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Abstract

The integration of Al into commercial aircraft cockpits will constitute a significant leap forward in aviation tech-
nology but it prompts questions about necessity, benefits, and safety. This paper investigates a novel approach,
employing Reinforcement Learning and introducing an adversarial agent, a 'Gremlin,’ to manipulate aircraft
systems strategically and attempt to deceive an 'Angel'— the Reinforcement Learning agent responsible for
control. In combination with a large task space and a non-restrictive reward function, this approach aims at
creating a deep understanding of the systems on the aircraft and its surrounding in the Al system to ensure
correct response in unforeseen conditions. System failures and upset conditions are induced to strengthen
the knowledge of the Al system. Through rigorous testing, we aim to provide insights into the robustness and
limitations of the system in unforeseen circumstances, contributing to the advancement of safe Al integration
in aircraft cockpits.
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1. Introduction

In the evolving landscape of aviation, the integration of artificial intelligence (Al) into the cockpit of
commercial aircraft is a large step forward. This raises a number of questions, such as whether it is
necessary, what the benefits are, and how to create a comprehensive approach to ensure safety and
efficacy. At the core of these questions is the recognition that Al has unique advantages, including
the potential for task execution that surpasses human capabilities, presenting a compelling case for
its integration into the cockpit.

An Al system capable of processing information from all aircraft systems has the potential of gener-
ating valuable insights, leading to improved safety. As greater levels of automation are being intro-
duced in the cockpit, Al can be used to mitigate the persistent gap in human-machine interaction. By
taking into account the limitations of humans and leveraging the strengths of machine intelligence,
safety measures can be strengthened. An Al system, capable of identifying system failures and un-
derstanding their consequences, emerges as a critical component in contributing to overall safety
improvement.

For safe integration of Al into the cockpit, one aspect that is crucial is to make Al responses pre-
dictable, especially in unforeseen circumstances. The real-world application of controlling an aircraft,
with the potential for inadvertent pilot actions, system failures, and upsets, requires Al systems to not
only perform well but also do so dependably even when faced with abnormalities.

A comprehensive strategy for creating such an Al system involves developing an understanding of
the interaction of the onboard systems with the aircraft and its surroundings, one that is deep enough
to correctly respond in conditions that may not have been encountered previously. Creating such an
understanding in Al involves maximizing exploration, automating the generation of training tasks with
appropriate difficulty levels, and leveraging transfer learning abilities. By allowing an Al system to
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explore and develop their capabilities to the fullest extent, a greater potential to adapt to a multitude
of complex situations is unlocked.

This paper investigates the integration of Al into commercial aircraft cockpits, exploring the benefits
and limitations of a novel, comprehensive approach to creating an Al system aimed at enhancing
safety in unforeseen circumstances for aircraft control. For this approach, an Al system based on
Reinforcement Learning was trained using an adversary (the 'Gremlin’) to identify weaknesses during
its training phase. The adversary is responsible for introducing system failures and inducing upset
conditions. By subjecting the resulting Reinforcement Learning system to rigorous testing, we aim to
provide insights into the robustness and limitations of the system in unforeseen circumstances.

The remainder of this paper is structured as follows. Section [2.presents the concept of the novel
competition-based training method to create the Al system. Section 3. provides details of the im-
plementation. Section [4.discusses the evaluation metrics and tests for which the results are then

presented in Sections [4.J -[4.3.

