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Abstract

Uncertainty-considering aircraft sonic boom uncertainty quantification (UQ) and robust design optimization
techniques have become one of the most promising ways to meet the design requirements of future
environmentally friendly supersonic civil aircraft. However, traditional aerodynamic uncertainty quantification
methods for aircraft are costly, narrowly applicable, and suffer from the curse of dimensionality. It is difficult to
meet the demand for complex sonic boom multi-parameter UQ and aerodynamic/ sonic boom robust design
optimization. To address this difficulty, first, this paper uses an efficient sparse polynomial chaos reconstruction
method based on adaptive forward-backward selection (AFBS), combined with the augmented Burgers
equation, to quantify the uncertainty of far-field sonic boom prediction. The AFBS method effectively enhances
the sparsity of the PC reconstruction and improves the reliability of the fitting process. The augmented Burgers
equation accurately simulates the far-field propagation of sonic boom. This part carries out sonic boom UQ
considering six uncertain parameters: Mach number, altitude, temperature, humidity, wind direction, and wind
velocity, and compares the results with the OMP method and the OLS method. The results indicate that the
efficient sparse PC reconstruction method based on AFBS is less computational cost and accurate. It can be
used for sonic boom UQ under multi-parameter uncertainties. Then an aerodynamic/sonic boom robust design
optimization framework was constructed. Considering the uncertainty of Mach number and angle of attack, the
lift, drag, moment coefficient, and PLdB were robustly optimized. The optimization results are improved in all
metrics, proving that the optimization framework can be used for robust optimization of aerodynamic sonic
booms.

Keywords: Sonic boom; Uncertainty quantification (UQ); Adaptive forward—-backward selection (AFBS);
Polynomial chaos expansion (PCE); Robust design optimization
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1. Introduction

1.1 Low drag and sonic boom design

The trend towards globalization has led to closer economic and political ties between countries, as
global transport networks become more sophisticated. This has contributed to the continued growth
and prosperity of the civil aviation industry. With advances in science and technology and the targets
of Carbon Peak and Carbon Neutrality, the next generation of aircraft aims to be comfortable,
economical, safe, eco-friendly and high-speed. Faster flight speed remains an unchanging pursuit of
mankind. However, the resulting sonic boom problem has become one of the core issues that limit
supersonic civil aircraft development. To reduce the impact of sonic boom, researchers worldwide have
conducted numerous studies. These studies have shown that the intensity of sonic boom can be
influenced by various factors, including Mach number, altitude, atmospheric temperature and humidity.
The interactions between these variables are complex, resulting in less robust sonic boom prediction
and making it difficult to achieve the optimal sonic boom waveform. Traditional methods for sonic boom
UQ are not only costly and narrowly applicable, but also face the curse of dimensionality. Therefore,
these methods cannot meet the needs of sonic boom UQ.

In recent years, as the uncertainty problem in sonic boom prediction has become more and more
apparent, this issue has received widespread attention and intensive study by many research
institutions[1—4]. The current research mainly focuses on two main areas: the exploration of new
optimization strategies, and in-depth studies on the selection of uncertainty parameters. Research in
both directions is important to understand and improve the uncertainty in sonic boom prediction.
Colonno et al.[5] review the currently accepted theories of sonic boom prediction and minimization and
propose a new and improved method to overcome some of the limitations of the classical theory.
However, the method is only a start for minimum sonic boom design under uncertainty. The paper also
points out that good optimization strategies require not only high performance but also minimal
sensitivity to uncertainty. This robust design approach is the subject of future study. Emre Tekaslan et
al.[6] studied UQ using multifidelity methods for both sonic boom loudness and ground pressure
signature while simultaneously considering flight and atmospheric parameters. By implementing
multifidelity polynomial chaos expansion and multifidelity Monte Carlo methods, UQ tools were
developed. However, its research has shown that MFMC is advantageous whenever the problem is
high-dimensional, the correlation between the low- and high-fidelity simulation is high, and the cost of
the low-fidelity simulations is notably cheaper. Inversely, MFPCE is propitious in case of a considerable
low-fidelity simulation cost and a low-dimensional space. Thus, the method is less applicable. Makino
et al.[7] investigated some metrics of sonic boom intensity used as an objective function for robust sonic
boom minimization. This approach avoids sensitive low boom signatures obtained in sonic boom
minimization using conventional sonic boom metrics. However, the disadvantage is that although the
sonic boom metrics they presented have shown the importance of analytical robustness of the objective
functions in sonic boom minimization, they do not necessarily guarantee that the sonic boom effects

are minimized. Schaefer et al.[8] investigated the robust design of sonic boom using Spatially Accurate
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Polynomial Chaos (SAPC) and applied the methodology to the design of a development version of the
NASA X-59 QueSST aircraft. They found that the design based on SAPC increased robustness, but its
drawback is the high computational cost. Rallabhandi et al.[9] developed a method to solve propagation
uncertainty during the minimization of sonic boom using a discrete adjoint method. It takes into account
the uncertainty in atmospheric inputs. The advantage of this method is that it minimizes both the mean
and standard deviation and it is less computational cost. But the limitation of this method is that it only
considers the uncertainty in the atmospheric parameters. The above methods have made some
progress in the field of sonic boom uncertainty, but all have some limitations.

