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Abstract

Data-driven approaches have been shown to accelerate the process of high-fidelity design optimization, which
has been successfully demonstrated in aerodynamic shape optimization (ASO) to support efficient and high-
performance aircraft design. However, the high computational cost associated with generating aerodynamic
data to build the required surrogate model contradicts our initial goal of achieving high-fidelity design with min-
imal computational expense. In this study, we exploit the capabilities of diffusion models in capturing complex
high-dimensional data distributions to present an innovative conditional diffusion-based geometry sampler. Our
research has led to the development of a comprehensive framework for high-fidelity data-driven ASO with re-
duced computational costs. This framework leverages multi-layer perception (MLP) as surrogate model and
diffusion model as geometry sampler to achieve diverse and realistic geometric shapes while providing fine-
grained control over specific properties. Moreover, we employ a conditional diffusion-based geometry sampling
method to significantly reduce the training set requirement for the surrogate model construction, achieving a
50.5% decrease of the number of required data points. The effectiveness and capabilities of our proposed
geometry sampling are validated using a high-dimensional dataset, demonstrating its potential to achieve
high-fidelity ASO and multi-fidelity design exploration in a computationally efficient manner. In particular, the
proposed geometry sampling method addresses several key aspects to support high-dimensional data-driven
ASO and multi-fidelity design explorations, which include modeling the high-dimensional data distributions,
sampling with time step and providing value function as the sampling guidance. This approach presents a
comprehensive solution for effectively addressing the challenges associated with generating aerodynamic per-
formance in high-dimensional and high-fidelity data. The associated experiments show this approach has the
potential to serve the rapid high-fidelity design variations in modern aviation industry.

Keywords: Aerodynamic shape optimization, conditional diffusion model, data-driven and multi-fidelity design

1 Introduction

In recent years, data-driven design has become an effective approach in modern aircraft design,
thanks to the availability of abundant data. Fueled by increasing volumes of data, the emerging ma-
chine learning methods can serve as data-driven optimization techniques capable of handling high-
dimensional, non-convex, constrained, and multi-objective optimization problems [{1]. Data-driven
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approaches have shown that data, along with the more rigorous physics-based models, help make
fast and reliable aerodynamic shape optimization (ASO) design possible [2,3]. In the context of ASO,
the data typically come from aerodynamic analysis results obtained by performing computational fluid
dynamics (CFD) simulations. It is worth noting that the accuracy of models and optimization results
depends on the level of fidelity of data. In particular, high-fidelity data (e.g., aerodynamic analysis data
from using fine mesh) are required to ensure a higher accuracy, at the expense of high computational
cost of data acquisition. Indeed, the quality of the data directly determines the accuracy of surrogate
model predictions and the computational costs associated with generating these aerodynamic data
for high-fidelity simulations. In this study, we present a new approach to sample the geometry shapes,
which is called the conditional diffusion-based geometry sampling. This method enables generating
data that are well-aligned with the desired design conditions, to yield a well-defined design space. By
leveraging the benefits of the diffusion model, which is a time-dependent stochastic process capable
of capturing complex and multimodal distributions [4], we effectively enhance the quality of our data.
This, in turn, improves the accuracy of surrogate model predictions while substantially reducing the
computational costs associated with generating such data. Building upon this premise, we proceed to
review the related works in two subsequent sections. In Section(1.1], we review the data-driven design
techniques and multi-fidelity design techniques that use surrogate model. In Section [1.2] we review
the related sampling methods that define the data space of high-fidelity design. Specifically, we in-
troduce the background of the conditional diffusion model and discuss why it is a suitable sampling
method for such complex design challenges.

1.1 Data-driven and multi-fidelity design

In this paper, we mainly focus on data-driven techniques that use surrogate models, instead of relying
only on full simulations, for design optimization. Compared to the conventional CFD-based optimiza-
tion, the data-driven approach relies on a training set to capture various design variations and utilizes
surrogate models to predict possible designs [5]. This methodology is commonly employed in op-
timization problems that involve substantial geometric variations, such as conceptual design, and
is often regarded as a way to reduce dependence on computationally expensive CFD simulations.
Such optimizations can be performed by either gradient-free or gradient-based algorithms. Gradient-
free algorithms are useful when gradients are not available. One of their advantages is that they do
not assume function continuity [6]. In large-scale CFD-based optimization, it has been noted that
for smaller-sized problems, typically with 30 or fewer variables, gradient-free methods can be effec-
tive in finding a solution [7]. Similarly, combination of surrogate model for coefficients estimation and
gradient-free algorithms have shown effectiveness in a series of studies [8, 9,110, 11]. However, when
it comes to high-dimensional problems, gradient-free methods often become less effective due to the
increased computational costs associated with exploring a larger design space. Thus, gradient-based
algorithm becomes an effective option for large-scale design variables.

