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Abstract

In the context of the climate crisis, the aviation industry is undergoing a major transformation to reduce its
environmental impact. Such a transformation requires a comprehensive, multi-criteria assessment of the envi-
ronmental impacts associated with a range of technical solutions. Limiting the scope to climate change could
lead to an undesirable "burden shifting" of the environmental impacts. This paper aims to develop and imple-
ment a prospective life cycle assessment module in the open-source framework AeroMAPS, which enables
the simulation and evaluation of prospective scenarios for the aviation sector. The relevance of the proposed
methodology is illustrated through an application. Different scenarios for the adoption of alternative fuels by
the aviation sector are modelled and evaluated. The results show the importance of considering the electricity
mix used in the production of electrofuels. It also highlights other important environmental impacts, such as
the formation of particulate matter, which ultimately affects human health. The comprehensive exploration of
scenarios made possible by the prospective LCA methodology is a promising approach that will help develop
more effective strategies to mitigate the environmental impacts of aviation.
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1. Introduction

Faced with the urgent need to address environmental challenges such as climate change and re-
source consumption, the aviation industry is undergoing a major transformation. Promising strategies
such as Sustainable Aviation Fuels (SAFs) [1}, 2, 3], more efficient aircraft [4] and advanced air traffic
management [5] have the potential to reduce emissions and improve efficiency [6].

Evaluating such strategies to guide the transition of air transportation to a more sustainable future
requires a modelling effort of the air transport system and its evolution. To this end, overall aircraft
design tools, such as FAST-OAD [7] and SUAVE [8, 9, [10], can be used to estimate the performance
of future architectures. Similarly, for energy carriers, detailed approaches provide information on spe-
cific processes [11},[12], while more global approaches enable the comparison of different production
pathways [13]. The results obtained from the technical models must then be aggregated to create
scenarios that describe the evolution of air transport in the future and the associated environmen-
tal impacts. Initiatives in this direction include the academic tools AIM2015 [14], FLEET [15] and
AeroMAPS [16], and industrial initiatives such as the Cascade tool from Boeing [17]. These software
tools make it possible to conduct prospective analyses to estimate the impacts of transition strategies.
However, these assessments often focus primarily on climate change and occasionally on energy re-
source consumption. Additional environmental impacts such as air pollution and resource depletion
(e.g. land use and water use for SAFs) need to be carefully assessed to avoid "burden shifting". To
this end, the Life Cycle Assessment (LCA) methodology provides a standardised framework for eval-
uating all relevant environmental impacts that occur throughout the life cycle of a system, from raw
material extraction, through manufacturing and use, to recycling and disposal [18,[19]. As highlighted
by Rupcic et al. [20], existing LCA applications in the aviation sector are often too narrow in scope



A METHODOLOGY FOR PERFORMING PROSPECTIVE LCA OF FUTURE AIR TRANSPORT SCENARIOS

to provide a global perspective on the industry (e.g. ignoring several energy carriers) and/or are
limited to climate change impacts when addressing environmental issues. Another major challenge
in performing prospective environmental analyses is to adapt the environmental datasets supporting
the LCA to align with the scenario projections. For example, the evolution of the electricity mix for
producing liquid hydrogen in 2035 and 2050 will generate different environmental impacts. Recently,
Thonemann et al. [21] provided life cycle inventory (LCI) datasets for the prospective assessment of
conventional and hybrid-electric aircraft technologies. Lai et al. [22] proposed an approach for the
prospective LCA of SAF production in Sweden. Sacchi et al. [23] relied on the premise library [24] to
generate prospective datasets for evaluating the sustainability of a European climate-neutral aviation.
However, no research has yet proposed the integration of prospective LCA methods with software
tools for the systematic assessment of transition scenarios for the aviation sector.

In this context, the aim of this paper is to develop a methodology for integrating prospective LCA
methods into an existing framework, AeroMAPS [16], to perform a comprehensive environmental
assessment of air transport transition scenarios. The implementation of the methodology will facilitate
the rapid evaluation of a range of prospective scenarios to support decision-making and avoid burden-
shifting.