1.2 Robust design optimization

In the field of aerodynamic design optimization, the traditional deterministic-based design optimization
method only considers the aerodynamic performance parameters at the design point and does not
consider the drastic changes in aerodynamic performance that may be caused by various sources of
uncertainty. Therefore, the results obtained by this kind of design optimization have poor robustness. It
is often difficult to maintain stable aerodynamic performance when affected by uncertain factors, and
even causes a sharp deterioration in performance. Therefore, the results of single-point deterministic
design are difficult to be applied in engineering. Multi-point deterministic design attempts to obtain
usable results by constraining several state points, but it will face difficulties in implementation as the
number of uncertain factors considered increases. The uncertainty-based design optimization method
considers the impact of uncertain sources on performance during the optimization process and looks
for designs that are insensitive or do not fail when the uncertain sources change. It is a more valuable
design method than deterministic design.

NASA Langley Research Centre in its white paper [10] states that it is very important to consider the
effects of various possible uncertainties. And with the development of computational power and various
advanced uncertainty analysis and design methods, uncertainty-based design can make the design
results more robust. In recent years, with the development of the world's aviation industry, economic,
green, and safe flying vehicles are getting more and more attention. Aerodynamic shape design
considering uncertainty can provide more robust aerodynamic performance in the face of complex flight
conditions, which meets the current performance requirements of aircraft.

Uncertainty-based design problems fall into two categories: robust design problems and reliability-
based design problems [10]. A robust design problem seeks a design that is relatively insensitive to
small changes in uncertain inputs. The reliability-based design problem seeks a design whose
probability of failure is less than some acceptable value. The same mathematical formulas can be used
to describe both robust and reliability-based design, however their areas of application are quite
different. The design domains in which they are applied are illustrated in Figure 1: for extreme events
that could result in catastrophe, we would prefer to use reliability-based optimal design. Whereas for
routine events with lesser impact, it is more expected to make the performance insensitive to normal
fluctuations, i.e. robust design optimal. The two are also concerned with different regions of distribution
of the probability density function. Robust design is concerned with the probability distribution near the
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mean of the probability density function, while reliability-based design is concerned with the probability
distribution at both ends of the probability density function, as shown in Figure 2. Among them is the
uncertainty-based aerodynamically robust optimal design method for aircraft that considers the effect
of uncertainty on aerodynamic performance during the optimization process. The design with less

sensitivity to uncertainty factors is searched for to obtain robust design results.
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Figure 1 — Uncertainty-based design Figure 2 — Probability Density Function Distributions for
domains Reliability and Robustness Design Concerns

There are many methods available for the aerodynamic uncertainty analysis and robust design of
aircraft. Aerodynamically robust design optimal can provide robust and reliable aerodynamic
configurations under possible uncertainties in the flight envelope and throughout the life cycle of the
vehicle and reduce costs. The main problems faced today are how to address the high computational
cost, the increasing dimensionality of uncertainty, and the complexity of the aerodynamically robust
optimal design procedure. These hinder the wider application of Aerodynamic Robust Design
Optimization (RADO).

Zhao [11] et al. introduced the non-uniform free-form deformation (NFFD) method based on non-
uniform rational B-spline (NURBS) basis functions into airfoil parameterization. The non-dominated
sorting genetic algorithm-Il (NSGA-Il) was used as the search algorithm. An agent model based on the
Kriging model is introduced to improve the efficiency of the optimization system. A transonic, high
Reynolds number natural laminar flow airfoil is designed and investigated to achieve robust design with
Mach number uncertainty. Zhao [12] and others developed an Uncertainty-Based Design Optimization
(UBDO) framework based on the polynomial chaos expansion method. A particle swarm optimization
algorithm combined with an agent model was used to search for optimal natural laminar flow airfoils.
By weighing aerodynamic performance under fully turbulent and free turning conditions. The optimal
airfoil shape is obtained by maintaining robust and reliable aerodynamic performance under complex
flight conditions. Huang [13] et al. investigated the aerodynamically optimized robust design of
supercritical airfoils considering fuselage disturbances. The aerodynamic robust design optimization

system consists of a genetic optimization algorithm, an improved Back Propagation (BP) neural network
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and a deformation grid technique. Two major improvements are made to the BP neural network to
increase the training speed and accuracy. The optimized wing not only has better aerodynamic
characteristics, but the intensity of the excitation wave is also reduced.

