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Abstract

In recent decades, multirotor flying vehicles have garnered significant attention due to their diverse configura-
tions and versatility. This paper focuses on the design and testing of a flight control scheme employing Model
Reference Adaptive Control with Neural Networks. The effectiveness of the proposed controller is demon-
strated through numerical simulations on a detailed nonlinear simulator.
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1. General Introduction

In a rapidly evolving landscape, unmanned aerial vehicles (UAVs), commonly known as drones, have
greatly expanded their operational capabilities, proving invaluable in military and civil applications.
This paper delves into the civilian use of micro and mini UAVs for tasks such as aerial photography,
mapping, weather forecasting, and more. The focus is on multirotor UAVs, particularly quadrotors,
which offer a balance of low cost and structural simplicity [1, 2]. Furthermore, their ability to take-
off and land vertically, fly in confined spaces and hover over a specified area offers considerable
advantages when used for missions in hazardous environments [3].

Despite the advantages and the possibility of adopting reliable onboard trajectory planners [4, 5] [6],
highly non-linear dynamics and the presence of atmospheric disturbances make the control of multi-
rotors a very challenging problem. Over the years, both linear and non-linear control systems have
been adopted to stabilize quadrotors [7]. Conventional control methods are based on Proportional-
Integral-Derivative (PID) controllers [8, 9] because of their ease of implementation. These controllers
are well suited for applications in quasi-steady conditions, where the model dynamics can be lin-
earized [10]. However, quadrotors exhibit a strong nonlinear behavior in most practical applications,
such as in the presence of wind gusts or aggressive maneuvers, and PID controllers fail to converge.
To overcome these difficulties, more adaptive and nonlinear control strategies have been adopted by
researcher, such as Adaptive Control [11], Model Reference Adaptive Control [12), 13} [14], Dynamic
Inversion Control [15], Linear Quadratic Regulators (LQR) [16}, [17], Model Predictive Control [18],[19],
H;,r Control [20] 21], [22], and Neural Networks [23], just to mention some examples. This paper
introduces a groundbreaking quadcopter configuration employing a Model Reference Adaptive Con-
trol (MRAC) system integrated with Neural Networks. This innovative design enhances flight control
precision and adaptability to varying mission requirements.

The proposed quadcopter design leverages MRAC 25] with Neural Networks, addressing the
complexities associated with control redundancy, non-linear dynamics and uncertainties. In order to
achieve the desired performance of the quadrotor, the MRAC control technique is able to automati-
cally adjust the parameters of the control model in real-time when the plant parameters are unknown
or change during operations [26]. In [14], the authors proposed a control architecture based on
MRAC capable of enabling trajectory tracking for quadcopters, despite uncertainties about the iner-
tial properties of the aircraft and the presence of unknown and unsteady payloads. The authors in
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leveraged the features of MRAC to develop a controller for a built-in quadcopter, able to autonomously
adapt control parameters to various operational scenarios different from the reference model without
any external intervention from the pilot. Embedding Neural Networks enhances adaptability, allowing
for efficient and reliable control amidst changing conditions [27]. For an easy adaptation to changing
environments, a quadrotor position controller based on Neural Network trained used Reinforcement
Learning technique was presented in [23]. To effectively address problems related to parametric un-
certainties and external disturbance, the authors in [28] combine the neural network adaptive scheme
with sliding mode control for the position and attitude tracking control of a quadrotor UAV.

The presented two-level flight control strategy consists of an outer loop ensuring precise altitude con-
trol, while an inner loop focuses on attitude control [29, [30]. The MRAC system, coupled with Neural
Networks, facilitates adaptive learning and optimization, ensuring optimal performance in different
scenarios.

The paper presents results by means of numerical simulations, incorporating uncertainties and mea-
surement noise, to validate the effectiveness of the proposed controller.

The paper is organized as follows: Section [2. introduces the adopted aircraft model. Section
| describes the proposed flight control algorithm. Finally, to assess the performance of the proposed
strategy, Section [3presents the results of the numerical simulation analysis.

