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Abstract 

In the multidisciplinary design of aerodynamic stealth for airfoil profiles, the diversity and coupling relationships 

among objectives and variables increase the computational cost and development cycle of the optimization 

design. This paper focuses on data mining using two types of algorithms: random forest and isometric mapping. 

The data mining considers many objectives: aerodynamic lift coefficient, drag coefficient, and lift-to-drag ratio, 

as well as vertical polarized radar cross-section and horizontal polarized radar cross-section. In the analysis 

of objectives and design variables, the aerodynamic and stealth performance of the airfoil profiles are greatly 

influenced by the curvature of the leading and trailing edges, followed by the chord length. Larger curvature of 

the leading edge reduces drag and improves stealth performance. Smaller curvature of the trailing edge 

improves the lift coefficient, lift-to-drag ratio, and stealth performance. Through data mining, specific reference 

ranges for design variables are provided to obtain airfoil profiles with superior aerodynamic stealth performance. 
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1. General Introduction 

Aerodynamic stealth integrated design plays a guiding role in the exterior design of fighter jets. 

However, one of the challenges in aerodynamic stealth multidisciplinary design optimization is the 

complex interactions among a large number of objective functions, design variables, and constraints 

[1][2]. Duan et al. [3] used the Proper Orthogonal Decomposition (POD) algorithm as a surrogate 

model to reduce computational costs, employing the Genetic Algorithm (GA) to identify the range of 

the global optimal solution. Li et al. [4] established a reinforcement learning-based predictive 

surrogate model for wing drag and pressure distribution, learning the strategy for reducing transonic 

wing drag through the Proximal Policy Optimization (PPO) algorithm. Chong et al. [5] employed an 

Artificial Neural Network to build a data-driven surrogate model for predicting the aerodynamic 

characteristics of wing configurations, utilizing the GA to search for optimized wing shapes. It is 

evident that faced with high-dimensional, multi-objective problems, traditional surrogate model 

methods first fit sample data to predict the aerodynamic performance of new shapes and then 

perform multi-objective optimization under multiple constraints using optimization algorithms. 

However, the established surrogate models lack further exploration of the sample data obtained 

through extensive computational resources, which actually contains important features such as the 

significance of design variables and the correlation between objective functions, waiting for further 

exploration and utilization for guiding optimization designs [6]. 

There is a rich variety of methods in data mining, including Random Forest [7], Adaptive Boosting 

Ensemble Algorithm [8], Isometric Mapping [9], Self-Organizing Map [10], and suitable data mining 

methods can effectively extract the relationship between objective functions and design variables. 

Rational reduction of the design space [11] benefits designers in focusing more on exploring the 

most potential design space to improve design efficiency. Additionally, it helps eliminate design 

choices that do not meet specific requirements, thus reducing computational and resource 

costs,saving time, and enabling designers to more fully consider the impact and interaction of design 
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variables to optimize design quality. Oyama et al. [12] decomposed surface pressure data of Pareto 

optimal solutions for transonic wing profiles using the POD method, finding that in low drag wing 

designs, lift increase depends on changes in wing trailing edge curvature. Kanazaki et al. [13], 

through variance analysis, discovered that the thickness on the upper surface and the sweep back 

angle are crucial parameters affecting drag coefficients under transonic/subsonic conditions. 

In terms of the impact of design variables on design objectives, Random Forest can quantitatively 

represent, while Isometric Mapping can qualitatively represent. Therefore, by using these two data 

mining algorithms, design rules in the aerodynamic stealth optimization process for wing profiles can 

be extracted. The second part of this paper mainly introduces relevant issues in aerodynamic stealth 

optimization for wing profiles. The third part covers data mining theory and its model architecture, 

while the fourth part focuses on knowledge extraction for optimization design based on data mining 

methods. Finally, the paper concludes in the fifth part. 

2. Airfoil Aerodynamic Stealth Optimization Problem 

2.1 Design Objectives 

This paper conducts data mining research around the two core issues of airfoil aerodynamic stealth. 

Specifically, two flight states, H=0km、Ma=0.2、α=8° and H=12km、Ma=0.8、CL=0.4, are selected 

as design objectives: 

1）Maximize lift-to-drag ratio, i.e., the objective function is as follows: 

 subsonic
/L DK C=  (1) 

2）Maximize lift, i.e., the objective function is as follows: 
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3）Minimize drag, i.e., the objective function is as follows: 
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where S is the reference area, c  is the average aerodynamic chord length used as the reference 

length. 