To this end, the paper is structured as follows. Section[2.describes the various methods and tools that
support the analyses. Section [3. presents the overall methodology developed in this paper, i.e. the
integration of prospective LCA methods into AeroMAPS, including some details on data collection.
Section 4. illustrates the relevance of the approach through several applications. Finally, Section
| offers concluding remarks and perspectives.

2. Methods and Tools

This section presents the different methods and tools that support the sustainability assessment of
prospective scenarios. First, the open-source software AeroMAPS, which is used to simulate and
evaluate future scenarios for air transport, is described. Then, the resources for conducting life cycle
assessments to extend the environmental evaluations conducted by AeroMAPS are presented.

2.1 AeroMAPS

AeroMAPS is an open-source framework for performing a multidisciplinary assessment of prospective
scenarios for air transport [16]. A simplified architecture of the current version of AeroMAPS is shown
in Figure ]
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Figure 1 — Simplified architecture of AeroMAPS.

The framework relies on a set of exogenous inputs such as air traffic growth, improvements in aircraft
technology and potential gains in operational efficiency. The input values defined by the user are
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fed into the main air transport module, which simulates the temporal evolution of the air transport
system, including the air traffic, aircraft fleet and energy required to operate the aircraft fleet. The
evolution of air traffic is modelled by simple exponential growths, the value of which can be speci-
fied per period and per category (short/medium/long-haul passengers and freight). This demand is
then satisfied by an aircraft fleet whose composition and performance can be defined by using fleet
renewal models [25], and introducing new aircraft into the fleet as discrete-time events. In particular,
the user should provide the performance of each aircraft architecture (e.g. using results from overall
aircraft design tools), its year of entry into service, its final market share and its rate of penetration
into the fleet. Finally, the energy implications associated with the defined aircraft fleet are assessed.
The fleet uses a mix of energy sources, including drop-in fuels (fossil kerosene, electrofuel, biofuel)
and non-drop-in fuel (hydrogen), the proportion of which must be specified by the user. An electricity
mix (e.g., high/low-carbon grid or dedicated renewable) can also be specified for the production of
electricity-based fuels.

In a second step, two other modules are used to estimate the economic and environmental impacts
of the user-defined scenario and to assess its sustainability. The economic assessment involves the
use of cost models to estimate, among other things, the Direct Operating Costs (DOC), taking into
account energy costs, maintenance costs and carbon taxes. The environmental assessment includes
climate models to estimate both CO, and non-CO, effects on climate change. The estimation of the
induced temperature change can for instance rely on the use of the climate metric GWP* which is
relevant for Short-Lived Climate Pollutants (SLCP) such as aviation non-CO. effects [26} 27]. The
environmental module also estimates the consumption of biomass and electricity resources. Finally,
a comparison of these impacts with sustainability targets (e.g. a carbon budget allocated to aviation)
completes the scenario assessment.

The initial version of AeroMAPS described above focuses on a limited number of environmental
impacts, namely climate change and depletion of biomass and electricity resources. In addition, the
impacts associated with the user-defined scenario do not take into account socio-techno-economic
developments such as changes in the global electricity mix and improvements in fuel production
processes, or only in a very basic way through user specifications. Therefore, the present work aims
to refine the environmental assessment to include additional impact categories and considerations,
based on a comprehensive and prospective LCA approach.

2.2 Tools for Performing Prospective Life Cycle Assessments

The life cycle assessment methodology is a standardised framework for evaluating the environmental
impacts of a system over its full life cycle [18,[19]. In particular, this approach quantifies the emissions
and resource consumption associated with the production of capital goods supporting the supply
chain. The life cycle perspective enables, for example, a rigorous environmental assessment of an
energy carrier accounting for the industrial processes (e.g. electricity mix for hydrogen electrolysis)
rather than narrowing the scope to the combustion phase.

