. Blue lines represent flight
routes; line widths vary based on the total number of passengers in both directions. Background
map data © OpenStreetMap contributors. Data available under the Open Database License [32]
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Of particular interest, all flights between PWK and TF8 are four-passenger flights. Note that the UAM
segment durations listed here include a 25-minute UAM mode transition duration assumed for all
UAM passengers. Shown in Fig. 5 are the five busiest aerodromes and the two busiest bidirectional
aerodrome pairs for UAM ridesharing operations in the Chicago full aerodrome network.

Figure 5 – Busiest aerodromes and aerodrome pairs for UAM ridesharing operations in the Chicago
full aerodrome network.

Background map data © OpenStreetMap contributors. Data available under the Open Database
License [32]

4.2.2 Case 2: Chicago three-aerodrome and ten-aerodrome networks
The same 8,627,698 unique passenger-trips within the Chicago metropolitan area were analyzed with
a three-aerodrome and ten-aerodrome network to estimate the impact of UAM infrastructure levels.
These networks include private-use aerodromes whose locations were estimated to be best-suited
for UAM operations [6, 12]. This case study will focus on comparing these two networks.

Without UAM ridesharing, we estimate only 915 UAM-preferred passenger-trips and flights on the
Chicago ten-aerodrome network. These figures increase to 92,739 passengers on 23,262 flights
when ridesharing in UAM operations is enabled. Here, 98.9% of flights are four-passenger flights, with
an estimated network-wide load factor of 99.7%. Table 4 shows a breakdown of these ridesharing-
enabled UAM-preferring passengers and flights.

Table 4 – Chicago ten-aerodrome network UAM ridesharing-enabled operations: a breakdown of
one- to four-passenger UAM flights. Of the 8,627,698 total trips modeled in the Chicago metropolitan
area, 92,740 are UAM-preferred, while 8,534,959 are car-preferred.

Trip Type 4-pax 3-pax 2-pax 1-pax UAM Total UAM-preferred (%)
# Flights 23,007 201 54 1 23,263 –
# Passengers 92,028 603 108 1 92,740 1.07%

13
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Reducing the aerodrome network size to three yields an estimated 49 UAM-preferring passengers
when ridesharing is disabled. Enabling ridesharing results in an estimated 9,168 UAM-preferring
passengers flown on 2,305 flights. Similar to the ten-aerodrome network, 98.2% of all flights are four-
passenger flights, with an estimated network-wide load factor of 99.4%. Table 5 shows a breakdown
of these ridesharing-enabled UAM-preferring passengers and flights.

Table 5 – Chicago three-aerodrome network UAM ridesharing-enabled operations: a breakdown of
one- to four-passenger UAM flights. Of the 8,627,698 total trips modeled in the Chicago metropolitan
area, 9,168 are UAM-preferred, while 8,618,530 are car-preferred.

Trip Type 4-pax 3-pax 2-pax 1-pax UAM Total UAM-preferred (%)
# Flights 2,264 30 11 0 2,305 –
# Passengers 9,056 90 22 0 9,168 0.106%

In the Chicago ten-aerodrome network, the John H. Stroger Hospital of Cook County Heliport (IL75)
emerged as the aerodrome with the highest number of UAM-preferring passengers and UAM flights,
with the aerodrome seeing an estimated 10,023 unconstrained daily UAM aircraft movements carry-
ing 39,952 passengers. On the other hand, the IL75 aerodrome was found to be the second busiest
in the Chicago three-aerodrome network with 2,114 unconstrained UAM aircraft movements carrying
8,404 passengers. Note that IL75 is considered a Chicago city center/‘downtown’ location in this
study.

The busiest aerodrome in the Chicago three-aerodrome network is the DuPage Airport (DPA), with
an estimated 2,300 unconstrained aircraft movements, in total carrying 9,150 passengers. On the
other hand, of the aerodromes in the Chicago ten-aerodrome network, DPA was found to be the fifth
busiest with 5,571 aircraft movements and 22,201 passenger movements. This reflects how chang-
ing the aerodrome network size and topography can greatly influence demand for UAM services in
various aerodromes, particularly when an aerodrome is made available that reduces circuitous travel
routings for passengers.

4.2.3 Case 3: Denver ten-aerodrome network
This case study examines the 2,504,562 passenger-trips modeled in the Denver metropolitan area,
generating UAM-preferred trips with and without ridesharing. The Denver ten-aerodrome network
contains seven private-use aerodromes (mostly helipads adjacent to, or on top of, hospital build-
ings) plus three public-use aerodromes. A non-ridesharing UAM scenario yields 175 UAM-preferring
passengers on 26 flight routes between all ten aerodromes. In contrast, a ridesharing-enabled UAM
scenario yielded an estimated 52,709 passengers on 13,253 flights, covering 65 flight routes between
all ten aerodromes in the network. The Denver ten-aerodrome network demonstrates a load factor
of just over 99.4%, with 98.3% of flights being four-passenger flights. Table 6 provides a breakdown
of these ridesharing-enabled UAM flights. Table 7 outlines the five busiest aerodromes by uncon-
strained total aircraft movements within the Denver ten-aerodrome network.