4）Minimize radar cross-sectional area, i.e., the objective function is as follows: 
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Where the superscript s indicates the scattering field, i indicates the incident field, H indicates the 
magnetic field, E indicates the electric field, and R indicates the distance from the target to the radar 
receiver. The incident wave polarization modes are vertical polarization wave (TE) and horizontal 
polarization wave (TM). 

2.2 Design Variables and Definitions 

Based on NACA65(3)-014 airfoil data, this paper employs the Latin hypercube and perturbation CST 

parameterization method [14] to obtain a large training sample, aiming to maximize the model's 

generalization ability. Ultimately, a dataset containing 5000 two-dimensional airfoils is obtained. 

The CST basic function is expressed as follows: 

 ( ) ( ) ( )B x C x S x=   (5) 

Where the class function 1 2( ) (1 )N NC x x x=  −  defines the geometric shape. For airfoils with blunt 

leading edges and pointed trailing edges, N1 and N2 are chosen as the feature parameters of the 

class function, with values of 0.5 and 1, respectively. The shape function ( ) ( )
0

N
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=
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to describe the detailed geometric features based on the class function, with the basic function 

commonly expressed as 
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. Figure 1 illustrates the impact region of 10 weight 
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coefficients iA  when N=4. Table 1 provides the range of variation for the weight coefficients iA , 

defining them as design variables. Figure 2 illustrates the range of airfoil values based on 

perturbation CST. 

 

Figure 1 Parameters of 4rd CST. 

Table 1 Design variables and disturbance range 

Variable number Variable Original value Disturbance range of value 

A0 A0 0.3424 [-0.1,0.1] 

A1 A1 0.4398 [-0.2,0.2] 

A2 A2 0.2418 [-0.25,0.25] 

A3 A3 0.4284 [-0.2,0.2] 

A4 A4 0.3162 [-0.1,0.1] 

A5 A5 -0.3424 [-0.1,0.1] 

A6 A6 -0.1657 [-0.2,0.2] 

A7 A7 -0.3835 [-0.25,0.25] 

A8 A8 -0.0838 [-0.2,0.2] 

A9 A9 -0.2851 [-0.1,0.1] 

 

Figure 2 The airfoil profiles range based on perturbation CST. 

2.3 Aerodynamic Stealth Performance Analysis Method 

The accuracy of aerodynamic characteristic calculations determines the reliability of aerodynamic 
design results. In this paper, a self-developed Computational Fluid Dynamics (CFD) solver is 
employed to compute the aerodynamic performance of airfoils. The specific process involves using 
Reynolds-Averaged Navier-Stokes (RANS) equations for flow field control, the Spalart-Allmaras (S-
A) turbulence model to close the equation set, Roe scheme for spatial discretization, and LU-SGS 
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implicit format for time advancement. 

The stealth performance parameters of the airfoil are calculated through a self-developed method 
based on the moment method. The moment method, based on a rigorous theoretical model, can 
handle conductors and media of arbitrary shapes, making it suitable for electromagnetic problems 
with wide bandwidths, multiple modes, and complex structures. According to linear space theory, the 

integral physical operator equation for the electromagnetic field can be expressed as ( )L x b= , 

where x  is the unknown induced current, b  is the known excitation source, and L  is a linear 

operator. The steps for solving this operator equation using the moment method are as follows: 

(1) Select basis functions  
1

N

i i
j

=
 to describe the induced current, i.e., 

1
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(2) Choose weighting functions jt  and take the inner product of the operator equation, yielding 

( )
1

, ,
N

i j i j
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(3) Solve for the unknowns  a  using an iterative method; 

(4) Substitute the solved induced current into the electromagnetic field integral equation to obtain 
the scattered field. 

3. Data Mining Methods 

3.1 Random Forest (RF) 
Random Forest, proposed by Breiman [15] in 2001, is an ensemble learning method that combines 

the results of multiple decision trees through voting to make a final decision. It effectively reduces 

the risk of overfitting in individual decision trees while demonstrating high accuracy and 

generalization. The Random Forest model is based on the Bagging algorithm, where multiple 

decision trees are combined in a certain way. In each iteration, samples are randomly selected from 

the dataset, and a random subset of features is chosen as input. In classification problems, the 

majority classification result is selected as the final outcome. The schematic diagram is shown in 

Figure 3. 