Zhao [14] et al. developed a sparse polynomial chaotic reconstruction method based on Adaptive
Forward-Backward Selection (AFBS), which greatly improved the uncertainty analysis and robust
optimization efficiency. An efficient aerodynamic robust design optimization method considering multi-
parameter uncertainties is also developed. The method effectively solves the difficulty of the traditional
airfoil design method to meet the high speed and high lift natural laminar flow airfoil design requirement
of taking into account the high lift design, natural laminar flow design, and supercritical design.

Keane [15] used Cokriging for optimization of gas turbine compressor blades using a multi-objective
optimization scheme that takes into account uncertainties in manufacture, operating conditions, and
degradation in operation. Pseudo-Monte Carlo sampling was used to propagate uncertainties during
the analysis and combined with a state-of-the-art multi-fidelity approach to limit the runtime of the
optimization process. The results show that an explicit balance between performance and robustness
is achieved, guaranteeing good performance with small variations in performance. Hosder [16] et al.
proposed an inexpensive Non-Intrusive Polynomial Chaos (NIPC) method for propagating input
uncertainty in CFD simulations. Since the method is non-intrusive and does not require modification of
the deterministic code, the method can be used directly for any stochastic fluid dynamics problem and
its computational cost is lower than non-intrusive methods based on sampling or quadrature. Shah [17]
et al. have developed a method to propagate the input uncertainties in CFD simulations by using the
Quantification of Margins and Uncertainties (QMU) approach to implement Dempster-Shafer evidence
theory for reliability and performance assessment of complex engineering systems in the presence of
mixed uncertainties (chance and multiple sources of knowledge). Padron [18] et al. introduced a multi-
fidelity approach to achieve high-fidelity robust optimization. Their multi-fidelity approach uses a
polynomial chaotic expansion constructed from a combination of low-fidelity models and model
corrections to approximate the high-fidelity statistics and statistical gradients used in each optimization
iteration. The results show computational savings of 60% to 90% when compared to high-fidelity
optimization. Dodson [19] et al. investigated the potential of the polynomial chaotic approach used in
conjunction with computational fluid dynamics to quantify the computational effects of uncertainty in the
aerodynamic design process. A polynomial chaos theory and a non-intrusive spectral projection
implementation were proposed and used to demonstrate polynomial chaos as a basis for robust
optimization, focusing on how to maximize the lift-to-drag ratio of a two-dimensional airfoil while
minimizing its sensitivity to leading edge thickness uncertainty. The results show that the global
optimum of certain design problems cannot be reached without taking uncertainty into account.

1.3 Current challenges

Aerodynamic design optimization methods should first of all be applied techniques to meet complex
engineering requirements. The complexity of the flow field characteristics, such as viscous,
compressible, separated flow, turning, surge and other nonlinear flow characteristics, is very sensitive



AERODYNAMIC/SONIC BOOM ROBUST DESIGN OPTIMIZATION

to the uncertainty of the flight state (e.g., Mach number, angle of attack, turbulence, etc.) and the shape
change (deformation, machining error, etc.), which makes the shape designed by the traditional
deterministic design method drastically change the aerodynamic performance in the face of the
uncertainty factors. Aerodynamically robust design is a very effective advanced design technique to
solve the above problems, but the current aerodynamically robust design method suffers from the
complexity of the application process and the huge computational cost. At each step of the robust
optimization process, uncertainty quantification and analysis is performed for each candidate
aerodynamic shape, which significantly increases the computational cost of uncertainty quantification
compared to a single CFD analysis, and thus the time for robust optimization increases significantly
compared to deterministic optimization. Traditional uncertainty analysis techniques such as Monte
Carlo Simulation (MCS) are costly and very inefficient for robust design optimization. Moreover, as more
and different types of uncertainties need to be considered for complex aerodynamic shape optimization
problems, the efficiency of robust optimization decreases further, and the problem of huge
computational cost is encountered. Robust optimization also increases the number of objectives
exponentially, especially for multi-objective robust optimization problems, which deepens the problem
of high-dimensional multi-objective optimization. Currently applicable to the development of robust
optimization techniques for aerodynamic design problems is still very slow, especially the aerodynamic
uncertainty analysis is still encountered in the high computational cost of the problem, making it difficult
to get a wide range of engineering applications.