Table 6 – Denver ten-aerodrome network UAM ridesharing-enabled operations: a breakdown of one-
to four-passenger UAM flights. Of the 2,504,562 total trips modeled in the Denver metropolitan area,
52,709 are UAM-preferred, while 2,451,853 are car-preferred.

Trip Type 4-pax 3-pax 2-pax 1-pax UAM Total UAM-preferred (%)
# Flights 13,030 144 78 1 13,253 –
# Passengers 52,120 432 156 1 52,709 2.10%
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Table 7 – Busiest aerodromes by estimated total daily UAM aircraft and passenger movements in the
Denver ten-aerodrome network with UAM ridesharing.

Aerodrome Aircraft Movements Passenger Movements
Denver Health HP (CO35) 6,717 26,736
N Colorado Medical Ctr HP (98CO) 5,220 20,849
Skylane Ranch AP (17CO) 3,543 14,163
Parker Adventist Hospital HP (CD31) 3,281 13,025
Rocky Mountain Metro AP (BJC) 2,748 10,904

The unconstrained nature of the modeling is apparent from the results in Table 7. The current re-
sults for the Denver ten-aerodrome network estimate tens of thousands of passengers on thousands
of flights from hospital helipads, which are not designed for such large volumes of passenger and
aircraft movements. We take the Denver Health Heliport (CO35) as an example, shown in Table
7 as the aerodrome with the largest estimated number of aircraft and passenger movements in an
unconstrained scenario. The CO35 aerodrome contains a total of two touchdown-liftoff (TLOF) pads
[33], with no additional taxiways or gates. We assume that these TLOF pads are the points of aircraft
embarkation and disembarkation for passengers. Furthermore, we determined that these TLOF pads
are too close together to allow for simultaneous operations from both pads [34].

In our modeling, we found that the 07:00 (7 AM) hour is the busiest for the CO35 aerodrome, with
3,845 passengers arriving at the aerodrome on 962 flights; and 183 passengers departing the aero-
drome on 46 flights. Figure 6 shows the hourly distribution of unconstrained aircraft movements at the
CO35 aerodrome. Even assuming an aggressive three-minute inter-arrival time for each TLOF pad,
which leaves approximately 2 to 2.5 minutes for aircraft turnaround, the CO35 aerodrome will only be
able to handle just under 40 flight arrivals and 40 flight departures per hour. This is significantly lower
than the 962 arriving flights required to fulfill all UAM-preferred trip demand into the CO35 aerodrome
for that hour and demonstrates that aerodrome topology and throughput can place significant con-
straints on real-world UAM operations. It is worth noting that these large volumes of passenger and
aircraft movements may point to a need for a purpose-built aerodrome to handle such capacity.

Figure 6 – Hourly distribution of unconstrained aircraft movements departing from and arriving at the
Denver Health Heliport (CO35) aerodrome in the Denver ten-aerodrome network, showing that

aircraft movements peak at hour 7 (corresponding to 07:00 or 7 AM) in our modeling
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In the computational framework, each passenger-trip was assigned a departure and arrival aero-
drome for the UAM mode. The UAM mode share represents the percentage of UAM-preferring pas-
sengers for a specific aerodrome pair among all passenger-trips assigned to that pair. Fig. 7 plots the
UAM mode share of every aerodrome pair (or flight route) in the Denver ten-aerodrome network as a
function of their distance. Each of the 65 aerodrome pairs are represented by blue circles. A positive
correlation suggests a roughly linear relationship between the UAM mode share and the flight dis-
tance; however, there is a fairly wide dispersion in the data, especially among routes with distances
between 55 and 65 km. Several factors likely contribute to this dispersion, including the road network
and VoT of individuals living or working near the aerodromes in these pairs. The increased UAM
mode share, which results from increased time and effective cost savings, on longer UAM segments
compared to shorter flight distances is particularly notable for flights greater than just over 60 km.
This increased mode share is likely due to the 25-minute UAM mode transition time modeled in the
computational framework, which reduces the relative time and effective cost savings of shorter UAM
trips compared to longer trips.

Figure 8 shows the UAM mode share of all 65 aerodrome pairs in the Denver ten-aerodrome network
as a function of the UAM segment duration that corresponds to those aerodrome pairs. This UAM
segment duration includes the 25-minute UAM mode transition duration, giving a minimum overall
segment duration of approximately 38 minutes. There is a gap approximately between the 55-minute
mark and the 80-minute mark due to the 92.6 km (50 nautical miles) nonstop range of the notional
UAM aircraft. For aerodrome pairs that are more than 92.6 km (50 nautical miles) apart, the UAM
vehicle has to make at least one stop to perform a 20-minute recharge. Similar to Fig. 7, however,
there is roughly a linear trend from the shortest UAM flights up until the ‘duration periphery’ caused
by the range at which an aircraft would have to land and recharge.

Figure 7 – UAM mode share per route as a
function of UAM flight distance in the notional

ten-aerodrome network in the Denver
metropolitan area. The mode share of UAM

against the car-only mode approaches 70% on
some longer-distance routes.