Surrogate-based ASO has been commonly used to achieve high-fidelity design optimization of wings.
The main advantage of using a surrogate-based ASO is the notable reduction in computational cost
by replacing the computationally expensive high-fidelity CFD simulations with fast-to-evaluate surro-
gate models. Previous research in surrogate-based ASO usually uses gradient-free optimizers (i.e.
genetic algorithms [GA] [12, 13, [14], Bayesian optimization [BO] [15, 16, 17], etc.) for two main
reasons. First, the surrogate models (such as kriging and radial basis functions) do not always pro-
vide accurate, reliable gradient information. Second, gradient-free methods can effectively navigate
the optimization landscape without the need for gradient computations. However, gradient-free op-
timizers generally struggle with high-dimensional data because the size of the search space grows
exponentially with the number of dimensions, making it increasingly difficult for these algorithms to
effectively explore the design space and converge to the global optimum in a reasonable amount of
time. Thus, the surrogate-based ASO with gradient-free optimizers can typically only handle low-
dimensional data. The insufficient data dimensionality inevitably leads to a lack of representational
capacity for the characteristics of three-dimensional wing geometries.
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In the realm of multi-fidelity design, a series of studies have utilized surrogate models to explore the
relationship between different levels of data fidelity. This approach aims to achieve high-fidelity de-
sign optimization by leveraging a large quantity of low-fidelity data in conjunction with a smaller set
of high-fidelity data. Among the various multi-fidelity techniques that use surrogate model, one of the
most typical approaches for multi-fidelity modeling is Gaussian process regression (GPR) [18], which
is also known as co-kriging [19]. GPR has the advantage of modeling data distributions and provid-
ing interpretability on regression. However, the conventional GPR calculation involves an inversion
a covariance matrix, which has a computational complexity of O (N*) for N data points. This can be
computationally expensive and impractical for large datasets. Furthermore, the covariance matrix of
GPR becomes sparsely populated, making it difficult to estimate the underlying function accurately.
Thus, GPR suffers from the curse of dimensionality, where the performance degrades as the input di-
mensionality increases. With this consideration, deep neural networks (DNN) architecture is deemed
more appropriate as it is highly scalable and can handle large-scale datasets with high-dimensional
features. The flexible architecture makes DNN capable of capturing and modeling highly non-linear
relationships in data [20]. This partially solves the issue of traditional Gaussian processes being un-
able to handle large amounts of data and high-dimensional features. As for using NN as a surrogate
model, Meng and Karniadakis [21] proposed a composite neural networks that can be trained using
multi-fidelity data. They used three NNs to capture correlations between low-fidelity and high-fidelity
data that yielded accurate results; the method was then extended to physics-informed neural net-
works (PINNSs) for various applications. Guo et al. [22] integrated the strengths of the approaches
described above and proposed the multistep NNs for multifidelity regression. The multifidelity NN
produces outputs with comparable accuracy to those of the expensive full-order model, using only
a small number of full-order evaluations and a larger number of inexpensive evaluations from a re-
duced order model that are less accurate. There have also been works on utilizing multifidelity NN
in ASO, such as in the designs of DLR-F4 wing-body configuration [23]. In our previous investiga-
tion on data-driven ASO problems [3], we performed CFD analysis on wing shape design variations
within a certain data space to construct the aerodynamic database and achieved L2 mesh level wing
shape optimization by using 140,000 low-fidelity data and 2,000 high-fidelity data. Our previous in-
vestigations on multi-fidelity ASO led to the conclusion that an effective approach to reduce reliance
on training data is to enhance data quality through efficient geometry sampling.

1.2 Diffusion-based geometry sampling method

During the pursuit of data-driven ASO, a common dilemma arises when striving for high-fidelity, high-
dimensional optimization. On the one hand, a large number of aerodynamic data are required for
training to ensure accurate surrogate model constructions. However, generating such a large dataset
incurs substantial computational costs, which contradicts the objective of using surrogate models in
optimization—i.e., to minimize the computational expenses. With this consideration, the quality of
the data used to train the surrogate model becomes critical. An efficient geometry sampling method
can help the design by enabling the exploration of diverse design alternatives. The general meth-
ods are Design of Experiments (DoE) methods that utilize statistical principles to sample within a
search space in order to understand the relationship between input variables (factors) and the output
response. The representative DoE methods include Latin Hypercube Sampling (LHS) [2], Uniform
Design (UD) [24) 25] and Monte Carlo Design (MCD) [26, 27]. With specific constraint settings and
non-linear programming, some methods also achieve sampling within constraint handling including
probability methods (e.g., constrained Expected Improvement [El] and Probability of Improvement
[P1] and traditional methods (e.g., penalty function and sequential quadratic programming [SQP]) [5].

Diffusion models offer several advantages over traditional sampling approaches. They excel in
searching design spaces that may contain multimodal or high-dimensional landscapes with numerous
local minima or maxima. Moreover, diffusion models can effectively handle non-differentiable or dis-
continuous objective functions. Unlike traditional methods relying on derivatives, diffusion models—
which are based on stochastic dynamics—do not require differentiability, making them highly versa-
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tile in handling a wider range of objective functions. Additionally, these models can incorporate prior
knowledge, enabling customized and guided exploration. The diffusion model has found application
as a sampler in various scenarios for addressing inverse-design problems. These include fields such
as bio-mechanics [28], aerodynamic design [29], and chemical design [30]. These diverse applica-
tions demonstrate the versatility and effectiveness of the diffusion model in generating solutions for
complex design challenges across different domains. The ability of capturing complex dependencies
and generating realistic responses further expands the applicability of diffusion models to generate
more natural conversations and physical visualizations, extending even to fields such as Chat Bot
(e.g., ChatGPT[') and video generations (e.g., SoraP).

In this study, we apply the conditional diffusion model as a geometry sampling method to achieve
high-fidelity design optimization problem. To achieve a sampling method that can address the limita-
tions of conventional methods, we aim to meet two conditions. Firstly, the desired sampling method
should be able to effectively leverage the physical priors of high-performance design as the guidance
for sampling. Secondly, this method should effectively define the design space for high-performance
designs and generate a minimal amount of sampled data, if subsequent simulations or experimen-
tal validations of this data are still required. Details on how the derived algorithms can meet these
conditions will be presented in Section 3, and the experiment results will be presented in Section

This paper is organized as follows. In Section |2, we provide a comprehensive overview of the prob-
lem, which encompasses the data-driven wing shape design framework, the utilization of a CFD
solver to generate training data, and the establishment of multiple fidelity levels of data. In Section [3]
we present our proposed methodology the conditional diffusion-based geometry sampling method.
In Section |4, we present the experiments and discuss the results from three aspects: the generative
aerodynamic data using the diffusion model the multi-fidelity design explorations and the
generative data support data-driven ASO and further operation-aware wing design In Section
we provide concluding remarks on our method and experiments, while discussing the limitations and
potential areas for future research.