The life cycle model calculates the material and energy flows required along the different life cycle
stages of the air transport system, as well as the related emissions occurring during the industrial
processes and operations. The construction of such a model relies on a thorough collection of data
which can be partitioned into primary data, which relates to the foreground system, and secondary
data representing the background system [28]. The foreground system is the system under study,
namely the air transport. It describes technically a number of processes on which the decision-maker
has a degree of control, such as the blending mandates of alternative fuels in a fleet of aircraft. In this
paper, the technical modelling of the foreground system is provided by the dedicated models of the
AeroMAPS framework. On the other hand, the background system consists of processes on which
no or only indirect influence may be exercised, for example the industrial processes for producing
energy carriers. In the methodology presented in this paper, the ecoinvent database [29] is used to
build the life cycle inventory of the background system. Specifically, it provides datasets representing
the flows from and to the environment occurring during the extraction, transportation and treatment of
materials used in the aircraft manufacturing processes, for the production of capital goods in the fuel
supply chain (e.g. petroleum refinery), and for the construction and maintenance of generic airport
infrastructures.
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Prospective LCA aims to model the system "at a future point in time relative to the time at which the
study is conducted" [30]. As such, prospective LCA requires a modelling effort of the incumbent tech-
nologies and their market share in the future [31]. For this purpose, the Python library premise [24]
uses future projections from Integrated Assessment Models (IAMs) such as REMIND [32, 33] or IM-
AGE [34] to update the background databases consistently over time. The scenarios upon which
the IAMs operate reflect socio-economic and technical changes on a global scale in line with climate
change scenarios [35] [36]. For example, the approach proposed by premise enables to model the
energy mix evolution in different regions of the world. Because the influence of the assumptions un-
derlying the IAMs may be difficult to highlight, some authors have proposed to introduce parameters
to model specific evolutions of the background system [37]. These two approaches are comple-
mentary, as IAMs ensure a consistent modelling across sectors, while parameterised background
datasets allow to capture specific aspects that more closely influence the environmental impacts of
the foreground system.

Once the life cycle modelling of the system is completed, the emissions and resource extractions
are characterised using environmental models that describe the cause-effect chain, or environmental
mechanisms, that ultimately lead to impacts across a range of categories. This includes the well-
known ReCiPe [38] and CML [39] Life Cycle Impact Assessment (LCIA) methods, among others.
The creation of a life cycle model and the quantification of its potential impacts is facilitated by the de-
velopment of LCA software tools including the open-source framework Brightway [40], which seam-
lessly integrates background databases, LCIA methods, and helper functions to conduct full LCA
studies. More recently, the Python library Ica-algebraic [41] has been developed as a layer on top
of Brightway to facilitate the definition of parameterised models at both background and foreground
levels.

3. Workflow and Data Collection

This section presents the integration of the aviation and environmental modelling tools into a unified
framework for systematically evaluating the environmental impacts of future air transport scenarios.

3.1 Workflow

As illustrated in the workflow diagram in Figure |2} the proposed methodology consists of a three-step
process.
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Figure 2 — Schematic view of the workflow for impacts evaluation in AeroMAPS.

1. First, the ecoinvent database containing the background data for the capital goods involved
in the air transport life cycle is duplicated and transformed to enable prospective analyses.
For this purpose, the premise library is used to match process performance and technology
market shares to scenarios modelled by IAMs and defined by Shared Socio-economic Pathways
(SSPs) and climate trajectories (Representative Concentration Pathway — RCP). A new set of
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background databases is generated for a given scenario, with a time step of five or ten years.
In addition, premise proposes new inventories not originally present in ecoinvent, such as the
production of electrofuels and biofuels via Fischer-Tropsch. Finally, user-provided datasets are
imported specifically to represent the fuel combustion process based on literature values.

2. In a second step, the background databases are combined with parameters to build an LCA
model representative of the air transport system life cycle. The LCA model involves two types
of parameters: background parameters and foreground parameters. Background parameters
enable to select the appropriate prospective database according to the socio-economic sce-
nario and the year. In particular, for a given |IAM scenario, the LCA model interpolates the
background databases on an annual basis to fill the gap for missing years. That is, the emis-
sions, material, and energy flows associated with an activity for a specific year are expressed as
a linear combination of the two databases closest in time. Additional parameters are defined to
fine-tune the background systems, for example to adjust the electricity mix used in the produc-
tion process of electrofuels. Foreground parameters are then introduced which represent the
amount of each background element involved in the foreground system (air transport), for exam-
ple the amount of kerosene consumed and the number of aircraft to be produced per year. By
introducing parameters, the LCA model is ultimately expressed as a combination of time- and
scenario-specific datasets. The creation of the parametric LCA model is achieved using Ica-
algebraic and brightway. In addition, Ica-algebraic generates expressions of the characterised
impacts for each of the LCIA methods chosen by the user, allowing for a rapid computation
of the environmental impacts whenever the values of the parameters are updated. The im-
pacts are expressed per functional unit, defined here as the total revenue passenger kilometres
transported annually.