2. Aircraft model

The motion of the aircraft can be defined by employing the rigid body dynamic equations and two
reference frames: an inertial earth-fixed frame denoted as E, and a body-fixed frame denoted as B,
with its origin Op located at the Center of Gravity (CQG) of the vehicle.

Consider a rigid body whose state is defined as X = [V, Q7 , ©7,27]", where V denotes the velocity
vector in the body reference frame, © = [o,, ®,, ;)" stands for the vector of angular rates in the
Body frame. Additionally, ® symbolizes the vector of attitude descriptors, Euler angles ¢, 6, v or
quaternions described subsequently, and the vector z = [xg,yr,z£]” denotes the vehicle position in
the earth-fixed frame E.

The equations governing the dynamic model of the UAV in the body-fixed frame B can subsequently
be expressed as:

m(V+QxV)=F(V,2,0,u) (1)
JIQ+B(Q)JQ=T(V,Q,u) (2)
1=Ry (®)V (3)
©=H(©)Q (4)

where m is the mass of the quadrotor, whereas V represents the time derivative of the vector V as
observed in the body frame. F is the vector of external forces, a function of both motion variables and
the vector u representing propellers rotational speed used for vehicle control, and J = diag(/., 1y, ;)
represents the inertia matrix, assumed diagonal and constant in the Body frame. The vector T stands
for the applied moments with respect to the Center of Gravity (CG), and Rpr denotes the rotation
matrix from the earth-fixed frame to the body frame, dependent on attitude. The skew-symmetric
matrix B(2) is employed to express the external product between © and J2.

0 - o
BQ)=| o. 0 -o (5)
-, O 0

The external forces and moments in and (2) can be deconstructed into distinct components as
follows:

F(V,Q,0,u) = Fy(©)+F,(V,Q,u) + F,(V,Q) (6)

T(V,Q,u) = Ty(V,Q,u) + T, (V, Q) (7)

2
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Figure 1 — Quadrotor configuration and Body reference frame.

Here, Fy = Rpe[0,0,mg]” denotes the gravitational force, F, and T, represent the propulsive forces
and moments, whereas F, and T, are the aerodynamic forces and moments, respectively.
As for Fp = [Fpx, Fpy, Fp.)T and Tp = [L,,M,,N,]|", neglecting F,. and F,,, the remaining components
can be expressed as a combination of forces F; and torques T7; acting on the four propellers (i =
1,2,3,4). These forces and torques are modeled as quadratic functions of rotor speeds w;:

F=ke(o)o} .
T Zkz(wi)w,-2 Vi=1,2,3,4 (8)
Here, ks and k; denote force and torque coefficients, mainly dependent on the rotational speed at
lower values of the vehicle speed. These coefficients have been determined through experimental
tests.

Considering a quadcopter in cross-configuration (see Figure , the propulsive force component F,,,
as well as the moments L,, M,,, and N, in the body reference frame, exhibit a relationship with control
inputs, as expressed by:

Fpe ke kg kg Ky o}
L, | | bky —bky —bky bky o3 ©)
M, lkp  lkp  —lkp —lky | | of
N, ko ~k kK o}

The parameters b and [ denote the distance of the rotors center from CG along the y and x axes,
respectively.

In the context where rotor speeds can be regarded as control inputs, assuming the actuator time
response is significantly faster than the closed-loop system dynamics, a static nonlinear relationship
is required. This relationship maps control inputs to Pulse Width Modulation (PWM) signals governing
brushless motors and servos and must be implemented on board.

3. Flight Control Algorithm

The quadrotor can be operated in either an automatic or semi-automatic mode. In the Semi-Automatic
Control Mode (SACM), the quadrotor acts as a Remotely Piloted Vehicle (RPV), with the pilot supply-
ing attitude reference signals and total thrust to the onboard flight control system. In the Automatic
Control Mode (ACM), the Ground Control Station (GCS) provides reference positions or waypoints
in the earth-fixed reference frame, while the onboard control system ensures path following through
these waypoints.