2 Problem Description

The main objective of this study is to explore an effective geometry sampling method to reduce the
demand for high-fidelity CFD-based aerodynamic data quantity, and further decrease the computa-
tional cost involved in establishing data-driven and multi-fidelity ASO. We establish the framework
and validate the approach on a single-point ASO problem, using the National Aeronautics and Space
Administration (NASA) Common Research Model (CRM) wing configuration as the baseline config-
uratiorﬂ In this section, we provide an overview of the framework software platform, geometry, and
data features essential to our study. In Section [2.1], we present the gradient-based platform that
forms the foundation for our method. Our approach is built upon this platform, which allows us to
leverage gradient information to optimize the design process effectively. We also introduce the shape
parameterization method that defines the data features of our aerodynamic data. In Section we
introduce the CFD solver utilized for analyzing the wing meshes. In Section we delve into the
training aerodynamic data used for our data-driven design approach, along with the associated data
features. The flow of the wing shape design optimization with conditional diffusion-based geometry
sampling method is illustrated in Figure [i]

Thttps://chat.openai.com/(last accessed on 14 June 2024).

2https://openai.com/index/sora/(last accessed on 14 June 2024).

3https ://commonresearchmodel.larc.nasa.gov/home-2/high—-speed-crm/experimental-approach/
model-description/| (last accessed on 14 June 2024).
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Figure 1 — Work flow of data-driven wing shape design optimization with conditional diffusion-based
geometry sampling.

2.1 Data-driven wing shape design with diffusion-based sampling

As previously investigated in Section[1.1] using gradient-based optimizers—combined with deep NN
as surrogate model—offers an appropriate approach to achieve an efficient data-driven ASO. This
approach has two main advantages. Firstly, using DNNs as surrogate models allows for efficient com-
putation of gradients through backpropagation, which can then be used as the gradient information
and further support the sensitivity analysis of surrogate-based ASO. Secondly, DNNs can effectively
provide surrogates for high-dimensional data with high-precision regression. By leveraging gradient
information and DNNs, the gradient-based framework can support ASO efficiently.

This surrogate-based (or data-driven) ASO gradient-based framework with DNN as surrogate model
has been demonstrated successfully in a previous study by one of the co-authors [2]. In that study,
five layers of fully connected artificial neural networks (ANNs) were used as the surrogate model to
handle a 60-dimensional ASO problem, with 140,000 aerodynamic data that contain the information
{M, o, h,o4nist,z} @s inputs. The surrogate models produce aerodynamic coefficients {C;,Cp,Cy} as
outputs. The diagram shown in Figure [2]illustrates the data-driven ASO framework with single-fidelity
aerodynamic data.

We develop our data-driven wing shape design framework based on a gradient-based design opti-
mization framework MACH—AeroEL which was developed by the MDO Lab at the University of Michi-
garﬂ In the ASO problem presented in this paper, we use the compact modal parameterization
approach developed by Li and Zhang [32] for the wing shape parameterization. The efficiency of
ASO with modal parameterization approach has been validated in previous works [33, 34} 135]. As
a further extension of this approach, Li and Zhang [32] proposed a deep-learning-based method to
generate realistic wing samples in the desired design space, addressing the absence of global wing
mode shapes. Compared to conventional modal parameterization approaches, compact modal pa-
rameterization utilizing machine learning techniques generates reliable wing samples and mitigates

4https://mdolab-mach-aero.readthedocs—hosted. com/(last accessed on 14 June 2024).
Shttps://mdolab.engin.umich.edu/(last accessed on 14 June 2024).
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Figure 2 — The eXtended Design Structure Matrix (XDSM) diagram [31] of the data-based wing
design optimization.

the issue of the absence of public geometric information (lack of openly shared details about the
shape and structure of wings, hindering analysis). This method has been successfully demonstrated
and proven effective in some previous research [33, 36, 3]. All optimizations presented in this pa-
per are performed by using the sequential least squares programming (SLSQP) optimizer, which is
assembled in one of the MACH-Aero modules pyOptSpars
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Figure 3 — CRM wing geometry (with eight sectional airfoils) and the first eight wing shape modes
extracted using compact modal parameterization method, we use 50 mode coefficients to
manipulate the linear combination of these modes.
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With conditional diffusion model (to be further elaborated in Section [3), we have the generative wing
samples with desired value function setting (also desired aerodynamic performance requests) trained
on L3 mesh aerodynamic data. We then evaluate these shape variations with L2 mesh. The volumes
of sampled wings generated by diffusion model are manually controllable. With the consideration of
CFD computational costs, we only sample 100 wings with the given value function. We further build
a surrogate model on these 100 data points with geometry and aerodynamic coefficients combined.
Since these wing samples are generated with the priori information from L3 mesh aerodynamic data,

Bhttps://github.com/mdolab/pyoptsparse.qgitl(last accessed on 14 June 2024).
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we do not need a composite neural network strategy or fine-tuning strategy to leverage both L3 and
L2 aerodynamic data. This approach, which is based on existing data and applies certain physical
priors while imposing conditions to generate new data, can also be considered as a form of data
augmentation.

2.2 CFD solver

We use ADflow |Z] as the CFD solver to generate the aerodynamic data given inputs x := {xcon,xgeo}
and evaluate the corresponding aerodynamic coefficients {C.,Cp,Cy}. ADflow computes and out-
puts the state variables in physical fields, objective function, and constraint function, which are
subsequently used as inputs for the adjoint computation [37]. It solves the Reynolds-averaged
Navier-Stokes (RANS) equations using multi-block meshes, in combination with alternative numerical
schemes such as the Runge-Kutta, diagonally dominant alternating direction implicit (DDADI), and
Newton-Krylov methods, as described in the work by Kenway et al. [38]. In particular, we use the
approximate Newton—Krylov (ANK) solver [39] in ADflow for fast computation, while Newton-Krylov
(NK) is employed to generate the final solutions.