3. Finally, the characterised LCA model is effectively evaluated using the time-dependent param-
eter values provided by the air transport module of AeroMAPS. The impacts on the different
environmental categories are returned and displayed in the AeroMAPS user interface.

3.2 Data Collection

This section provides a description of the data supporting the LCA of air transport scenarios. The
datasets used in the life cycle inventory originate from different sources. Datasets for the production
of aircraft and the construction, maintenance and decommissioning of airport infrastructures are from
the ecoinvent v3.9.1 "cut-off by classification" database [29]. Similarly, datasets for the production of
kerosene are obtained from the ecoinvent database. Two types of SAFs are considered here: biofuels
from forestry residues and electrofuels from hydrogen electrolysis and Direct Air Capture (DAC), both
produced via the Fischer-Tropsch synthesis process. For the production of SAFs, the datasets from
premise are used, with an allocation of the synthesis burdens based on the respective energy content
of the co-products (diesel, kerosene, naphtha and lubricating oils and waxes). The original dataset for
the production of electrofuels has been modified to adjust the share of grid electricity and dedicated
photovoltaic electricity in the industrial processes. For this purpose, a parameter was introduced into
the LCA model to set the electricity mix. Due to the load factor of the photovoltaic power plant, the
electrolysers and direct air capture systems involved in the production of electrofuel are oversized
to handle the power peaks. It is assumed that the oversizing is inversely proportional to the load
factor. Finally, the emissions resulting from the combustion of fuels during aircraft operation are
obtained from literature values. A direct emission factor of 74.0 gCO, per MJ of fuel is used [42].
Emission indices, in kilogram of pollutants produced by the combustion of one kilogram of fuel, are
provided by AeroMAPS based on [43] for nitrogen oxides (NOy), sulfur oxides (SOx) and soot. In
particular, the emission index of soot is assumed 80% lower for biofuel and electrofuel compared to
fossil kerosene, and no emission of sulfur oxides is considered for alternative fuels. Emission indices
for non-methane volatile organic compounds (NMVOC) and dinitrogen oxides (N-O) are obtained
from [44] 45]. For fossil kerosene, heavy metals emissions are also considered [44] 46]. Finally, the
combustion processes of biofuels and electrofuels are adjusted for CO,, CH4 and CO to reflect their
biogenic nature, which is justified by the short rotation period of the feedstocks [47]. All emissions
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are assumed to occur during flight, in the upper troposphere and lower stratosphere (below 9000
m of altitude), although future work may distinguish ground emissions that occur near airports and
propose new LCIA methods for emissions in flight.

The background datasets are scaled to the foreground system with time-dependent parameters rep-
resenting the number of aircraft produced, energy consumption and total number of revenue passen-
ger kilometres (RPKs) travelled between airports. The parameters of the LCA model considered in
this paper are described in Table[l]

Table 1 — Parameters involved in the LCA model.

Parameter Type Unit Description

° iam_model string - IAM model to use

3 iam_scenario string - IAM scenario (SSP and RCP)

S year integer - Year of projection

S elec_photovoltaic_share percentage - Share of photovoltaic vs. grid

@ electricity for electrofuel production
elec_photovoltaic_load_factor percentage - Load factor of photovoltaic power station
aircraft_production_long_range float - Number of long-range aircraft produced
aircraft_production_medium_range float - Number of medium-range aircraft produced
aircraft_production_short_range float - Number of short-range aircraft produced
emission_index_nox_biofuel float kgno,/kgruer  NOx emission index for biofuel
emission_index_nox_electrofuel float kgno./kgruet NOx emission index for electrofuel
emission_index_nox_kerosene float kgno,/kgruer  NOx emission index for kerosene

o emission_index_soot_biofuel float kgpc/kgruer  Soot emission index for biofuel

< emission_index_soot_electrofuel float kgpc/kgruer  SoOt emission index for electrofuel

© emission_index_soot_kerosene float kgpc/kgruer  SoOt emission index for kerosene