 

Figure 3 Schematic diagram of random forest. 
The basic process of a Random Forest is as follows: 

1）Use the Bootstrap method to split the dataset into n  subsets for classification/regression; 

2）Randomly select features from the dataset and build a decision tree using the best splitting 

attribute as a node; 

3）Repeat the above two steps multiple times to create multiple decision trees; 

4）Form a Random Forest and determine the final result through a voting process. 

3.2 Isometric Mapping (Isomap) 
As an extension of Multidimensional Scaling (MDS) algorithm, identifies the neighbors of each point 

based on Euclidean distance. It then constructs a neighborhood connectivity graph, where 
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connected links exist between neighboring points, and no links exist between non-neighboring points. 

Consequently, the problem of calculating geodesic distances between two points transforms into 

determining the shortest path between them on the neighborhood connectivity graph. Figure 4 

illustrates the reduction from a three-dimensional data space (left) to a two-dimensional data space 

(right) through Isomap. 

 

Figure 4 Dimension reduction of data by Isomap. 
The basic process of Isomap is as follows: 

1）Determine the k -nearest neighbors of sample point ix , setting the distances between ix  and 

its k -nearest neighbors as the Euclidean distance, and distances to other points as infinitely far; 

2）Use the shortest path algorithm to compute the distances ( ),i jdist x x  between sample points; 

3）Use the obtained distances ( ),i jdist x x  as input for the MDS algorithm to obtain the mapping of 

the sample set in a lower-dimensional space. 

4. Optimization Design Knowledge Extraction 

4.1 Analysis of Important Design Variables for Optimization Objectives 
In the construction process of a random forest, different design variables can be obtained to 

quantitatively assess their impact on the optimization objectives. Since the hyperparameters of the 

model can influence its accuracy, the range of the number of decision trees is set to [1, 1000], and 

the range of maximum depth is set to [1, 100]. The grid search algorithm is employed to determine 

the optimal hyperparameters during model training, resulting in a final decision tree count of 100 and 

a maximum depth of 20, with a model prediction accuracy of 98%.Figure 5 provides a visualization 

of the importance obtained through the random forest, where yellow indicates higher importance, 

and light blue indicates lower importance. 

   
(a)0.2Ma-CL (b)0.2Ma-CD (c)0.2Ma-K 

   
(d)0.8Ma-CD (e)TE (f)TM 

Figure 5 Order of importance of design variables obtained by random forest. 
From Figure 5, it can be observed that, for the lift coefficient (CL) at the 0.2 Mach design state, the 

most influential design variables are A8 and A2, followed by A9, representing the trailing edge of the 

airfoil. A smaller trailing edge curvature can enhance the aerodynamic efficiency of the airfoil, 
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reducing the generation of wake vortices and turbulence. Regarding the drag coefficient (CD) at the 

0.2 Mach design state, the most critical design variables are A2 and A3, indicating that the curvature 

radius of the airfoil leading edge is a significant design variable. A curved leading edge can disperse 

radiation and scattering signals in different directions, contributing to smoothing the surface of the 

airfoil and eliminating sharp edges. 

At the 0.8 Mach design state, the most important design variables are A1 and A2. Similarly, for the 

horizontal polarization TM wave incident radar cross-sectional area, considering a ±30° sector as 

the main threat area, A0 and A5 are crucial design variables. This implies that the leading edge 

curvature of the airfoil fundamentally determines its stealth performance. For the vertical polarization 

TE wave incident radar cross-sectional area, A4 and A9 also determine its stealth performance. 

Based on the comprehensive analysis of design variables' impact on design objectives using random 

forest, it can be concluded that A0, A1, A2, A4, A5, and A9—representing the leading edge and 

trailing edge curvature of the airfoil—are the six crucial design variables influencing aerodynamic 

stealth performance. Appropriately expanding the perturbation space for these six design variables 

is beneficial for obtaining airfoil profiles with superior aerodynamic stealth performance. 

4.2 Design Variable/Objective Coupling Relationship 
For 5000 data samples, their aerodynamic stealth performance is sorted. The top 10% of the results 

are labeled as 'high,' while the remaining data is labeled as 'low.' Figure 6 presents the results 

obtained using the Isometric Mapping method, where the values of the radar cross-sectional areas 

for vertical polarization (TE) and horizontal polarization (TM) are processed by taking their negative 

values. 