2.3 Multiple fidelity aerodynamic data and data features

There are two types of aerodynamic data involved in this paper. The first type of data is the CFD-
based aerodynamic data, which are generated by employing a CFD solver described in Section
to analyze the wing meshes. We define different fidelity levels of data by conducting CFD simulations
using wing meshes of varying fidelity levels. We designate the analysis results of ADflow on the L3
CRM wing mesh (with a mesh size of 56,320) as low-fidelity data, and the analysis results of ADflow
on the L2 CRM wing mesh (with a mesh size of 450,560) as high-fidelity data. Figure |4{ shows two
meshes used in this study. The second set of data contains generative aerodynamic data, which
is generated using the diffusion model described in Section 3| This model captures the CFD-based
data distribution by simulating a diffusion process in a latent space, allowing for the generation of new
samples by reversibly iterating through the diffusion process.
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Figure 4 — The low and high-fidelity CRM wing meshes used to generate CFD-based aerodynamic
data in this work.

All data in this paper follow the same data feature format. The quantity of interests (Qols) is y :=
{C,Cp,Cn}, which are calculated using the CFD solver introduced in Section These Qols are

"https://github.com/mdolab/adflow/(last accessed on 14 June 2024).
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evaluated based on a given set of inputs x := {xcon,xgeo }, Which comprise operating condition infor-
mation xcon := {M, o, h} and geometry information xgeo := { ttwist, 2}, Where M is Mach number, o is
angle of attack, & is flight altitude, oswist is wing twist angle, and z is wing shape perturbations. As
shown in Figure [3| we use compact modal parameterization to extract 50 modes of wing shapes. z is
a vector that manipulates the linear combinations of these wing shape modes. By manipulating the
various parameters z, we are able to achieve different variations in wing shape.

3 Conditional diffusion-based geometry sampling

In recent years, the diffusion models have demonstrated impressive performance in generation ca-
pability [40, 141, 42]. These models not only leverage their advantages in terms of model capacity but
also possess the ability to generate new samples in high-dimensional space that adhere to physical
laws, exhibit realistic effects, and diverge from the original dataset. Diffusion model-based techniques
have achieved good generalization in data sampling. This section is organized as follows. In Section|
we introduce the background of diffusion model. In Section we introduce our value-function-
guided conditional diffusion model developed for generative design.

3.1 Diffusion model background

The diffusion model is a type of generative model that is used to approximate a target probability
distribution by simulating a stochastic process. It is particularly effective in modeling complex high-
dimensional data distributions and has shown effectiveness in series of studies [43, 44, 45]. Given a
dataset ¥ = {xi}fy:] ~ Pdata (X)®N, where pgata CONcentrates on a feasible set C, we will learn a gener-
ative model p such that p = pgata UsINg a diffusion model [43, |44, 45]. In our study, x; is a vector that
concatenates flight condition xcondition and geometry design variables xgeometry, C represents the de-
sign domain space. In diffusion models, we first simulate a forward noising process starting from data
distribution po(x) = pgata (x) Which converges to the standard Gaussian distribution pr(x) ~ .47(0,1d)
as T — «. The forward process is defined by the following stochastic differential equation (SDE) [46],

dx;” = f (XG.t) dr -+ g()dwi, X ~ poara (x),0 < ¢ < T, (1)

where f:RY — R¢ is a vector-valued drift function, g(¢) : R — R is a scalar-valued diffusion coefficient,
and (w;),- is a d-dimensional Brownian motion [47]. Next, with mild assumptions [48), |49] that are
satisfied for the processes in this study, the reverse process that generates the data from normal
noise admits a SDE description,

dx{” = [~/ (x,7) +&°(7)Vilog pe (x{7)] dr +g()dw;, (2)

where T =T —t and V,log p;(x) is the score function which is modeled by a time-dependent NN with
the score matching objective
: @)
‘2 ’

In Equation Pijo (xf | xo?) is the conditional density of the forward SDE starting at x/, and A(¢) > 0 is

a weighting function. The drift f(¢) and diffusion g(-) function can express the state of the forward SDE
as a linear combination of the initial state and a scaled normal random variable under appropriate
assumptions on drift f(z) and diffusion g(-) function [50]. The above process forms a forward and
reverse process of a diffusion model.

B 102, [ 5.) - ton (3 1)
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3.2 Value function-guided conditional diffusion model

As we introduced in Section a diffusion model can be used to model the probability distribution
of the dataset 7 = {xl-}ﬁ\’:1 ~ pdata (x)®V. However, in most cases, we require diffusion model to
approximate the probability distribution of data samples under a specific condition ¢, where 2 =
{1 ~ paata (x]c)®™—we call this the conditional diffusion model. The type of this condition can be
encoded as classification tags [51]. This type of condition could also be an implicit function, which
we aim to sample from the following distribution:

plx|e) o< glx)e PA0. (4)

where ¢(x) is an unknown data distribution 2" C R¢, &(-) is the energy function from 2" C R to R.
The energy function &(-) can be chosen flexibly, as long as the integral of g(x)e #¢™) over x € 2 is
preserved. Readers are referred to the work by Lu et al. [52] for further details of the definition and
theoretical background of energy function.

In this study, we propose a value function as the guidance energy function for the diffusion model.
There are three consecutive processes to achieve this maximum value function-guided diffusion
model. Each process contains a loss function as the training objective of the model. The three
processes have different responsibilities for the overall model functionality with the associated loss
function also serves different training objectives. We take these processes as three independent
models. The first diffusion model, denoted as u(a | s), learns the distribution of the given data. Here,
a represents the sampling design variables and s represents the conditions. Additionally, we utilize
this diffusion model to model the desired performance policy (specifically aerodynamic performance
in this study), denoted as ¢y (a; | 5,7), Where ¢ represents the time state of the diffusion model and 6
represents the model parameters. The second model is a maximum value function that depicts the
condition we impose on the diffusion model. In this study, the value function contains the desired
aerodynamic performance information we expect from generative model and the information is quan-
tified with aerodynamic coefficients C;, Cp and Cy. The third model is an energy model fs (a;,s,t),
which is used to evaluate the intermediate state of diffusion process and also guide the maximum
value function conditional diffusion model introduced from previous two processes. We will introduce
these three models in details in this section and the notations will be illustrated in the subsequent
paragraphs.