D emission_index_sulfur_biofuel float kgso,/kgruer  Sulfur emission index for biofuel

u?_: emission_index_sulfur_electrofuel  float kgso,/kgruer  Sulfur emission index for electrofuel
emission_index_sulfur_kerosene float kgso./kgruer  Sulfur emission index for kerosene
energy_consumption_biofuel float MJ Biofuel consumption
energy_consumption_electrofuel float MJ Electrofuel consumption
energy_consumption_kerosene float MJ Kerosene consumption
rpk_long_range float RPK Long-range Revenue Passenger Kilometre
rpk_medium_range float RPK Medium-range Revenue Passenger Kilometre
rpk_short_range float RPK Short-range Revenue Passenger Kilometre

The data presented here serve as a preliminary basis to support the prospective LCA of air trans-
port. Future work should focus on improving the collection and quality of this data to ensure the
completeness, consistency and accuracy of the assessment.

4. Applications

This section illustrates the relevance of the methodology by assessing and comparing three scenarios
for the future development of the aviation sector. The assumptions and choices underlying the case
study are presented below. The results obtained for the three scenarios are then presented. An
analysis is also carried out to explore the sensitivity of the environmental impacts to the electricity mix
used for the production of electrofuels and the underlying IAM scenarios. Finally, the main findings
and limitations of the study are discussed.

4.1 Assumptions and Choices

All three scenarios share a common evolution of air traffic, aircraft fleet and operations. Specifically,
the air traffic follows an annual growth of +3% for both passenger and freight markets. The average
load factor is improved to reach 85% in 2050. It is assumed that new aircraft architectures for short-
medium range (SMR) and long range (LR) will enter into service in 2035, enabling a 20% reduction
in energy consumption per seat per kilometre. Operational improvements are also included, allowing
a reduction in energy consumption per seat-kilometre of around 6% between 2020 and 2050.

The energy mix consumed by the aircraft fleet varies from one scenario to the other. In the first
scenario, only kerosene derived from fossil petroleum is considered. Scenarios 2 and 3 explore the
implementation of blending mandates for SAFs from 2025 to 2050 at the global scale, inspired by
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the ReFuelEU Aviation initiative [48]. For instance, it is assumed that 35% of biofuels and 35% of
electrofuels are used in 2050. The third scenario differs from the second in that only photovoltaic
electricity is used to produce synthetic kerosene instead of the grid electricity mix for the second
scenario. A load factor of 14% is taken for the photovoltaic power production.

In all three scenarios, the shared socio-economic pathway SSP2, also called middle of the road
(i.e. where the world trends follow their historical patterns), is assumed with a baseline no-climate-
policy at a global level [35] [36]. The pathway is modelled using the IAM REMIND v3.0 [33], with
a 10-year time step. Finally, the environmental impacts are evaluated with the ReCiPe 2016 v1.03
LCIA methods [38], both at the midpoint (18 indicators) and endpoint (3 indicators) levels, with a
"hierarchist" approach. The assumptions underlying the three scenarios and their evaluation are
summarised in Table 21

Table 2 — Scenarios evaluated in the case study.

Scenario 1 \ Scenario 2 Scenario 3
Air traffic 3% annual air traffic growth
Trend fleet renewal introducing new SMR and LR architectures in 2035 with
a 20% reduction in energy consumption per seat-kilometre
Operational gains of 6.1% between 2020 and 2050 at the fleet level

Average load factor increase from 82.4 to 85% until 2050

Fleet & operations

Energy mix 100% fossil kerosene | ReFuelEU mandate with biofuels from forestry residues and
electrofuels with H, from electrofuels with H, from
electrolysis with grid electrolysis with photovoltaic
electricity mix electricity

Socio-economic scenario S.SP2 middle qf the roaq
and global climate policy without global climate policy
(modelled with REMIND v3.0)
ReCiPe 2016 v1.03
(18 midpoint indicators, 3 endpoints indicators)

LCIA methods

4.2 Results

The environmental impacts for the three scenarios are presented in Figures [3|to [8, and in Appen-
dices [A to [C] Specifically, this section only provides the results for a selection of three midpoint
indicators and for the endpoints. The remaining midpoint indicators are detailed in the Appendices.
A direct comparison of the scenarios through a coupled midpoint-endpoint analysis is also provided.