2. Competition-based training: Angels and Gremlins

This paper tests a system in which artificial neural networks were trained using Reinforcement Learn-
ing to develop an Al system capable of generating control commands. These commands can be used
by the pilot or temporarily assumed by the Al to control the aircraft. More importantly, Reinforcement
Learning was used with the aim of maximizing the ability to learn about the aircraft in its environment,
as well as the effect of interactions. Given the challenging nature of identifying optimal actions in
various situations for this application, Reinforcement Learning emerges as a compelling approach as
it also eliminates the need to define optimal outcomes or labels. In Reinforcement Learning an agent
repeatedly acts in an environment based on current state information about the environment. Col-
lected state-action pairs together with a calculated reward for each action form a dataset from which
the neural network of the agent can be optimized. The concept of having an Al system understand
the systems on the aircraft with Reinforcement Learning has been investigated in previous work. In
[1] this resulted in superior performance when faced with reconstruction of Pitot-static failures, and in
[2] the Reinforcement Learning agent was able to combine multiple flying tasks in a non-sequential
manner.

To train a Reinforcement Learning agent in a comprehensive manner, it is important that the agent
is exposed to enough examples during training from which meaningful features can be formed. As
the Reinforcement Learning agent learns from its own interactions with the environment, exposing
the agent to such examples is not straightforward. In this paper, we test a competition-based training
method to provide the Reinforcement Learning agent with examples that lead to an effective training
schedule, which extends the abilities of the Reinforcement Learning agent previously investigated in
[1] and [2].

In the proposed methodology, an adversary, referred to as the ’Gremlin,’ is introduced as a Rein-
forcement Learning agent. This Gremlin engages in a competitive dynamic with the Reinforcement
Learning agent responsible for aircraft control, referred to as the ’Angel.” The historical origin of the
term 'Gremlin’ traces back to its attribution by RAF pilots during World War Il, where it was ascribed
to malfunctions in aircraft. In alignment with this historical context, our approach utilizes the Gremlin
to manipulate aircraft systems strategically, aiming to deceive the Angel.

Within the field of Al, multi-agent competition using Reinforcement Learning has previously demon-
strated unique advantages [3] [4], which can be useful in developing an Al system for aircraft control
with safety and comprehensiveness in mind. Within this context, the Gremlin could force the Angel
to confront and address its weaknesses, yielding specific advantages. Coupled with a large task
space and an non-restrictive reward function, the Gremlin would facilitate extensive exploration by
the Angel. This exploration could mitigate suboptimal convergence, allowing the Angel to delve into
crucial subsets of the environment, of which it might not have been motivated to do so before. As
both Angel and Gremlin dynamically adjust their parameters during training, they evolve and maintain
competitiveness, establishing an autocurriculum that automates training task difficulty levels for the
Angel.

The introduction of the Gremlin creates significant variability in tasks that may previously be consid-
ered mundane. This variability, coupled with the large training space and a non-restrictive reward
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function, can enhance the system’s transfer learning capabilities. In this way, the Angel can be incen-
tivized to develop a deep understanding of environmental dynamics rather than relying on superficial
features, thereby enabling it to respond correctly in unforeseen conditions.

3. Implementation details

3.1 Reinforcement Learning architecture

The on-policy Proximal Policy Optimization algorithm [5] was used to implement Reinforcement
Learning. This algorithm trains two neural networks, an actor and a critic. The actor network provides
the actions and the critic provides the actor network with an estimate on the future reward based on
the current state. The critic network is optimized using the future discounted reward and the actor
network is optimized based on the advantage of taking the estimated actions. Both actor and critic
networks were implemented having an architecture of an LSTM layer followed by two fully connected
layers which all had 256 neurons. The parematers were not shared between the neural networks of
the actor and critic.

Training of these neural networks was performed by performing tasks in the JSBSim [6] simulation
software using the A320 commercial aircraft model. The output of the actor network in the Angel
agent were the actions representing the continuous control of elevator deflection and thrust setting.
Spins were not considered due to simulation limitations. The output of the actor network in the
Gremlin agent was a manipulation of the angle of attack sensor with an offset between -10 and
10 degrees. Such a manipulation of the angle attack sensor can challenge the dependencies and
understanding of the Angel as it has to depend less on the angle of attack input and more on the
related relationships of other variables to understand if the angle of attack information is useful.