A diffusion model to learn the given data distributions

Firstly we build a diffusion model training on a given aerodynamic dataset Z,,. Referring to the theory
from score-based generative modeling through stochastic differential equations [46], we introduce
Equation 5| as the training loss function,

6" = argminE o)~ e, |16 Va log b (a | ) + 3]
(5)

. 2
— argminE 0y, e |80 (a | e,1) €]}

where 6* represents the first process diffusion model parameters, g4 (-) represents the noise predicted
by the model with parameters 6. Generally, diffusion model introduces the noise-weighted score
function to compute the loss function in order to stabilize the training process. In Equation |5, the
objective is to minimize the error term, which is the squared Euclidean distance between the predicted
noise &y (a; | ¢c,t) and the actual noise €. Here, a, represents the sampled design variables at a
specific time step ¢, and ¢ represents the condition. In our model, the diffusion model with parameter
0 predicts the noise &g (a, | ¢,t) for the current design, which is used to scale the design perturbed
by diffusion process. Given the condition ¢ and time step 7, we can express the design perturbed
by diffusion process following a; as a; = owa + o,€, where o, is a scaling factor, a represents the
original design variables, o; represents the diffusion noise scale, and € is a sample from the normal
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distribution € ~ .47(0,7). To scale the noise predicted by the diffusion model to the desired normal
distribution, we have the relationship:

€o(as | c,t) =—0;Vy logy (a; | ¢). (6)

Here, 1, (a; | ¢) represents the diffusion model’s prediction of the probability distribution of the diffusion-
augmented action a, given the design variables ¢. The negative gradient of the logarithm of this prob-
ability distribution is multiplied by the diffusion noise scale o; to obtain the noise term &g (a; | ¢,7). In
this procedure, the diffusion model predicts the noise for the current design, and to scale this noise
to a normal distribution, we use the relationship [6] where the design perturbed by diffusion process
a, is obtained by adding the scaled diffusion noise to the original design variables a.

Maximum value function

The maximum value function is a condition imposed on the diffusion model. This function should be
designed as a desired performance that we expect from the generative data from the diffusion model.
Specifically in this study, we use diffusion model as a sampler to generate the wing geometry data with
high aerodynamic performance. Thus, the maximum value function is designed to contain the desired
aerodynamic evaluations information. For instance, we would like to generate the wing geometry
that has sufficient lift and stability under the aerodynamic conditions of Mach = 0.85 and altitude =
11,740 m, referring to the setting from the American Institute of Aeronautics and Astronautics (AlIAA)
Aerodynamic Design Optimization Discussion Group (ADODG)E] case 4.5. The desired wing should
maintain C; = 0.5, with Cy; > —0.17, and with Cp as small as possible, which means the aircraft drag
reduction characteristics is better with evaluated Cp is smaller. Based on these requirements, we
design our value function V as shown in Equation|[7}

V=PB|—(MCp—0.018)* = A, (C, —0.5)* — Aymax (Cys, —0.17)? , (7)

where f represents the sampling intensity with respect to the overall data distribution. A higher
B value indicates that we are sampling from a narrower space, leading to generated data that is
closer to our desired conditions. Following to the definition of temperature coefficient in the energy
equation [53], we also call B the temperature coefficient. A4,,3 are the hyperparameters, we tune
these parameters to control the relative importance of each sub-condition depicting Cp, C; and Cy,.
For future research or to serve other desired aerodynamic performance wing designs, this value
function needs to be specifically defined based on the particular problem.

The intermediate state energy function

Suppose we have a well-defined value function that is appropriate for investigating the problem at
hand. In this case, we can utilize the Contrastive Energy Prediction (CEP) method [54] to train an
intermediate state energy equation that is suitable for the current guidance policy. For a K step
training process, the training objective is

K ev(ai@ 6(7f¢ (af,c,t))
~p(ale) | Y % Viaio) lo
Zj:l e

i=1

(8)

argminlE; . 1k 1% g .
™ ’ K 7}“ dj,C,t
0 Zj:l e ¢( t )

where £!X is a sequence of K noise samples along with K training steps, a'"* ~ u(a | c) is a sequence
of K actions, where each perturbed design variables a are sampled from the policy u(a | ¢).

After completing the training of the intermediate state energy function, we combine it with the value
function as an optimal policy to guide the generation of diffusion model. The Algorithm (1] depicts

8https://sites.google.com/view/mcgill-computational-aerogroup/adodg] (last accessed on 14 June
2024).
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the above whole process of achieving value function guided conditional diffusion model designed for
generating high aerodynamic performance wings. The value function V(-) here is the energy function
&.

Algorithm 1 Diffusion Model as a Sampler for Generative Design

1: Input: Given CFD analyzed training wing dataset Z,,, which contains the design variable a and
condition ¢ information.
2: //Training the diffusion model
for each gradient step do:
Sample B data points (a,c) from 2, B Gaussian noises € from .#7(0,7), and B time steps ¢
from % (0,T)
Perturb a according to a, := oqa + o;€
Update 6 « 6~ AgVo X [lleq (ar | 5,1) — &3]
end for
//Generating perturbed designs using the diffusion model
9: for each state c in 2" do:
10: Sample K perturbed designs a!'*¥) from the diffusion model g (- | ¢) and store them as 2 (¢)
11: end for
12: //Training the evaluation model and the energy guidance model
13: for each gradient step do:
14: Sample B data points (c,a,r,c’) from 2", B Gaussian noises ¢ from .47(0,1), and B time steps
t from % (0,T)
15: Calculate the target Value function .7V, (c,a) and detach gradient