Figure 8 – UAM mode share per route as a
function of UAM segment duration in the notional

ten-aerodrome network in the Denver
metropolitan area. Passengers on

longer-distance routes have increasingly greater
preference for ridesharing-enabled UAM flying.

The VoT distribution is a metric we use to gauge the effectiveness of implementing ridesharing in
UAM to expand affordability for passengers (commuters in our case). In Figures 9, 10, and 11, we
plot the VoT distribution for UAM-preferring passengers in a non-ridesharing scenario, ridesharing-
enabled UAM-preferring passengers, and all passenger-trips modeled in the Denver metropolitan
area, respectively.
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Figure 9 – VoT distribution of 175
UAM-preferred trip passengers without

ridesharing for UAM operations in the notional
Denver ten-aerodrome network with a mean of

185 USD/hour.

Figure 10 – VoT distribution of 52,709
UAM-preferred trip passengers with ridesharing

for UAM operations in the notional Denver
ten-aerodrome network with a mean of 98

USD/hour.

Figure 11 – VoT distribution of all 2,504,562 passengers
modeled for the notional networks in the Denver metropolitan

area with a mean of 79 USD/hour.

The VoT distribution plots not only show significantly higher passenger numbers for every VoT group
when considering ridesharing-enabled scenarios, but also demonstrate a considerable decrease in
the mean and modal VoT for passengers selecting UAM. The VoT mode shifts down to the 80-120
USD/hour range in the ridesharing scenario from the 160-200 USD/hour range in the non-ridesharing
scenario, and the mean VoT is cut by over 47% to 98 USD/hour from 185 USD/hour.

In addition, the passengers preferring UAM span across a wider spectrum of VoT when ridesharing is
enabled as compared to the non-ridesharing scenario. For example, there are passengers in the <40
USD/hour VoT group who select the UAM mode with ridesharing enabled, as opposed no passengers
selecting the UAM mode without UAM ridesharing. The impact of this result includes an expansion
of the passenger demand demographics to more prominently include passengers with VoTs below
120 USD/hour according to our model. However, the ridesharing-enabled VoT distribution still skews
towards higher VoTs as compared to that for all passengers modeled in the Denver metropolitan area
(Fig. 11).
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5. Conclusions and Future Work
This paper presents (1) a UAM ridesharing methodology (termed PANVEL) which enhances a pre-
existing computational framework that assesses mode choice for commute trips within multiple U.S.
metropolitan areas; (2) comparisons of estimated UAM market share both with and without rideshar-
ing in these metro areas; and (3) multiple case studies that detail the nature of ridesharing impacts
on UAM attractiveness.

We conclude that enabling ridesharing in UAM can considerably increase the number of UAM-
preferred passenger-trips across most metropolitan areas and distinct aerodrome networks. How-
ever, even with ridesharing, we found that the UAM market share remains below 8% in all use-cases,
with an average UAM market share across all six metropolitan areas of approximately 2.6% for the
full aerodrome networks. The ridesharing methodology utilized in this study has also been found to
produce a relatively high number of four-passenger UAM trips, leading to high load factors across
most metropolitan areas and network sizes. Furthermore, case study results in the Chicago and
Denver metropolitan areas found that aerodromes closer to city centers tend to see most aircraft
and passenger movements. Additionally, for the Denver ten-aerodrome network, we observe a 47%
reduction in the mean VoT for UAM-preferring passengers when ridesharing is enabled along with a
general shift in demand towards passengers with lower VoT that would prefer UAM.

There are several notable limitations in current analysis presented in this paper. PANVEL assumes
perfect knowledge of passenger movements, such as their arrival times, and other passenger char-
acteristics, such as their VoT and origin and destination aerodrome pairs. PANVEL is not a real-time
UAM passenger-pooling algorithm; rather, it strictly operates on and analyzes a set of pre-defined
trips. In addition, the studies in this paper are ‘unconstrained’ in the sense that they do not consider
several practical constraints, such as aerodrome throughput constraints; potential airspace conflicts
or other air traffic management constraints; and aircraft availability throughout the aerodrome net-
work; along with policy-/operator-imposed ride-sharing protocols to aggregate passengers. These
real-world constraints will lead to a reduced number of achievable UAM trips from those predicted
in our modeling. Taken together, these constraints and the limitations with the ridesharing algorithm
lead our results to provide a rough ‘upper bound’ on the number of UAM-preferred trips, with fewer
trips being expected in real-world operations.

Future work is planned to assess ridesharing-enabled constrained UAM operations given aerodrome
throughput operational limits across aerodrome networks and metropolitan areas, in order to obtain a
more practical estimation of the number of future UAM operations. Future case studies may also cen-
ter around certain aerodromes to investigate the differences in aircraft movements and flight routes
into and out of those aerodromes with and without ridesharing. The impact of this work extends be-
yond the aviation community to other stakeholders in AAM. Case studies such as those presented in
this paper may also guide city planners in efforts to develop UAM infrastructure across their respec-
tive metropolitan areas that have the greatest overall benefit in mobility.
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