The inputs, or observations, to the Reinforcement Learning agents (both Angel and Gremlin) were the
inputs and outputs of the systems available during flight. These included measurements of altitude,
airspeeds, attitude, pressure, temperature, speed of sound, weight and current positions of controls.
Information about the requested airspeed and altitude targets was also included, allowing the agent to
create relationships between the reward and the task to be solved. The Angel and Gremlin received
the same states as input, except that the states seen by the Angel may be manipulated by the
Gremlin.

3.2 Training task space

The tasks (episodes) that were performed by the Angel agent during training were randomized in
terms of initial position, weight, and target altitude and airspeed. To ensure possible combinations
of initial values, the episode only started when the aircraft was trimmable using the built-in function
provided by JSBSim. This was done to limit overfitting to an episode that always starts in an upset
or abnormal condition. The initial altitudes were sampled between 15,000 and 35,000 feet and the
initial airspeeds between 420 and 770 ft/s true airspeed. The weight of aircraft was varied altering
the fuel load and was sampled between a total aircraft weight of 52 and 72 tonnes. The target
altitude and airspeed were also randomly sampled at the beginning of the episode; altitude change
was sampled between -1000 and 1000 feet, and calibrated airspeed change between -100 and 100
ft/s. Restrictions to the training space were only included to conform with the simulation limitations.
Therefore, the episode was prematurely ended when exceeding the maximum operating speed or
mach (Vmo or Mmo) to match the design limits of the aircraft; the altitude was lower than 500 ft, to
avoid empty values from the simulation; and the angle of attack exceeded 30 degrees, as this was
not modeled. Prematurely ending the episode has a strong influence on the training of the agent as
it potentially loses a large amount of reward and therefore learns to avoid such states.

3.3 Reward function

In the randomly sampled tasks during training, the responses of the Angel and Gremlin are evaluated
by the reward function. This reward is used to optimize both networks to enforce the desired behavior.
The reward provides feedback to the Reinforcement Learning agent of its actions in the environment.
Not only does this reward guide the agent towards solving the tasks, it also indirectly affects the
training space that the agent will see in the future optimization iterations. In the proposed approach,
a reward function that is generalizable to any task in any area in the environment was implemented.
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For the Angel, the reward function focused mainly on the distance to the altitude and airspeed targets
set at the beginning of the episode. This target reward is summarized in Eq.[l}

rtarget = Singid(rAalmude ) + Singid(rACAS) ? (1 )

where the sigmoid function is sigmoid (x) = H% The sigmoid function not only normalizes the reward

but also has the effect that far from the target large improvement can be made by the Reinforcement
Learning agent when moving in the correct direction, and close to the target the agent has to be more
precise to gain more reward.

In addition, a small reward was included to stay within vertical speed, vertical acceleration, and
angle of attack limits. Although the Angel would theoretically receive enough feedback from the
environment to not prefer to go into an aerodynamic stall, it was found from early experiments that,
at least within JSBSim, the Reinforcement Learning agent was able to exploit regions by for example
staying just below the critical angle of attack. Therefore, a small reward was added when the angle
of attack continued to decrease below 10 degrees. These reward components are grouped together
and follow in Eq 2}

Tlimits = Tj, +Ta, + Taoa; (2)

where all components are 1 when within defined limits and 0 otherwise.

It was also experimentally found that very fast oscillations and erratic behavior had little effect on the
elements included in the reward function. Therefore, it was beneficial to include a small reward which
discourages large changes between actions in the previous and current step, following in Eq[3}

Factions = rAelevamr + rAthrust : (3)

The complete reward function for the Angels then follows as in Eq. @}

1
R = N Z WiFtarget + W2 limits + W3Factions (4)

where N is the number of reward elements that are included in the reward function which are weighted
by wi, wa, and ws.