   
(a)0.2Ma-CL (b)0.2Ma-CD (c)0.2Ma-K 

   
(d)0.8Ma-CD (e)TE (f)TM 

Figure 6 Objective function dyeing results of Isomap. 
In Figure 6, the relationship between design objectives appears to be complex. It is evident that the 

regions of superior solutions for drag coefficient (CD) at 0.2 Mach design state and 0.8 Mach design 

state overlap significantly, indicating good consistency between the two. Next is the lift coefficient 

(CL) and lift-to-drag ratio (K) at the 0.2 Mach design state, both with superior regions located on the 

right side. For lift coefficient (CL) and drag coefficient (CD) at the 0.2 Mach design state, Isometric 

Mapping reveals a trade-off relationship between them, with superior lift solutions on the right and 

superior drag solutions on the left. The lift-to-drag ratio (K) and radar cross-sectional areas for vertical 

polarization (TE) and horizontal polarization (TM) show conflicting relationships across most regions, 

except for some overlap in the lower right part. Furthermore, Isometric Mapping clearly illustrates the 

differences in the distribution of lift-to-drag ratio (K) and radar cross-sectional area for vertical 

polarization (TE), with K showing a left-right distribution and TE showing an up-down distribution. 

From the analysis of aerodynamic stealth design objectives for the airfoil, the following conclusions 

can be drawn: It is challenging to find a solution that simultaneously optimizes all six design 

objectives, requiring compromise and trade-offs. At the 0.2 Mach design state, it is essential to 

ensure the airfoil has a high lift coefficient to meet takeoff conditions while also possessing good 
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cruise efficiency and stealth performance at the 0.8 Mach design state. Using the Isometric Mapping 

method, the region indicated by the black circles in Figure 6 can be visually identified as the decision 

data point area that is relatively superior when considering all six design objectives comprehensively. 

   
(a)A0 (b)A1 (c)A2 

   
(d)A4 (e)A5 (f)A9 

Figure 7 Design variable staining results for Isomap. 
Figure 7 presents the results obtained by coloring different design variables based on their significant 

impact on design objectives. Contrasting the distribution of design variables with that of design 

objectives allows us to discern patterns in the influence of design variables on design objectives. At 

the 0.2 Mach design state, there is a strong positive correlation between the lift coefficient (CL) and 

design variable A9. This implies that a smoother lower surface of the airfoil's trailing edge leads to a 

higher lift coefficient. For the lift-to-drag ratio (K) at the 0.2 Mach design state, there is a strong 

positive correlation with design variable A9, consistent with the relationship observed for the lift 

coefficient (CL). 

The distribution of values for the radar cross-sectional area for vertical polarization (TE) is strongly 

positively correlated with design variables A4 and A5, representing the curvature radius of the airfoil's 

leading edge. This indicates that better stealth performance is achieved when the leading edge 

curvature is larger. Concerning the radar cross-sectional area for horizontal polarization (TM), its 

values are influenced by factors consistent with those affecting the radar cross-sectional area for 

vertical polarization (TE), demonstrating good consistency. 

In summary, the Isometric Mapping method not only provides an intuitive understanding of the trade-

off relationships between objective functions but also, compared to the random forest method, 

reveals patterns in the influence of design variable magnitudes on design objectives. 

4.3 Design Rule Summary Analysis 
Through the use of the random forest algorithm, design rules can be easily extracted. For airfoil 

design and optimization, the range of design variables affects the final design outcome of the airfoil 

profiles. Reducing the design space of non-critical design variables can effectively improve design 

efficiency. Figure 8 provides partial results of the design knowledge decision tree for the high lift 

coefficient CL under the 0.2 Mach design condition. Further extraction of design knowledge yields 

the value space of design variables for airfoil profiles with a higher lift-to-drag ratio, as shown in Table 

2. 
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Figure 8 Design knowledge decision tree for 0.2Ma-CL. 

Table 2 Design rules of 0.2Ma-CL 

Rules Number of data 

A0((0.231, *)) and A1((*,0.729]) and A2((0.328, *)) and A4((0.318, *))      →high 20 

A7((0.725, *) and A9((0.498, *)) and A3((0.597, *)) and A8((*,0.729])       →high 13 

A1((*,0.402]) and A9((0.866,*)) and A7((0.429,*)                                      →high 8 

From Table 2, it can be observed that there are a relatively larger number of superior solutions 

obtained by observing Rule 1. Therefore, Rule 1 holds higher importance in the design process. 