Scenario 1

In Scenario 1, environmental pressure increases across all categories in 2050 compared to 2020. In
line with the academic literature [20, [23] 49, [50], climate change is mainly driven by the production
and combustion of fossil kerosene. This result holds for most of the environmental impacts, with
varying rankings of importance. Airport facilities also play an important role in some categories, such
as land use.
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Figure 3 — Environmental impacts for Scenario 1 across three midpoint categories: climate change,
land use, and material resource use.
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At the endpoint level, similar to climate change, kerosene combustion is the main contributor to the
degradation of ecosystem quality and human health. Finally, raw material extraction and manufac-
turing processes for aircraft production play a minor role in most environmental categories. However,
improving the representativeness of the data, e.g. by characterising more precisely certain aircraft
grade materials, could lead to an increase in the importance of this life cycle phase.
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Figure 4 — Environmental impacts for Scenario 1 at endpoint level: ecosystem quality, human health,
and natural resources.

Scenario 2
Compared to Scenario 1, the results for Scenario 2 indicate that replacing fossil kerosene with the

considered alternative fuels does not lead to a reduction in all environmental impacts over the next
decades. Indeed, the replacement of fossil kerosene with alternative fuels shifts the impacts to the
upstream phases, i.e. their production. Specifically, whereas biofuels from forestry residues allow
for a substantial reduction in climate change impacts, they increase the pressure on land use. The
same phenomena can be observed for electrofuels produced using global grid electricity, but the
benefits in terms of climate change impacts are limited due to the use of relatively carbon-intensive
electricity. Overall, at the endpoint level, replacing fossil kerosene with electrofuels does not allow for
a significant reduction of the burdens, except for the depletion of natural resources.
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Figure 5 — Environmental impacts for Scenario 2 across three midpoint categories: climate change,
land use, and material resource use.

Scenario 3
The use of electrofuels produced by means of photovoltaic electricity limits the environmental impacts

in Scenario 3 as compared to Scenario 2. At the midpoint level, impacts on climate change are fairly
stable up to 2045, and the massive deployment of electrofuels thereafter allows for a non-negligible
reduction. However, some indicators such as land use and material resources remain higher than
with fossil kerosene. Scenario 3 achieves the greatest reduction in endpoint damages when com-
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Figure 6 — Environmental impacts for Scenario 2 at endpoint level: ecosystem quality, human health,
and natural resources.

pared to Scenarios 1 and 2. Nevertheless, as in the other scenarios, ecosystem quality and human
health are more severely affected in 2050 than in 2025.
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Figure 7 — Environmental impacts for Scenario 3 across three midpoint categories: climate change,
land use, and material resource use.
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Figure 8 — Environmental impacts for Scenario 3 at endpoint level: ecosystem quality, human health,
and natural resources.

Comparison
To facilitate comparison of the three scenarios, the results at the endpoint level for the year 2050 are

presented in Figure[9] For each endpoint indicator, the results are normalised to those of Scenario 1.
As mentioned previously, Scenario 3 results in the lowest environmental impact. Paradoxically, Sce-
nario 2 generates more impacts on human health than Scenario 1. Regarding the contribution of

9



A METHODOLOGY FOR PERFORMING PROSPECTIVE LCA OF FUTURE AIR TRANSPORT SCENARIOS

midpoint impacts to the endpoints, climate change is the main contributor to ecosystem quality. In-
terestingly, the contribution of land use increases in Scenarios 2 and 3, because of the electricity
production facilities. For human health, climate change is also the main contributor in Scenario 1,
followed by the formation of particulate matter. The latter becomes the first contributor to the dam-
age on human health in the two other scenarios because of electricity production. However, the
share of particulate matter formation due to the combustion of alternative fuels could be refined in
future work to improve the reliability of the results. Finally, natural resources are largely impacted
by non-renewable, fossil energy resources, whereas the contribution of material resources remains
marginal.

Ecosystem Quality Human Health Natural Resources

b = -1.0

-0.8

,,,,,,,,,,,,,,,,, -0.6

Impacts relative to scenario 1

r -0.2
1 1 il ulli
< < < < < < < < <
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Midpoint Category
B Terrestrial Acidification B Human Toxicity (Carcinogenic)
Climate Change Human Toxicity (Non-Carcinogenic)
B Land Use Particulate Matter Formation
B Photochemical Oxidant Formation Energy Resources (Fossil)
Others Material Resources (Metals/Minerals)

Figure 9 — Endpoint damages for the three scenarios in 2050 (normalised on Scenario 1), with the
contribution of midpoint impacts.