For the Gremlin, a sparse reward was given when the angle of attack exceeded 15 degrees and the
lift coefficient decreased (stall). This was implemented in combination with the Gremlin’s ability to
manipulate the angle of attack sensor with the aim to deceive the Angel and force an aerodynamic
stall.

3.4 Training

Two training runs were performed, with and without the Gremlin. The Gremlin was used in a fine-
tuning setting where the training started with an Angel that was previously trained for 80 training
steps on its own. It was found that such pre-training can allow the Angel to first learn basic skills.
Training graphs are shown in Fig. [1l Figure [Tal presents the mean reward obtained during training,
which is similar for both with and without the Gremlin. The influence of the Gremlin becomes visible
in Fig. where the total occurrences of high angle of attacks are summarized. Without the Gremlin,
the Angel quickly reduces the number of occurrences of high angles of attack to mean zero. With the
Gremlin, the Angel clearly faces new challenges (it started pre-trained from 80 training steps) and
needs around 150 steps to win over from the Gremlin. A successful convergence towards learning
to fly whilst experiencing angle of attack sensor failures is indicated by the resulting reward being as
high as without the Gremlin (Fig. [Ta). The following sections will discuss and present the results to
test this ability, as well as the knowledge gained by Angel to respond in unforeseen conditions.
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Figure 1 — Training graphs showing the reward of the Angel and the total number of occurrences of
angles of attack exceeding 15 degrees for training with and without Gremlin. Every training step
consisted of 256 episodes each with 1200 steps, resulting in one training step optimizing over 1200
* 256 episode steps taken by the Angel and Gremlin.

4. Testing the Reinforcement Learning agent

The resulting Angel, which was fine-tuned using a Gremlin, was tested under various conditions. The
Angel trained without Gremlin was used as a baseline. The reward function of the Angel served
as one evaluation metric as it is not only what the Angel directly optimizes for, but also combines
factors that are informative for the performance. An episode has a length of 1200 steps at 10 Hz (120
seconds) and receives a reward at every step. The maximum reward is in practise far less than 1200
as, for example, the initial states are rarely the target states and the time required to go to targets
is limited by factors such as the vertical speed reward. Experimentally, a reward above 300 can be
considered successful. Tests were performed to assess the operational boundries of the resulting
Angel including tests in unforeseen circumstances where the focus was on stall recovery and shift
in center of gravity. As the tasks of the Angel were formulated as combinations of target airspeed
and target altitude, the stall recovery manouvre in these tests was extended to also include going to
a specified altitude and airspeed. To evaluate these stall recoveries, various metrics were used in
addition to the reward; maximum altitude loss, time until the angle of attack was reduced below 15
degrees, and the ability to return to the target altitude and airspeed. For the stall recovery tests, the
altitude target was to return to the initial altitude and the target airspeed was to increase by 70 ft/s
(~ 41 knots). All stall recovery tests were performed at different weights and heights; total aircraft
weight was sampled between 60 and 70 tonnes, and the stall was induced at either 20,000, 25,000,
30,000, or 32,000 ft.

4.1 Analyzing operating boundaries with a malfunctioning angle of attack sensor

The operating limits as well as the robustness of the proposed method can be analyzed by looking at
the performance across different combinations of altitudes and airspeeds. This is shown in Fig.[2 for
different trimmable combinations of initial altitude and airspeed while random manipulations affected
the angle of attack sensor. The scatter plots in Figs and show the rewards obtained with
the angle of attack failure for training without and with a Gremlin manipulating the angle of attack
sensor during the training phase. The test shows that with the proposed method, the Angel is able
to generalize and thus achieve high reward for most initial conditions. Training with the Gremlin has
also been shown to have a significant effect on the reward of the Angel and improves the robustness
of the response of the Angel as the performance is superior to that without Gremlin.
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Figure 2 — Episodic rewards obtained with Angel trained with and without the Gremlin for tasks at
500 randomly chosen initial altitude and airspeed combinations, with random angle of attack sensor
offsets between -10 and 10 degrees.