16: Update v + W—AWVWZ[HVw(c,a)—ﬂ”VW(c,a)Hﬂ
17: Perturb a according to &, := oya + o;€

Prvlea) | Jolae)
Zjeﬁvw(c.aj) Z_,-ef"’ (dj,,\c‘t)

B W

18: Update ¢ < ¢ +14yVy Y,

19: end for
20: Output: Generated wing samples %,

4 Experiments and Discussions

In this section, we present the results and discussions of our study. The purpose of the experiment is
to validate whether the proposed diffusion-based geometry sampling method can support the data-
driven ASO, multi-fidelity design exploration and further operation-aware design facing rapid industry
design demand. To support this argument, we will discuss in following three sections. Firstly in
Section 4.1}, we will compare the aerodynamic performance of the wings sampled using our diffusion-
based method with those sampled using the LHS method. Secondly in Section we will make the
high-fidelity design explorations with low-fidelity data. Thirdly in Section we will perform some
data-driven design optimization cases using the diffusion-based generative data.

4.1 Generative wing samples with conditional diffusion model

In this section, we present wing data generation results using conditional diffusion-based sampling
method. We aim to experimentally verify and address two questions. First, does the conditional
diffusion-based sampling method generative geometry data satisfy the given conditions? Second, to
what extent does the performance of the generated geometry from the conditional diffusion-based
sampling method decrease as the mesh fidelity level increases? In other words, if we generate high
L/D geometry using conditional diffusion-based sampling method, will it still maintain a high L/D ratio
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as the fidelity level increases? If there is a decrease, what is the quantification of this reduction? To
answer this questions, we do experiments as follows.

We follow the conditional diffusion-based sampling procedure described in Section [3| and use the
value function as conditions described in Equation We use 135,108 L3 CRM training data with
the same data features as depicted in Section These datasets are generated by applying LHS
perturbations to the CRM baseline within a specified design space. We utilize 1DWarp Ff] for mesh
warping and ADflowmaS the CFD solver to analyze the perturbed wing meshes and obtain C;, Cp,
Cy; evaluations. These datasets have also shown effectiveness to support data-driven ASO of CRM
wing on solving multiple design optimization problems in previous investigation [2]. We will employ
this dataset as the training set to train the diffusion model. Subsequently, we use the CFD solver to
evaluate and calculate the L/D ratios of the generated wings. Additionally, we adjust the alignment
of the generated outputs with the target conditions by configuring different temperature coefficients 3
in the value function

The specific definition and mathematical expression for the value function (Equation[7]in Section[3)—
which applies constraints to the wing sample and provides conditional guidance for the diffusion
model—depend on the specific optimization problem at hand. For the optimization problem presented
in this paper, the sampled wings need to satisfy that C;, = 0.5, C); > —0.17, and Cp ~ 0.0229 (evaluated
at Mach number 0.85 and flight altitude 11,740 m). The value function is then formulated as

V(x) =B x [~ (Cpest * 10 — 0.023)?
— A1 (max (max(Cregt — 0.505,0), max(0,0.495 — Cpegt)) ) (9)
— A (max (max(Cyest + 0.168,0), max (0, Cprest + 0.170)) )2 .

It is worth noting that the condition Cp ~ 0.0229 is derived a priori through CFD-based optimization.
From the consideration of experimental efficiency, we utilize this prior information as part of the value
function information. To increase the variations in the sample data and prepare for higher-fidelity
data in the sequential process, we allocate 1% margin for each coefficient in the value function.
This is because high-fidelity aerodynamic coefficient evaluations differ significantly from low-fidelity
evaluations, and we do not want to restrict the design space strictly during the initial sampling process.
To ensure consistent thresholds for the variations of C;, Cp, and Cy, we magnify the variations of
the Cp value by a factor of 10. This adjustment allows us to align balanced thresholds of these
parameters. When applying this approach to future optimization problems, the value function should
be designed specifically based on their specific requirements.

We use the value function shown in Equation [9] and follow the conditional diffusion-based geometry
sampling process introduced in Section [3|to perform the experiments. The temperature coefficient 3
affects the sharpness of the generated samples. A higher temperature value produces sharper, more
confident samples, while a lower temperature value results in more diffuse, less confident samples.
By varying the temperature coefficients 8, we select different sharpness of wing samples. The sam-
pling results are summarized in Table [} We make a statistical analysis about different distribution of
wing samples across different L/D ranges for each beta setting. Furthermore, we compare and visu-
alize the diffusion-based sampling data distributions to LHS data distributions (specifically contains
140,000 aerodynamic data) shown in Figure 6]

From Table [f]and Figure 6] we can see that that compared to the LHS-based method, the diffusion-
based sampling generative data are more concentrated on higher L/D ratio area. Following the
theory of diffusion model, the data distributions of diffusion-based sampling follows the Gaussian
distribution. As f increases, the diffusion-based wing samples data distributions become sharper. An
interesting observation is that we can hypothesize that as 8 approaches infinity, the data distribution

%https://github.com/mdolab/idwarp.git|(last accessed on 14 June 2024).
Ohttps://github.com/mdolab/adflow/|(last accessed on 14 June 2024).
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Proportion
L/D threshold =8 pB=16 p=32 =64 [=128
<18 0.08 0.12 0.03 0 0.06
18-19 0.27 0.23 0.16 0.07 0.16
19-20 0.41 0.34 0.45 0.48 0.51
> 20 0.24 0.31 0.36 0.45 0.27

Table 1 — Generative wing samples L/D threshold with varying temperature coefficient 3.
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Figure 5 — The box plot and probability density plot of conditional diffusion-based sampling method
generates better aerodynamic performance (higher L/D) data than LHS method.

will converge towards the mean of Gaussian distribution, resembling a Dirac distribution [55]. In such
a scenario, if we set the sample quantity to 1, it raises the question of whether we can obtain an
optimal solution. This is a topic worthy of discussion in future work.