4.3 Sensitivity Analyses

To investigate the influence of the background parameters, two sensitivity analyses are proposed.

First, the sensitivity of the environmental impacts to the electricity mix used for the production of
electrofuels is explored. Results are given in Figures|10|/and Scenario 2 corresponds to the case
with a 0% share of photovoltaic (i.e. electricity from the grid only), while Scenario 3 corresponds to
the case with a 100% share of photovoltaic. Values for Scenario 1, independent of the electricity mix
in this study, are also provided for comparison. As mentioned previously, a 100% dedicated photo-
voltaic for producing electrofuels results in less impacts at the endpoint level, but increases pressure
in some midpoint categories such as land use. Interestingly, an optimal share of dedicated photo-
voltaic is observed on some midpoint or endpoint indicators (e.g. material resources and human
health). This is due to the oversizing of the electrofuel production plants, which is inversely propor-
tional to the share of photovoltaic. Note that this does not take into account the possible interaction
between the electricity grid and photovoltaic power to smooth out power peaks and therefore min-
imise the need to oversize the electrofuel facilities. Finally, while Scenario 2 shows a higher impact
on human health in 2050 compared to Scenario 1, the substitution of one fifth of grid electricity with
photovoltaic power for the production of electrofuels balances the impacts between the two scenarios.

Secondly, the sensitivity to the Shared Socio-economic Pathways (SSPs) and climate trajectories
(RCPs) modelled by REMIND is examined. In addition to the baseline scenario — SSP2 without
global climate policy, two other scenarios are considered: SSP1-RCP2.6 and SSP2-RCP2.6. The
narrative for SSP1 reflects a world of sustainability-focused growth and equality [35]. For both SSP1-
RCP2.6 and SSP2-RCP2.6, the socio-economic pathway is combined with climate mitigation policies
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Figure 10 — Sensitivity of climate change, land use, and material resource use to the share of
photovoltaic in the electricity mix, with the ReFuelEU mandate, in 2050.
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Figure 11 — Sensitivity of endpoint impacts to the share of photovoltaic in the electricity mix, with the
ReFuelEU mandate, in 2050.

in line with the Paris Agreement (RCP forcing levels of 2.6 W/m?). For the purpose of the analysis,
Scenario 2 is considered in the following to model the transition at the level of the aviation sector.
Figures [12] and [13] provide the results at the midpoint and endpoint level respectively. As expected,
the effect of climate mitigation measures is clearly visible on climate change. Similar observations
were found in several other midpoint indicators, such as particulate matter formation and terrestrial
acidification. This is mainly due to the development of low-carbon electricity in RCP2.6 scenarios.
Overall, the three endpoint damages are significantly reduced when implementing ambitious climate
policies. The results are less sensitive to the socio-economic pathway. Although it might have been
expected that the impacts would be lower in a world driven by SSP1 than by SSP2, the projected
impacts are quite similar. This has to be put into perspective with the developments underlying the
different SSPs. In SSP1, climate targets are largely met by lowering consumption growth in a number
of human activities. However, in the present study, the assumptions underlying the development of
the aviation sector are decoupled from the SSPs, e.g. regarding the growth of air traffic. Future work
should therefore take into account the consistency between the development of the aviation sector
and the world evolution.
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Figure 12 — Environmental impacts for Scenario 2 for different SSPs and climate mitigation targets
across three midpoint categories: climate change, land use, and material resource use.
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Figure 13 — Environmental impacts for Scenario 2 for different SSPs and climate mitigation targets
at endpoint level: ecosystem quality, human health, and natural resources.