4.2 Stall recovery with a malfunctioning angle of attack sensor

The proposed method trains the Angel only on tasks that are simple combinations of target altitude
and airspeed starting from a trimmed position. Due to the randomized nature of Reinforcement
Learning in early stages of training as well as the lack of limitations included during training, scenarios
that resemble aerodynamic stalls are not excluded. In fact, the proposed method intentionally does
not restrict going close to or into a stall during training, except for a small discouragement in the
reward function. The feedback of the environment that the agent will receive by going into a stall
will itself be disadvantageous to the agent, as it would experience control which is not optimal to
maximize reward. Therefore, the agent will indirectly learn not to approach a stall and get out of it
quickly. Other training approaches may, via more direct reward components, achieve stall prevention
and recovery with less training time and examples. However, by not introducing any reward explicitly
directed at stall, our approach does not risk the agent learning shallow features based on the reward.
Instead, it creates an environment where the agent has to learn the dynamics and the implications of
stall. It thus develops much deeper features which may also be relevant in other situations, enabling
transfer learning abilities that facilitate multi-task learning. This is considered advantageous.

The ability to recover from a stall was tested by manually creating stall scenarios at different altitudes
which resulted in stall for weights between 60 and 70 tonnes. The Angel trained with and without
Gremlin was tested on stall recovery in four different angle of attack failure settings and a nominal
setting without failure. Table [1| and Table [2| show several metrics over 100 random runs for both
conditions, respectively. When training without the Gremlin, the performance seems not to be heavily
affected by random manipulations. However, examples show that the actions become very erratic
resulting in large and fast angle of attack deviations. The Angel trained without the Gremlin is affected
the most by a continuous increase or decrease in angle of attack information. The performance when
trained with the Gremlin, shown in Table |2, does not show such an effect. When trained with the
Gremlin, the Angel is able to keep the performance constant when performing stall recovery.

An example comparing both Angels trained with and without the Gremlin with a decreasing angle
of attack manipulation are shown in Figure |3| and Figure [4| respectively. Here, the response of the
Angel without the Gremlin is clearly affected by the angle of attack manipulation, and the Angel is
tricked into a secondary stall. However, when trained with the Gremlin, the stall is recovered from
and the target altitude and airspeed are reached successfully with a high degree of precision, which
indicates that the Angel was able to triangulate enough information without having correct angle of
attack information available.
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Mean reward Max alt loss [ft] aoa>15[sec] Returnalt[%] Return CAS [%]

Random fixed 209.00 1644.00 0.48 16 87
Random 215.75 1540.25 0.68 18 90
Decrease 112.75 1551.25 35.16 16 0
Increase 111.75 1531.25 35.84 16 0
Nominal 277.50 1363.50 0.53 32 100

Table 1 — Stall recovery results for training without the Gremlin, showing averaged results for testing
100 episodes each at 20,000 ft, 25,000 ft, 30,000 ft, and 32,000 ft. The weight ranged between 60 and
70 tonnes. Return to altitude and calibrated airspeed (CAS) are percentage of episodes successfully
within 200 ft of the target altitude and 20 ft/s (~ 12 knots) deviation of the target airspeed.

Mean reward Max altloss [ff] aoa>15[sec] Returnalt[%] Return CAS [%)]

Random fixed 273.25 1356.50 9.92 76 89
Random 273.75 1390.50 10.47 75 91
Decrease 270.75 1409.50 10.15 77 93
Increase 271.25 1385.00 10.45 79 91
Nominal 272.25 1386.75 10.23 82 90

Table 2 — Stall recovery results after fine-tuning with the Gremlin, showing averaged results for testing
100 episodes each at 20,000 ft, 25,000 ft, 30,000 ft, and 32,000 ft. The weight ranged between 60 and
70 tonnes. Return to altitude and calibrated airspeed (CAS) are percentage of episodes successfully
within 200 ft of the target altitude and 20 ft/s (~ 12 knots) deviation of the target airspeed.