Under the conditions where design variable A0 is greater than 0.231, A1 is less than 0.729, A2 is 

greater than 0.328, and A4 is greater than 0.318, there is a high probability of achieving a higher lift 

coefficient. This aligns with the importance conclusions drawn from the random forest. Similarly, 

important design rules applicable to other design objectives can be derived, as shown in the table 

below. Table 2 to Table 7 provide parameter values for 10 normalized CST perturbations based on 

the initial NACA64(3)-014 airfoil profiles. 

Table 3 Design rules of 0.2Ma-K 

Rules Number of data 

A6((0.842, *)) and A9((0.716, *)) and A2((0.294, *)) and A8((*,0.585])  →high 12 

A4((0.872, *)) and A9((0.931, *)) and A7((0.322, *))                              →high 9 

Table 4 Design rules of 0.2Ma-CD 
Rules Number of data 

A7((0.703,*)) and A6((*,0.952]) and A0((0.53,*)) and A1((0.16,*))        →high 31 

A2((*,0.319]) and A9((*, 0.307]) and A6((0.714,*))                                →high 7 

Table 5 Design rules of 0.8Ma-CD 
Rules Number of data 

A6((0.582,*)) and A8((*,0.984]) and A1((*, 0.041])) and A9((0.171,*)])    →high 9 

A6((0.582,*)) and A8((0.984, *))                                                               →high 5 

Table 6 Design rules of TE 
Rules Number of data 
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A4((0.848, *)) and A3((0.528, *)) and A6((0.428, *))                              →high 24 

A4((0.848, *)) and A3((0.528, *)) and A6((*,0.428]) and A5((0.221, *))  →high 15 

Table 7 Design rules of TM 
Rules Number of data 

A1((0.05, *)) and A0((*, 0.125]) and A5((0.646, *)) and A2((0.061,*))    →high 13 

A1((*,0.05]) and A8((*, 0.551]) and A5((*, 0.695])                                  →high 7 

Table 2 to Table 7 provide quantified design rules for the lift-to-drag ratio under the 0.2 Mach design 

condition, drag coefficient, drag coefficient under the 0.8 Mach design condition, vertical polarized 

radar cross-section (RCS), and horizontal polarized radar cross-section (RCS), respectively. These 

design rules can be utilized not only to narrow down the value space of design variables during the 

optimization phase, thereby enhancing design efficiency, but also to offer valuable insights for future 

airfoil design endeavors. 

5. Summary 
This paper takes the example of airfoil design optimization and conducts data mining research on 

the design variables and design objectives in the aerodynamic stealth design based on two 

representative methods, namely, Random Forest (RF) and Isometric Mapping (Isomap). The 

following conclusions are drawn: 

1）For aerodynamic stealth design of airfoil profiles, A1, A2, A5, and A9 are the most crucial design 

variables. Achieving a comprehensive improvement in aerodynamic stealth performance can be 

realized by balancing and adjusting key factors such as the leading edge and trailing edge curvature 

of the airfoil profiles. A smaller trailing edge curvature enhances the aerodynamic efficiency of the 

airfoil profiles, reducing the generation of wake vortices and turbulence. Curved leading edges 

disperse radiation and scattering signals in different directions, contributing to smoothing the airfoil 

profiles surface and eliminating sharp edges. In subsequent optimizations, appropriately expanding 

the value space of sensitive design variables is advantageous in obtaining airfoil profiles with 

superior aerodynamic stealth performance. 

2） In the context of airfoil aerodynamic stealth, there exists a trade-off relationship between 

aerodynamic performance and stealth performance. Optimal solutions can be simultaneously 

achieved for vertical polarization and horizontal polarization. The superior solution can only be found 

in the favorable 0.2 Mach-CL region, sacrificing the intermediate region of optimal vertical polarization 

TE radar cross-section and horizontal polarization TM radar cross-section for stealth performance. 

3） Isometric Mapping provides a more intuitive description of design objectives, revealing the 

relationship between design objectives and offering a more precise insight into the primary impact 

characteristics of design variables on design objectives. The Random Forest algorithm not only 

indicates the importance of each design variable to design objectives but also provides the value 

range of design variables that yield superior performance airfoil profiles. 