The Flight Control System (FCS) consists of three primary components (see Figure [2):

» A Control Allocator (CA), responsible for distributing the control effort (requested forces and
moments) among available effectors (control of propeller rotational speeds).
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Figure 2 — General scheme of the Flight Control System.

» An internal loop for attitude control, characterized by fast dynamics, yielding virtual requested
moments to the Control Allocator through an LQR and an MRAC controller to compensate for
any nonlinearities.

» An external loop for altitude control, characterized by slow dynamics, generating virtual force
commands to the Control Allocator.

3.1 Control Allocator

Virtual forces and moments given in input to the system need to be translated into real input com-
mands for the quadcopter actuator. The Control Allocator provides the proper input commands to the
quadrotor as represented in Eq.

1 1 1 1

o} 4/1<  dbk [ 411kf 41<,1 Fp,
o; | | & Iky  Alky Iy Ly (10)
o | L - -1 1 M
3 Tky bk ky Ik P
oy I S S L N,
Iy Abks ks k;

3.2 Inner Loop Control

The inner loop control allows stabilizing the attitude of the quadrotor through the combination of a
baseline LQR model and an adaptive controller based on MRAC.

LQR controllers are widely used in aerospace applications for their characteristics of stability, robust-
ness, and optimality, as well as their easy applicability for the control of MIMO systems, especially for
attitude control problems of quadcopter [31].

Let us consider the linear system defined by Eq. (11).

x(1) = Ax(t) +Bu(t) (11)

where x = [Q7,©7]" € R™ is a reduced state vector for attitude control purposes, u € R” is the control
input, A € R™ and B € R™" are unknown constant matrices.

The LQR controller considers the feedback state control law, shown by Eq. (12), to minimize the cost
function defined by Eq (13).

ULQR(I):—K*X (12)

J(x,u) = /0 I (1)Qx(1) +u” (1)Ru(r)] dt (13)
4
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The optimal control gain, K, can be evaluated using Eq. (14), where P is found by solving the Riccati
Equation, defined by Eq. (15).

K=R'B'P (14)

ATP+PA+Q—-PBR 'B'P=0 (15)

Despite the robustness characteristics of the LQR, the emergence of nonlinearities, associated, for
example, with structural damages or engine failures, leads to a deterioration in the performance of
the controller [32]. In this regard, coupling an MRAC to LQR controller allows compensating for such
nonlinearities, effectively stabilizing the attitude of the quadrotor. Indeed, the main aim of the MRAC
control block is to adjust the control parameters in real time so that the output of the plant tracks the
output of a reference model with the same reference input.

To account for modeling errors or system control failures, let us introduce uncertainties into the model
described in Eq. (11). This way, the set of equations describing the state dynamics is modified in
accordance with Eq. (T6).

x(r) = Ax(1) + BA (u(r) +£(X)) (16)

The matrix A is a diagonal matrix to account for potential uncertainties in control system effective-
ness, whose elements are strictly positive.

Since the model shown in Eq. is a linear approximation of a nonlinear system that is valid in
a small region around a particular flight condition, the non-linear function f(X) = [fp(X)7,fr(X)7]”
allows for accounting for system uncertainties and disturbances that may arise from flight conditions
different from those considered during linearization. In this regard, the components of f(X) can be
defined according to Egs. and (18).

fp(X) = Fa(V, ) + Fp(V, Q) (17)

Fr(X) = Ta(V.2) + Ty(V, ) (18)

The aerodynamic components F, and T, take into account uncertainties related to the incomplete
aerodynamic model for flight conditions different from the hovering phase, while the components F,
and T, consider the uncertainty in identifying actuator characteristics and any disturbances related
to a loss of actuator performance.

The designed adaptive control law must be able to ensure that the system defined in Eg. can
track the state x, of a given reference plant model, as defined in Eq. (19), thus ensuring a desired
behavior, even in the presence of disturbances and uncertainties.

%,(1) = A%, () + B,x(t) (19)

The matrix A, € R™" is a stable matrix, B, € R™", and r(z) € R" is the reference input vector.
Considering a neural network with a single layer of N hidden neurons, the MRAC controller computes
the control input according to Eq. (20).

uMRAC(t) = —W(Z‘)T(I)(X) (20)

®(x) = [@;(x), P2 (x),..., Py (x)]T represents the vector of Radial Basis Functions, whereas w(t) € R™V
is the hidden layer weights matrix ([33]).