Robust optimization of sonic boom will face the optimization strategy and uncertainty parameter
selection and other issues. A good optimization strategy not only needs to be high performance, but
also need to minimize the sensitivity to uncertainty. The selection of uncertainty parameters will help to
optimize the sonic boom to obtain an insensitive low sonic boom characteristics, so as to obtain a robust
design of low sonic boom.

The above challenges hinder the development of robust design optimized for aerodynamic/sonic boom.

1.4 Research in this paper

Aiming at the above problems, this paper introduces the basic theory, main methods and key
technologies of aerodynamic robust design optimization methods. Especially for the problem that
traditional uncertainty analysis methods have a narrow scope of application or are costly, an efficient
sparse PCE reconstruction method and an efficient uncertainty analysis method based on sparse PCE
are used, and an efficient sonic boom uncertainty quantification and aerodynamic/sonic boom robust
design optimization method considering multi-parameter uncertainty are established to meet the design

requirements of complex engineering problems.
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2. Theory of sparse PCE

2.1 Polynomial chaos expansion

Among uncertainty analysis methods, Polynomial Chaos Expansion (PCE) is a powerful meta-modeling
tool as an efficient theory of probabilistic uncertainty propagation and quantification. It has important
applications in many engineering and applied mathematics fields, including structural reliability,
sensitivity analysis, Monte Carlo simulation, etc. Among them, Wiener-Askey PCE and generalized
polynomial chaos expansion (GPCE) are used as adaptable stochastic agent models. The
correspondence between univariate autocovariate types and corresponding orthogonal polynomial
types in Wiener-Askey PCE satisfies the Askey scheme [20] and has been widely used in uncertainty
quantification.

Consider a probability space (Q, e, P), where () is a sample space, ® is an appropriate o -
algebraon €2, and P is a probability measure on (Q, ®) . Assume real-valued random variables and
stochastic processes f € I (Q)) defined in a probability space (Q, ®, P) that are expressed as:

R TR

f( aOF +Zar(§ )+izalllz 2(511 )+ZZZ 111213 3(511 §i3)+.“ (1)

i=1i,=1 i=1i,=1 i3=1
Where: I', represents a polynomial of order £ ; coefficient a is a real number; and = = (51,552,...§d)
represents a collection of mutually independent random variable inputs. Further, the above formula can
be simplified as:

f(E) Za v, (E) 2)

Where, «, and y, in (2) correspond to a and Fk in (1). Eq. (2) is truncated at order p and can be
expressed as:

f(E)=2 awi(B)= ch, E)+e(®) 3)

k<P

Where: Mp represents the number of polynomial terms remaining after truncation; «; is the coefficient
of the k -th basis function of PCE, and v/, is the k -th basis function; £(Z) is the truncation error, and
the truncation strategy is the key factor affecting the truncation error; ¢, is the coefficient of the i-th
basis function of PCE; and y/,is the i-th basis function. Due to the orthogonality of the PCE basis
functions, their statistical properties can be easily obtained by calculation, and the expressions for the
mean value u, and standard deviation o, are as follows:

=E(/@)=¢, @
~E(/@-E/@) =Y (v)) (5)

Therefore, the first- and second-order moments of the response function can be quickly estimated by
simply requiring the polynomial expansion coefficients, i.e., the PCE reconstruction.

PCE reconstruction is the process of recovering polynomial coefficients based on input variables and
output responses. Popular methods include the Galerkin projection (GPNIPC) and the point collocation
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method (also called least squares). The GPNIPC derives the coefficients of each basis function by
projecting the output response in the direction of each basis vector, where due to orthogonality, just the
same basis projection/inner product is not equal to zero. It exacts the maps between uncertainties inputs
and performance, and gets PC coefficients by:

(fELy)_[/EW @iE)d=

W) W)

where the computational cost of this strategy is typically dominated by the computation of the projection

B = ,i=12,...M (6)

integration <f(E),l//l.> for every [3.. Popular approaches to computing <f(E),l//l.> include Monte
Carlo (MC) evaluation and numerical integral formula. MC evaluation in Eq.(7), where N denotes the
number of observed samples points.