We also visualize part of the generative wing samples from diffusion-based sampling method shown
in Figure [9] The visualized Cp and shock analysis of wing samples demonstrate the generative
wing samples covers enough design space and complex aerodynamic phenomena that support data-
driven design optimization.

4.2 Generative wing samples for multi-fidelity design explorations

In this section, we would like to make the multi-fidelity design explorations using conditional diffusion-
based geometry sampling method. Using low-fidelity data (specifically L3 mesh level aerodynamic
data), we want to sample the wings with higher L/D ratio by adjusting the associated value functions
of conditional diffusion model. Specifically, we maintain C; = 0.5 while reducing Cp, resulting in
an increased L/D ratio. In fact, achieving the desired Cp values proves challenging on low-fidelity
training data using traditional LHS method. Therefore, we seek to explore whether the diffusion
model can achieve these high aerodynamic performance (high L/D ratio) wing samples by learning
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Figure 6 — The conditional diffusion-based sampling generated data distributions varying by different
temperature coefficient 8.

from low-fidelity aerodynamic data that traditional sampling method cannot achieve. Specifically, we
aim to determine if the model can explore design variations that maintain high performance even
when subjected to high-fidelity CFD validation on a finer mesh level. Referring to the Equation 9] we
adjust the value function by reducing the Cp from 0.023 to 0.019. Based on the experiments shown in
Section|4.1] we use temperature coefficient B = 64 as the diffusion model guidance scale value. Upon
obtaining the generated wing geometry, we utilize the mesh wrapper 1DWarp, and the CFD solver
ADflow, to estimate the aerodynamic coefficients at the L2 mesh level for these wing samples.

Specifically, the generative geometry data still follow the same features as depicted in Section
whichis {M, o, h, awyist, z}- We then analyze these sampled wings using ADf1ow at L2 and L3 meshes.
We analyze the C.,Cp,Cy for these wings and calculate the corresponding L/D ratios. We gener-
ate probability distribution plots for C;, Cp, Cy, and L/D, under CFD evaluation for both L2 and L3
meshes. The data distributions for L2 and L3 mesh level diffusion-based generative aerodynamic
data are shown in Figure |8 From the Figure |8, we compare three different cases of sampling. The
notations for each sampling case are as follows. "L3 Data - LHS": Geometry sampled using the LHS
method and solved using CFD on the L3 mesh; "L2 Data - LHS": Geometry sampled using the LHS
method and solved using CFD on the L2 mesh. "Diffusion”: Geometry sampled using the conditional
diffusion-based sampling method and solved using CFD on the L2 mesh. The data volume of each
case is: "L3 Data - LHS": 140,000, "L2 Data - LHS": 2,000, "Diffusion": 500. From this figure, it is
evident that the diffusion model is capable of generating wing samples with high L/D ratios that could
not have been achieved by using the LHS method. This provides us with a greater number of high
quality design samples and design explorations for future multi-fidelity design optimization.

4.3 Generative data support data-driven wing shape design optimization

In this section, we present how conditional diffusion-based generative data support data-driven ASO.
The procedures of data-driven ASO experiments are as follows: we build the surrogate model of
our data-driven optimization framework based on the given training aerodynamic data. The trained

14



Data-driven Aerodynamic Shape Optimization and Multi-fidelity Design Exploration using Conditional
Diffusion-based Geometry Sampling Method

Figure 7 — CFD evaluations on generative wing samples, Cp distributions and shock analysis
indicate that the design space contains complex aerodynamic phenomena.

surrogate model behaves as the aerodynamic coefficient estimator in the data-driven optimization
framework. We use multilayer perceptron (MLP) as the basic structure of surrogate model to perform
data-driven ASO using only one fidelity level (specifically L3 level of CRM mesh in this experiment)
of aerodynamic data. We train the surrogate models using data generated from different sampling
methods, LHS and our conditional diffusion-based sampling method described in Section 3| These
methods result in varying quantities of training data for training the surrogate models. The main ob-
jective of this experiment is to validate the impact of two different sampling methods on data-driven
ASO. In order to ensure a fair comparison, we use the MLP as the basic framework for training, rather
than other forms of neural networks. The specific configurations, such as the depth and number of
nodes in the network, varies depending on the size of the training dataset. We use forward differenti-
ation to estimate the gradient of the surrogate model when utilizing it for gradient-based optimization.
This method serves as an approximation technique to compute the gradients of the objective function
or constraints with respect to the input variables. Afterwards, we perform the data-driven ASO under
a gradient-based optimization framework using a nonlinear programming optimizer SLSQP, which is
integrated in pyOptSparse E After completing the data-driven procedure, we proceed to analyze
the optimized wing using a CFD solver for validation. We then compare the results of the data-driven
optimization with those obtained using a conventional approach, which relies on CFD for estimating
aerodynamic coefficients.

We verify this data-driven optimization framework in a drag minimization problem summarized in
Table following the guidance of the ADODG case 4.1|T_zl The operating conditions of wing are set to
flight altitude 11,740 m and Mach number 0.85. We employ strict thickness constraints rather than a
loose volume constraint to ensure practical design [33]. As stated in Section[2.7], we utilize a compact
modal parameterization method for wing geometry parameterization. Consequently, we employ wing
shape mode coefficients to govern the perturbations in wing shape, which are also designated as the

"https://github.com/mdolab/pyoptsparse.qgit(last accessed on 14 June 2024).

Zhttps://sites.google.com/view/mcgill-computational-aerogroup/adodg(last accessed on 14 June
2024).
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Figure 8 — The box plot and probability density plot show that diffusion-based sampling method
generates better aerodynamic performance (larger L/D) data validated on L2 mesh than directly
LHS on L2 mesh data.

design variables. For the generated data with conditional diffusion model, we leverage fine-tuning
techniques to modify the output layer of a trained surrogate model using 70,000 LHS dataset. Fine-
tuning [56, 57] is a widely utilized technique in meta models, aiming to improve the model’s accuracy
on specific data while preserving its generalization capabilities.