4.4 Discussions

The replacement of fossil kerosene by SAFs is an option being considered by many stakeholders
in the aviation sector. However, such a decision must take into account the necessary interaction
between air transport and the other sectors that support the transition. The case study presented
above shows that despite the introduction of biofuels and electrofuels, the impact of air transport
on several environmental indicators is hard to abate. Without delving into the specifics of biofuels
production, the case study presented above shows that careful consideration must be given to the
production pathway of electrofuels. The evolution of the electricity mix used in hydrogen electrolysis
and DAC is of significant importance. An electricity mix supported by coal, oil and gas sources is not
able to substantially reduce the impacts on ecosystem quality and human health. Specifically, the so-
called "burden shifting" is illustrated by increases in particulate matter formation, land use and human
toxicity as climate change is mitigated. This results in a trade-off that may adversely affect the areas
of protection (human health, ecosystem quality, and natural resources), as observed for the increase
in human health impacts in Scenario 2. It is therefore necessary to assess the extent to which some
key variables can be adjusted to steer the air transport system towards a more sustainable trajectory.
An example of a sensitivity analysis on the electricity mix is presented here to quantify how the use
of dedicated photovoltaic plants could enable a reduction in environmental damages. This analysis
could be generalised to identify the main parameters driving the evolution of the aviation sector and
its environmental impacts, including additional energy carriers, improvements in aircraft technology
and efficiency, and air traffic demand, among others. Finally, although global changes in the world
over the next few decades may appear to be beyond the scope of the aviation industry decisions,
it is important to assess the extent to which changes in society and climate policy could affect the
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sector’s environmental impact, all other things being equal. Such an analysis enables anticipation
of strategies that should be adopted in connection with other human activities, particularly since
the transformation of the aviation sector is heavily dependent on the transformation of the energy
industry.

5. Conclusions and Perspectives

This paper presents a comprehensive methodology for integrating prospective LCA methods into the
AeroMAPS framework to assess future air transport scenarios. In addition to the current AeroMAPS
modules, this methodology is based on various frameworks such as Brightway, Ica-algebraic and
premise. The results highlight the significant environmental impacts associated with current and
future air transport practices, particularly concerning the adoption of SAFs. Despite their potential
benefits, the analysis underscores the importance of considering the entire energy production path-
way to avoid burden-shifting and unintended environmental trade-offs. Key findings from the case
study suggest that the transition to more sustainable aviation requires careful planning and signifi-
cant adjustments in the energy sector, particularly in the adoption of renewable energy sources for
electrofuel production. Additionally, the study reveals that current aircraft production practices are
not significant contributors to the environmental impacts. However, future studies should include re-
cycling, specific aircraft-grade material quality, and new hybrid-electric architectures to better assess
this phase.

By combining multiple frameworks for modelling the aviation sector and its interaction with other
industries and the environment, the proposed methodology enables the exploration and evaluation of
a range of scenarios. Such a scenario exploration plays a pivotal role in understanding the potential
variability in environmental impacts. Overall, this research provides valuable insights for policymakers
and industry stakeholders to develop more effective strategies for reducing the environmental impact
of aviation.

Future research work in this direction should address the following limitations and opportunities.
First, improving the completeness and accuracy of the inventory, for instance by enhancing data
collection and covering all the aviation mitigation levers of action (e.g. other alternative fuels, new
aircraft architectures, offsetting mechanisms) is a challenge for carrying out exhaustive life cycle
assessments. Then, advanced sensitivity and uncertainty analyses would enable the identification of
the key parameters influencing the environmental impacts of aviation. Similarly, comparing multiple
LCIA methods could be beneficial for capturing a wide range of environmental effects and ensuring
the robustness of the results. These methods could also be improved to include the non-CO, effects
of aviation, which are not covered in this paper, in particular regarding climate change impact. Lastly,
it would be of great interest to combine these environmental approaches with socio-economical ones
to enable holistic analyses of transition scenarios for air transport.
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Appendix
A Environmental Impacts at Midpoint Level for Scenario 1
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Figure 14 — Environmental impacts for Scenario 1 at midpoint level.
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Figure 15 — Environmental impacts for Scenario 1 at midpoint level (continued).
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B Environmental Impacts at Midpoint Level for Scenario 2
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Figure 16 — Environmental impacts for Scenario 2 at midpoint level.
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Figure 17 — Environmental impacts for Scenario 2 at midpoint level (continued).
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C Environmental Impacts at Midpoint Level for Scenario 3
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Figure 18 — Environmental impacts for Scenario 3 at midpoint level.
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Figure 19 — Environmental impacts for Scenario 3 at midpoint level (continued).
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