_ 1 & i i
(f@Ey,)==2 fE)y,(EY) (7)
N3
The numerical integral formula computes the integration by Eq.(8).
NI Nn
<f(5)»lﬂ,> = ZZAZI "'Ai”f(é/il ’giz a-"aé/l‘n )Wi(é,il agiz a-"agin) (8)

where N indicates the number of integration point of the j -th dimensionality, 4,and (¢, ,¢ ,...,&; )
denote the i-th weight and node, respectively.
As the dimension d increases, the number of integration points will increase exponentially and the
GPNIPC faces the challenge of huge computational cost.
The point collocation method can fit the basis function coefficients using least squares regression, which
is given by

L=P"P)'P'Y (9)
where YV = {W,- (E(-j))} is the measurement matrix containing samples of the PC basis, and
Y=(fE"), FED),...,fE™) contains the response of the observed points.
B=(B.p,.....3,) denotes the vector of PC coefficients.
However, the number of PCE truncation terms increases geometrically with the number of spatial
dimensions and the order of unfolding, which leads to a sharp increase in the number of samples
required to fit the truncated PCE terms, and the approximation accuracy is difficult to be guaranteed,
i.e., the problem of dimensional catastrophe. For the aerodynamic problem, the high confidence
computational samples are usually considered to require large computational costs and are usually
confronted with high-dimensional higher-order responses to the effects of complex three-dimensional
shapes and compressibility. The dimensional catastrophe problem will be a great obstacle to limit the
application of PCNIPC (point collocation nonintrusive polynomial chaos) method to high-dimensional
complex problems. To address this difficulty, the matching point method based on the theory of
compressed sensing [21] can effectively alleviate the dimensional catastrophe problem by identifying
and recovering the most important PC terms and their coefficients, and constructing sparse PCE
theories and methods [22]. Some popular sparse PCE methods include least angle regression (LAR)
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[23], orthogonal matching pursuit (OMP) [24], adaptive forward-backward selection (AFBS) [14], weight
£, -minimization [25], gradient enhancement ¢, -minimization [26], multifidelity ¢, - minimization [27]
and other algorithms have been widely used and obtained very good performance in many complex
problems.

2.2 Sparse polynomial chaos representation

For a large number of expansions of polynomial chaos, not all of the terms make a significant
contribution to the output response, and many of the terms make a small or even zero contribution.
Therefore, if these large contributors can be effectively identified and only the coefficients of these
significant contributors can be recovered, the computational cost will be greatly reduced. Therefore,
combining this effective idea with the compression-aware theories and methods that have been widely
used in the field of information data recovery in recent years, some researchers have proposed a
number of effective ways to solve the problem, which are collectively referred to as sparse PCE
reconstruction methods.

Compressed sensing is used for sparse polynomial chaos reconstruction, where an efficient algorithm
to find the minimum number of polynomial terms with non-zero coefficients, constructing exact PC
representations with a small number of collocation points excites the search for a sparse approximation
. The /, -minimization directly provides an optimally sparse approximationC={f, | B, # 0}, with

the minimum number of non-zero entries, and restores £ back to within ¢ in the L, , namely
minB],, stfwB-Y], <& (10)

The above equation is the 7/, -minimization problem. where C={f. | S, # 0} =||ﬁ||0 represents the
number of non-zero polynomial terms and & represents the approximation error. Obviously, the 7 -
minimization problem is an NP-hard problem, i.e., solving Eq.(10) directly will result in a huge
computational expense. Therefore, some studies have pointed out that by relaxing the ¢, -minimization
problem into an ¢, -optimization problem
min| 5

L ostlwB-Y|, <e (11)

The /, -optimization problem represented by Eq.(11) is also known as the BPDN (basis pursuit
denoising) problem, where”,B”1 :|ﬂl|+|ﬁ2|+---. However, the ¢ -optimization problem (Eq.(10)) and
the /, -optimization problem (Eq.(11)) are not completely equivalent unless a specific condition is
satisfied: ¢, -optimization and /¢, -optimization are equivalent when the measurement matrix ‘¥
satisfies the RIP (Restricted Isometry Property) property.

The ¢, -minimization problem represented by Eq.(11) can be solved by a large number of efficient
algorithms. These algorithms include basis pursuit and greedy algorithms, OMP and LAR are widely
used greedy algorithms.

Least angle regression (LAR), also including Stagewise algorithms and Lasso algorithms [23], can be
regarded as the conservative forward greedy algorithm or less greedy version of the traditional forward
selection methods. LAR has less greediness and is a classical LASSO algorithm. Due to these excellent
properties, Blatman and Surdret [28] used least-angle regression for reconstructing sparse PCE, and it
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has been widely used. The process of minimum angle regression for sparse PCE reconstruction is as
follows: LARSs start with all coefficients given zero values and find the predictor most correlated with the
response to be added to the active set. The first prediction step is considered in the direction of this
predictor until other predictor has as much correlation with current residual. The predictor will be added
to the active set. Next, LARs adjust the coefficients in a direction equiangular between these predictors
of active set, until some other predictor has as much correlation with the current residual. In the iteration
procedure, the new predictor is added to the active set and performing forward selection again until the
stopping criterion is reached.