The running results are summarized in Table [3| For the LHS, our investigations on training data are
mainly on training data volume, data selection percentage; For the diffusion-based sampling method,
our investigations on training data are on training data volume, temperature coefficient f and calcu-
lated L/D term in value function setting. We define a successful data-driven ASO as the optimization
of the wing shape that, when evaluated using CFD solver, satisfies the constraint requirements of the
optimization problem [2 We calculate the relative errors € of aerodynamic coefficients estimations
using trained surrogate models,

€ =|(ysm—ycFp) /ycrp| x 100%, (10)

where ygy and ycrp represent the estimation value of corresponding aerodynamic coefficients ob-
tained using surrogate model and CFD simulations, respectively.

From the experiments summarized in Table |3, we can observe that compared to the LHS method,
diffusion-based method generates higher L/D ratio wing samples based on the given value function.
The results obtained exclude the parts of wing samples that have low L/D ratio. While LHS offers a
comprehensive search space for design, it also introduces a substantial number of low aerodynamic
performance wing samples. This increases the computational burden for subsequent CFD calcula-
tions on these samples. In contrast, the conditional diffusion model generates wing samples guided
by constraints on parameters such as C;, Cp, and Cy. As a result, the diffusion-based sampling
method produces data with higher L/D ratios. Additionally, since the diffusion model is trained using
aerodynamic data generated from CFD simulations, the sampling process aligns with this physics-
based prior knowledge, ensuring the physical validity of the generated wing samples.

16



Data-driven Aerodynamic Shape Optimization and Multi-fidelity Design Exploration using Conditional
Diffusion-based Geometry Sampling Method

Function/variable Description Quantity

Minimize Cp Drag coefficient 1
With respectto o Angle of attack 1
Olhwist Angles of twists 7

Z Wing shape modes perturbation 50

Total design variables 58

Subject to Cr =05 Lift constraint 1
Cy, > —0.17 Pitching moment constraint 1

t > 0.98 X tinitial Thickness constraints 750

V <1.02 X Vipitial Maximum volume constraint 1

V > Vinitial Minimum volume constraint 1

AZLE, upperroot = —AZLE, lowerroot  Fixed leading-edge constraints 8

AZTE, upper = —AZTE, lower Fixed trailing-edge constraints 8

Total constraints 770

Table 2 — ASO problem formulation as a drag minimization problem.

LHS Diffusion-based sampling

Training data volume | 130,000 70,000 10,000 500 500 500
Training data Percentage (%)/ B 100% 50% 7.6% 0.38% 32 64

Value function (L/D) - - - - 21 20

L/D bounds 9.45 - 22.66 15.56 —22.6 | 18.17 —22.06

e(Cy) 0.20 0.39 1.10 3.20 0.15 0.14
Surrogate model €(Cp) 0.35 0.62 1.94 5.44 0.24 0.22

e(Cy) 0.36 0.70 1.77 4.93 0.29 0.27

Succeed v - - - v v
Optimization CL 0.497 0.5 0.501  0.501 0.499 0.499

Cp (counts) 229 267 261 279 229 229

Cu -0.17 -0.205 -0.2 -0.22 -0.17 -0.17
Computational cost | Core hours 56,000 28,000 4,000 200 200 200

Table 3 — Data-driven ASO using LHS and diffusion-based sampling method with different size of
training data.
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5 Conclusion

In this paper, we presented an effective conditional diffusion-based geometry sampling method that
could generate high aerodynamic performance data with associated value function designed. In-
spired by the energy conditional diffusion model theory, we proposed a value function-guided diffu-
sion model to generate high performance wing samples to offer an efficient mean to yield high-fidelity
wing design. We validated the effectiveness of this conditional diffusion-based sampling method in
three key aspects, namely in generating desired high L/D ratio wing samples, supporting multi-fidelity
design explorations, and enabling data-driven wing shape design optimization. The associated exper-
iments have shown that with appropriate value function designed, the conditional diffusion model can
generate desired L/D ratio wing samples with a normal distribution. Furthermore, the wing samples
trained using low-fidelity data continue to adhere to this distribution when evaluated on a high-fidelity
mesh, satisfying our requirements for the aerodynamic performance of wing samples under high-
fidelity design. We fine-tuned our model to enable this generative data to support our data-driven
aerodynamic shape optimization and get the results obtained are competitive with CFD-based de-
sign optimization.

Specifically, in each experiment, the experiment in Section 4.1 shows that with desired value function
designed, we can generate the desired L/D = 20 wing samples using conditional diffusion model. In
Section we validate that we can generate higher L/D ratio wing samples from low-fidelity data
that fits for a higher fidelity design. And with value function adjustment, we successfully generate the
wing samples that follow a Gaussian distributions with a mean value around L/D = 23. In Section 4.3]
we successfully use the generated wing samples to fine-tuning a preliminary surrogate model trained
with LHS data. By adopting this approach, we can reduce the demand for the training set by 50.5%,
while also decreasing the required CFD computations. It is worth noting that the establishment of
this training set is aimed at addressing a series of optimization designs, as well as meeting the rapid
high-fidelity design requirements for future mission-based and operation-aware aircraft designs.

In future work, we will investigate more geometry constraints imposed on the diffusion model (in-
cluding wing span area, wing thickness, aspect ratio, etc.) to support more comprehensive design
explorations. In the meantime, we aim to extend the exploration of data not only limited to high-fidelity
design but also to include a broader range of wing structures for various types of aircraft and flight
missions. This expansion will allow us to tackle design tasks that cater to different aircraft and flight
mission requirements, thereby supporting an efficient operation-aware aircraft design optimization.
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Figure 9 — Wings and associated Cp contour of Baseline geometry, CFD-based and Data-driven

optimized wings. Data-driven cases involve using 140,000, 10,000 LHS data and 500
Diffusion-based sampling Data when 8 =32 and 64.
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