4.3 Stall recovery with a shift in center of gravity

The center of gravity was changed to assess the Angel’s response to unforeseen (untrained) condi-
tions as well as to understand the knowledge it has gained between the response of the aircraft and
the information it receives. The testing was again performed in the stall scenarios to create difficult
examples of center of gravity not previously experieced by the Angel. Table 3| shows the average
results for 100 random episodes with a center of gravity shift of 50 inches forwards and backwards.
The results are shown for different altitudes at a fixed weight of 62 tonnes where the stall speed is
approximately 185 knots CAS. As in the previous section, the Angel fine-tuned with the Gremlin was
not affected by angle of attack manipulations and therefore only results without angle of attack ma-
nipulations are shown. These results show that the change in center of gravity has the largest effect
in maximum altitude loss and the return to initial altitude.

Altitude Meanreward Max alt loss [ft] aoa>15[sec] Returnalt[%] Return CAS [%]

20000 ft 268.00 838.00 3.35 30 100
25000 ft 251.00 1047.50 6.79 35 100
30000 ft 220.50 1301.00 7.74 61 100
32000 ft 176.50 1090.00 13.93 51 47

Table 3 — Stall recovery results after fine-tuning with the Gremlin, showing averaged results for testing
100 episodes at different heights with the center of gravity either 50 inches forwards or backwards.
The weight ranged between 60 and 70 tonnes. Return to altitude and calibrated airspeed (CAS)
are percentage of episodes successfully within 200 ft of the target altitude and 20 ft/s (~ 12 knots)
deviation of the target airspeed.

An example is shown in Figure 5], where the center of gravity is shifted between all 3 positions (center,
forward and aft). An aft center of gravity resulted in an initial oscillation and, overall, a reduced ability
to recover the altitude. The relative challenge in recovering from stall with an aft center of gravity
is related to the flight dynamics. A rear center of gravity reduces the longitudinal stability, reduces
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Figure 3 — Stall recovery at 30,000 ft at a weight of 62 tonnes with the Angel trained without the

Gremlin.
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Figure 4 — Stall recovery at 30,000 ft at a weight of 62 tonnes with the Angel fine-tuned with the
Gremlin.

the stiffness of the aircraft in pitch, and increases the pitch down moment required of the horizontal
tail. Allin all, this delays stall recovery. More importantly, the Angel showed that it can recognize the
change in the behavior of the aircraft and is able to fly at such different configurations to recover and
increase speed in a precise manner.
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Figure 5 — Stall recovery at 30,000 ft and 62 tonnes for three different center of gravity (CoG)
configurations; forward, center, and aft.

5. Conclusion

In this paper a novel method for training an Al system to understand and control an aircraft was
tested. The competition-based method that was trained using neural networks and Reinforcement
Learning had the aim of automating task difficulty during training by targeting weaknesses of the
trained system. The results showed that when the system was trained with this method, it was able
to successfully control the aircraft under angle of attack manipulations throughout the training range
of altitude and airspeed combinations. This capability not only demonstrates robustness to angle of
attack malfunctions but also that the Reinforcement Learning agent comprehends the environmental
variations and the effects of the controls. The results of stall recovery tests showed that, by training
on combinations of altitude and airspeed, indeed a more complex behavior was created. Not only
was the Al system able to recover from stalls at various weights and altitudes, it was able to do so with
a malfunctioning angle of attack sensor. To further increase the difficulty level, the stall recovery was
also tested with changes in the center of gravity. These results showed that the proposed method
has gained such a level of understanding of the aircraft and its environment that it was able to control
the aircraft in conditions that were not only never seen during training but were also substantially
more difficult. The performance demonstrated in these tests provided insight and showed promise
for the proposed method to enhance safety by being able to react in a predictable way when faced
with unforeseen circumstances.
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