10
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3. AFBS applied to sonic boom uncertainty quantification

3.1 Experimental design

In this chapter, the supersonic concept airliner Lockheed Martin 1021 (LM1021) provided by the Second
Sonic Boom Prediction Workshop (SBPW?2) is used as a standard model. The azimuth angle is taken
as 0° and the near-field overpressure distribution is shown in Figure 3. The propagation of the sonic
boom is simulated by the code in [29], which solves the augmented Burgers equation considering the
atmospheric attenuation. It is verified that the code can accurately simulate the propagation process of
sonic boom. In analyzing the propagation of sonic boom to the far field, there are six uncertain
parameters considered in this paper, which are: temperature 7', humidity %, wind speed V', wind
direction ¢, flight altitude H , and Mach number Ma . Assume the six parameters are normally
distributed. The variation of temperature with height was taken from computing formula[30]. The
variation of wind speed, wind direction, and humidity with height were taken from real data for a region
in December. These data were taken as fixed values y; of the parameters and made into uncertain
variables by adding a normally distributed uncertainty term & after them of the form:
g+ & (i=T,hV,8), where: & ~N(0,2), & ~N(0,8), & ~N(0,2), & ~N(0,10). The
Mach number distribution satisfies Ma ~ N(1.6,0.03) and the flight altitude distribution satisfies
H ~ N(16764,100) . The following section analyses the uncertainty of sonic boom propagation in the
atmosphere using AFBS and compares it with other methods.

0.015
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0.01 300 350 400 450

Axial location (m)

Figure 3 — Near-field overpressure distribution of LM1021

3.2 Comparison of AFBS, OMP and MCS methods for predicting ground sonic boom signature.
The mean of AP estimated by the AFBS, OMP, and MCS methods are shown in Figure 4. The relative
errors of the mean of AP for AFBS with different samples (N = 30, 50, 100) are shown in Figure 5. The
results indicate that the mean obtained by the AFBS method with 30 samples is almost the same as
that obtained by the MCS method with 20,000 samples. The relative error of the mean decreases as
the AFBS sample increases. The standard deviations of AP estimated by the AFBS, OMP, and MCS

11
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methods are shown in Figure 6. The relative errors of the standard deviations of AP for AFBS with
different samples (N = 30, 50, 100) are shown in Figure 7. The results indicate that the standard
deviation obtained by the AFBS method with 30 samples is close to the standard deviation of the MCS
method with 20,000 samples. The relative error of the standard deviation decreases as the AFBS
sample increases. Note that only times between 0.13 and 0.47 seconds are considered in the
calculation of the relative error, because in the rest of the range, AP is almost zero, so the results are
strongly influenced by numerical noise. A comparison of the exact value of the ground signature with
the +20 range of AP estimated by AFBS with 30 samples is given in Figure 8. The relative errors of AP
predicted by AFBS with different samples are given in Figure 9. It can be found that as the samples
increases, the relative error of AP gradually decreases and the curve becomes progressively smoother.
These results indicate that the AFBS method is efficient for reconstructing sparse PC representation
and can be applied to estimate ground sonic boom signature at arbitrary accuracy levels. The AFBS
method produces a sparser and more accurate PC metamodel than the other two methods. It is worth
noting that the AFBS method requires fewer samples to achieve the same level of accuracy as the OMP
and OLS methods.
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3.3 Convergence of AFBS, OMP and OLS methods with sample size

Figure 10 and Figure 11 show the convergence of the relative errors of the mean and standard deviation
of AP obtained by the AFBS, OMP, and OLS methods at one point with samples increasing. The sample
point is taken in the region of the peak of the ground waveform in order to make the results significant.
The results indicate that as the samples increases, OLS converges the slowest, OMP follows, AFBS is
the fastest, and AFBS has best stability after convergence. The AFBS method achieves small relative
errors and the fastest convergence speed than the other two methods. The results again indicate that
the AFBS method requires the minimum number of samples with a high level of accuracy compared to
the OMP and OLS methods.
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method.