To update w(r) (Eq. (22)), the controller evaluates the tracking error between the states of the con-
trolled system and the states of the reference model (Eq. (21)).

e(t) =x(t) —x,(1) (21)

w(t) = —I'(®e’ PB — ow) (22)
5
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Table 1 — Quadcopter main characteristics.

Value
m  [kg] 0.5
[ [m] 0.2
b [m] 0.2

J [kgxm?] diag(5%1073,5%x1073,1%1072)

The parameter I' represents the rates of adaptation of the weight vector terms, o ensures that the
weights remain bounded without needing persistent excitation ([34, [27]), and PP is the solution of the
Lyapunov equation [33].

The total amount of the attitude control provided to the plant is a combination of the control inputs
from LQR and MRAC as defined in Eq. (23).

ue(t) =urgr(?) +umrac(?) (23)

3.3 Outer Loop Control
The outer loop control block, based on a PID controller [35], provides the appropriate control effort,
in terms of requested force, F,., to the CA block for tracking a reference altitude, z,.

4. Numerical Results

The proposed flight control scheme was tested on a comprehensive quadrotor simulator implemented
in Matlab-Simulink environment.

Considering the relatively low dynamic pressure and the absence of lifting surfaces in near-hovering
conditions, at this stage of the control system design phase, both aerodynamic forces and moments
have been omitted.

The main quadcopter characteristics are summarized in Table[{]

To assess the controller robustness, additional model uncertainties were considered. In particular, we
added a CG position deviation of 0.02m along the x-axis, introducing an unbalance moment around
the pitch axis, and a 20% variation of the vehicle inertia matrix data. Furthermore, numerical simula-
tions also take into account first-order linear actuator dynamics with saturations and the presence of
measurement noise observed during flights.

To highlight the performance of the proposed controller, a sequence of two distinct attitude maneuvers
around body axis was selected. In particular, two rectangular signals with a duration of 5s each and
amplitudes of 0.2rad and 0.1rad were considered as inputs for the roll, pitch, and yaw channels.

As can be seen in Figures [3aland[3c] control systems with and without MRAC are equally effective in
response to the roll and yaw input signals, both able to compensate model uncertainties introduced
in terms of variation of the inertia matrix data. On the other hand, once a further model uncertainty is
added in terms of CG position deviation along the x-axis, a significant bias appears in the response
of LQR pitch attitude controller (see Figure [3b). In this case, the MRAC control action allows to ef-
fectively compensate for this bias, providing satisfactory results in the system response. In particular,
the proposed control system architecture, combining LQR and MRAC controllers, is able to assure a
tracking error compliant with the accuracy of the low-cost Inertial Measurement Units (IMUs) typically
involved in this kind of air vehicle.

5. Conclusions

In this paper, the design and testing of a flight control scheme based on MRAC with Neural Networks
is presented. The effectiveness of the proposed control algorithm has been tested through numerical
simulations on a nonlinear quadcopter simulator, performing a sequence of maneuvers around body
axes in the presence of non-modeled dynamics. Model uncertainties have been added in terms of
CG position deviation, introducing an unbalance moment around the pitch axis, and variation of the
vehicle inertia matrix data. A comparison of results with and without the MRAC compensator showed
that the combined use of LQR and MRAC controllers provides the best performance in the presence

6
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Figure 3 — Numerical simulation results on roll (a), pitch (b), and yaw (c) channel, with and without
MRAC controller.

of model uncertainties, namely when these concern the CG position. In particular, the proposed
control system architecture was able to ensure limited tracking errors, avoiding the excessive bias
shown in the response of the pitch attitude controller without the use of MRAC. As future work, the
proposed control algorithm will be implemented on a real model, allowing to assess its performance
through a dedicated campaign of experimental tests in indoor laboratories with the assistance of a
flight arena.
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