In summary, these two data mining methods have their own characteristics and advantages in 

extracting design rules. They can analyze design variables and objectives in airfoil optimization from 

different perspectives, obtaining valuable design knowledge. In practical applications, a 

comprehensive use of these two methods can facilitate the exploration and reuse of latent design 

knowledge in the aerodynamic stealth optimization of airfoil profiles. 

6. Contact Author Email Address 

The corresponding author of the paper is Shusheng Chen: sshengchen@nwpu.edu.cn. 

7. Copyright Statement 

The authors confirm that they, and/or their company or organization, hold copyright on all of the original material 

included in this paper. The authors also confirm that they have obtained permission, from the copyright holder 

of any third party material included in this paper, to publish it as part of their paper. The authors confirm that 



DATA MINING ANALYSIS ON AERODYNAMIC STEALTH DESIGN PRINCIPLES OF AIRFOIL PROFILES 

10 

 

 

they give permission, or have obtained permission from the copyright holder of this paper, for the publication 

and distribution of this paper as part of the ICAS proceedings or as individual off-prints from the proceedings. 



DATA MINING ANALYSIS ON AERODYNAMIC STEALTH DESIGN PRINCIPLES OF AIRFOIL PROFILES 

11 

 

 

References 
[1] Jeong S, Shimoyama K. Review of data mining for multi-disciplinary design optimization[J]. Proceedings 

of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 225, No. 5, pp 
469-479, 2011. 

[2] Simpson T, Toropov V, Balabanov V, et al. Design and Analysis of Computer Experiments in 
Multidisciplinary Design Optimization: A Review of How Far We Have Come - Or Not[C]. 12th 
AIAA/ISSMO multidisciplinary analysis and optimization conference, pp 5802, 2008. 

[3] Duan Y, Cai J and Li Y. Gappy Proper Orthogonal Decomposition-Based Two-Step Optimization for 
Airfoil Design[J]. AIAA Journal, Vol. 50, No. 4, pp 968-971, 2012. 

[4] Li R, Zhang Y and Chen H. Learning the Aerodynamic Design of Supercritical Airfoils Through Deep 
Reinforcement Learning[J]. AIAA Journal, Vol. 59, No. 10, pp 3988-4001, 2021. 

[5] Chong S W, Damodaran M and Khoo B C. Comparing Data-Driven and Conventional Airfoil Shape 
Design Optimization[J]. AIAA SCITECH 2023 Forum, pp 1671, 2023. 

[6] Jeong S, Chiba K and Obayashi S. Data Mining for Aerodynamic Design Space[J]. Journal of aerospace 
computing, information, and communication, Vol. 2 No. 11, pp 452-469, 2005. 

[7] BREIMAN L. Random Forests[J]. Machine learning, Vol. 45, pp 5-32, 2001. 

[8] Freund Y, Schapire R E. Experiments with a New Boosting Algorithm[J]. Machine Learning, Vol. 96, pp 
148-156, 1996. 

[9] Nagar D, Ramu P and Deb K. Visualization and analysis of Pareto-optimal fronts using interpretable self-
organizing map (iSOM)[J]. Swarm and Evolutionary Computation, Vol. 76, pp 101202, 2023. 

[10] Richardson T, Nekolny B, Holub J, et al. Visualizing Design Spaces Using Two-Dimensional Contextual 
Self-Organizing Maps[J]. AIAA Journal, Vol. 52 No. 4, pp 725-738, 2014. 

[11] Nunez M, Guenov M D. Design-Exploration Framework for Handling Changes Affecting Conceptual 
Design[J]. Journal of Aircraft, Vol. 50, No. 1, pp 114-129, 2013. 

[12] Oyama A, Nonomura T and Fujii K. Data Mining of Pareto-Optimal Transonic Airfoil Shapes Using 
Proper Orthogonal Decomposition[J]. Journal of Aircraft, Vol. 47 No. 5, pp 1756-1762, 2010. 

[13] Kanazaki M, Jeong S. Data mining based multipoint design of next generation transonic wing with small 
sweep back[C]. 27th Congress of the international council of the aeronautical sciences, 2010. 

[14] Ceze M, Hayashi M and Volpe E. A Study of the CST Parameterization Characteristics[J]. 27Th AIAA 
Applied Aerodynamics Conference, pp 3767, 2009. 

[15] BREIMAN L. Prediction games and arcing algorithms[J]. Neural computation, Vol. 7 No. 11, pp 1493-
1517, 2001. 