3.4 Robustness of AFBS, OMP and OLS methods to sample

UQ requires a certain number of samples to be taken, and different samples obtained different results,
while the samples are randomly taken. It is necessary to ensure the robustness of the results while the
samples are different. In the following, the results are calculated 100 times for each of the three methods
with different samples. The robustness of the results is compared by box plots. Figure 12 shows the
box plots of the relative errors of the mean of the results obtained by the three methods with 100
samples. Figure 13 shows the box plots of the relative errors of the mean of the results obtained by the
AFBS with 30, 50 and 100 samples, respectively. Figure 14 shows the box plots of the relative errors
of the standard deviation of the results obtained by the three methods with 100 samples. Figure 15
shows the box plots of the relative errors of the standard deviation of the results obtained by AFBS with
30, 50 and 100 samples, respectively. The results indicate that at the same number of samples, the
interquartile range of the relative error in predicting the mean of AFBS is smaller than that of OMP and
OLS, and the interquartile range, mean, and median of the relative error in predicting the standard
deviation of AFBS are much smaller than those of OMP and OLS. The interquartile range of AFBS
decreases with samples increasing. The outliers of the mean and standard deviation predicted by the
OLS and OMP methods are significantly larger and more compared to the AFBS method. Therefore,
the sparse PC reconstruction method based on AFBS method is more reliable and effective than the
OMP and OLS methods and can meet complex engineering problems requirements.
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4. Aerodynamic/sonic boom robust design optimization framework

In this chapter, the JAXA Wing Body (JWB), a sonic boom configuration from JAXA, Japan, is used to
perform a robust design optimization considering both aerodynamic and sonic boom. The model and
design parameters are provided from the Second Sonic Boom Prediction Workshop (SBPW2). The
CFD simulations and sonic boom calculations are performed using half-models with the parameter
settings shown in Table 1.

Table 1 CFD simulation parameter settings

Mach Body Reference _ Reynolds
Alpha Altitude Temperature
number length area Number
1.6 2.3067°  38.7m 32.8m’ 15760m  216.65K 5.7E6

The traditional aerodynamic design optimization mainly considers lift, drag, moment coefficient. The
sonic boom optimization considers the sonic boom ground sensory noise level (PLdB), which was firstly
proposed by Stevens [31], and then modified by Shepherd [32] to enable it to analyze low-frequency
noise. The quantification of noise intensity at different frequencies is very consistent with the real
response of the human ear, so it has been widely used by sonic boom researchers.

Robust design optimization requires consideration of the effects of uncertainty sources, and in this
chapter two uncertain parameters are considered: Mach number Ma ~ N(1.6,0.01) and angle of
attack o ~ N(2.3067,0.01) . The aerodynamic optimization parameters are mean and standard
deviation of the lift coefficient, mean and standard deviation of the drag coefficient, standard deviation
of the pitching moment coefficient. And the optimization parameter for the acoustic boom is: mean and
standard deviation of the perceived sound pressure level PLdB. The constraints are the optimized
thickness of the three positions of the wing is not thinner and the pitching moment coefficient of the
whole aircraft is not worse after optimization. The mathematical representation is shown in(12).
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Condition: Re=5.7x10°
Ma e N(1.6,0.01%)
a € N(2.3067,0.01%)
Find : XeR"
u, (Ma,)
o, (Ma,a)
u, Ma, )
Minimize: o, (Ma,Q)
o, (Ma,a)
u (Ma,x)

PLdB

Opras(Ma,x)

(12)

Subject to: |Cm| < |Cm0|
Thick 21,
The optimization process is shown in Figure 16.
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their distribution for the flight state
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Using the FFD method based on multiple control frames, the deformation control of the shape is realized
by using multiple non-rectangular control frames. A total of 30 design variables are set, of which the
control box is shown in Figure 17 and is divided into fuselage control points and wing control points.
There are 12 fuselage control points, 6 on each of the upper and lower surfaces. There are 18 wing
control points, which are divided into three segments from the inner wing to the outer wing, and 3 control
points on each of the upper and lower surfaces. The displacement direction of the control points is set
to z-direction at the fuselage control points and x-direction at the wing control points.
z

(b) FFD control box (top view)

(¢) Fuselage Control Points (d) Wing Control Points

Figure 17 — FFD Control Box Setting

The optimization process is carried out by constructing a Kriging agent model. New shapes are obtained
by searching using a particle swarm optimization algorithm. The resulting new shape is generated using
a fast mesh deformation method based on multi-block structured meshes constructed using bulk spline
interpolation and infinite interpolation techniques. The solver was CFL3D using the Spalart-Allmaras
turbulence model [33].
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5. Result of aerodynamic/sonic boom robust optimization

5.1 Comparison of shape before and after optimization

Comparison of the deformation at the fuselage and wing between the new shape and the original shape
after optimization is shown in Figure 18 and Figure 19. The new shape has a certain upward shift at the
nose, which disappears after a certain distance. The lower surface of the fuselage begins to move down
a bit, resulting in a "taper" at the front of the nose. The aft fuselage is also more pronounced than the
original shape. The main changes to the wings are: a small rearward shift of the leading edge of the
inner wing, a small forward shift of the trailing edge, a significant forward shift of the trailing edge of the

center wing, and a small forward shift of the leading edge of the outer wing.
z

Figure 18 — Comparison of body before and after optimization (original shape in blue, optimized
shape in red)

L

Figure 19 — Comparison of the wing before and after optimization (original shape in blue, optimized
shape in red)

5.2 Comparison of aerodynamic and sonic boom performance before and after optimization
This optimization is a robust design optimization, so each metric is the mean and standard deviation of
the mean and standard deviation calculated from 50 samples taken from the shape before and after the
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optimization with Mach number and angle of attack as sources of uncertainty. The changes in the
aerodynamic/sonic boom performance metrics before and after the optimization are given in Table 2,
and Figure 20 is a violin plot with box showing the distribution of these sample points under the influence
of uncertainty sources.

The results show that the mean values of lift, drag, moment and PLdB have a better mean value after
optimization and the standard deviation of each has decreased, i.e. better robustness. The violin plot
also shows that the length of the box is smaller, i.e., the distribution of data points becomes more
concentrated.

Table 2 Comparison of aerodynamic sonic boom indexes before and after optimization

He, O¢ Hc, Oc, Hc O¢ Hprap O prap

m m

Origin 0.07167  3.38E-04  0.01196  2.18E-05 -0.06109  2.81E-04 69.55102  0.50278
New 0.07197  2.72E-04  0.01179 1.66E-05 -0.06077  2.21E-04 67.54449  0.47884
Elevation  0.42% 19.41% 1.46% 23.95% 0.53% 21.25% 2.88% 4.76%

0.0730 0.01205
0.01200
0.0725
0.01195 A
0.0720 7 0.01190
— o
@] @]
0.01185 4
0.0715 4
0.01180 +
0.0710
0.01175 4
0.0705 r ; 0.01170 : ;
origin Cl new Cl origin Cd  new Cd
(a) C, distribution of profile sample points (b) C, distribution of profile sample points
before and after optimization before and after optimization
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Figure 20 — Distribution of sample points before and after optimization
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6. Conclusion

6.1 Uncertainty quantification of sonic boom

With the increasing performance requirements of aircraft and the development of advanced
computational power, it is important to consider the effects of various possible parameters of uncertainty
in the design process and design an aircraft with robust performance. However, traditional aerodynamic
UQ methods that consider multi-parameter uncertainties, such as MCS and full PCE, cannot avoid the
high computational cost and have poor adaptability. These make them difficult to meet the requirements
of complex sonic boom UQ. To address this difficulty, this paper uses an efficient sparse polynomial
chaos reconstruction method based on adaptive forward-backward selection (AFBS), combined with
the augmented Burgers equation, to quantify the uncertainty of far-field sonic boom prediction. The
AFBS method effectively enhances the sparsity of the PC reconstruction and improves the reliability of
the fitting process. The augmented Burgers equation accurately simulates the far-field propagation of
sonic boom. Combining the two methods increases the accuracy of sonic boom prediction. The paper
carries out sonic boom UQ considering six uncertain parameters: Mach number, altitude, temperature,
humidity, wind direction, and wind velocity, and compares the results with the OMP method and the
OLS method. The results indicate that the AFBS method is more accurate in estimating the ground
sonic boom signature compared to the OMP and OLS methods with the same sample size. In particular,
the results obtained by AFBS are less affected by sample variation although the sample size is small.
Therefore, the efficient sparse PC reconstruction method based on AFBS is less computational cost
and accurate. It can be used for complex sonic boom UQ under multi-parameter uncertainties and
robust multidisciplinary optimal design of aircraft.

6.2 Aerodynamic / sonic boom robust optimization

Through the aerodynamic sonic boom robust design optimization of JWB shape and the corresponding
results of analysis. The resulting new shape in the set indicators of better performance and more robust
to the influence of external uncertainty sources. The optimized new shape has a thinner nose, the rear
fuselage convergence, the wing chord of the smaller characteristics, which meet the common
characteristics of the supersonic aircraft. The conclusions of this work for the subsequent sonic boom
optimization of shape deformation settings to provide guidance.

This optimization also found some problems, such as the proxy model predictions and the actual results
of the mean value is more similar, but the standard deviation prediction is more inaccurate, which will
lead to robust optimization results may not be to meet the needs. Sonic boom evaluation index only
consider PLdB will lose a lot of information. Need to further measure the sonic boom "N-shaped wave"
of a variety of indicators: maximum overpressure, rise time, duration, pulse value, etc. into the
measurement criteria, so that the results obtained to better meet the characteristics of the low sonic
boom waveform. However, if the subsequent need to increase the optimization index, due to the
consideration of the optimization index increases, the optimization algorithm will gradually become
inefficient, so the subsequent need to choose a more efficient optimization algorithm.
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