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Abstract

The aircraft is faced with complex and uncertain aerodynamic load environment when flying at a high speed,
the severe vibration caused by which poses a great challenge to the safety and life of the aircraft. Nevertheless,
so far, the vibration reduction design of aircraft has always been a difficult problem to be solved. In particular,
considering the randomness of the load is an important aspect that cannot be ignored. Therefore, it is of great
significance to carry out vibration reduction design of aircraft under random exciting response. As the
engineering application of topology optimization extends from component-level to system-level, large-scale
topology optimization has become an international frontier research topic. In recent years, significant progress
has been made in large-scale static topology optimization, breaking through the billion-mesh scale and
achieving a substantial improvement in structural performance. However, due to the enormous computational
cost of dynamic response analysis, large-scale dynamic topology optimization design has not yet been
reported. In response to the urgent need for vibration reduction design for aerospace vehicles, this work
develops a large-scale high-resolution structural dynamic topology optimization method to obtain excellent
vibration reduction structural designs. Firstly, the structure topology optimization system under random exciting
response is constructed based on pseudo-excitation method and relative motion method so as to realize
vibration reduction design. The adaptive second-order Krylov subspace method and the multi-grid method are
combined to solve the problem of stochastic dynamics with high-resolution design, and it is successfully
implemented in parallel computing. Some numerical designs validate the validation of the proposed method
and show it engineering application ability in aircraft vibration reduction.

Keywords: aircraft vibration reduction; random exciting response; pseudo excitation method; second order
Krylov subspace method; topology optimization
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1. Introduction

High-speed aircraft can speed up the attack efficiency, with long-range precision attack, high mobility
and other characteristics, has become an extremely important development direction in the world's
aerospace field. However, the dynamic load failure caused by the complex aerodynamic load
environment it faces has always been an urgent problem to be solved in the structural bearing and
vibration reduction design [1]. How to carry out the optimization design of aircraft vibration reduction
under random load has become a research hotspot.

As early as the 1980s, Adami and Seide [2] et.al. used the time domain numerical simulation method
and Galerkin method to solve the random response. Witt and Wentz [3] discussed the mean dynamic
response of weakly stationary random excitation and wide-band random acoustic excitation by
statistical methods, wherein Wentz also considered the influence of geometric nonlinearity. Over the
past decades, many scholars have made large research achievements in different fields of random
vibration [4, 5]. Among them, the pseudo excitation method [6,7] can efficiently and accurately
analyze the stochastic response of linear time-invariant systems under stationary/non-stationary,
fully coherent/partially coherent, uniform modulation/non-uniform modulation evolution random
excitation.

With the rapid development of computer technology, structure optimization plays an increasingly
important role in configuration design. According to the type of design variables, structure
optimization is generally divided into three categories, including size optimization, shape optimization
and topology optimization [8]. Among them, the topology optimization method combines numerical
simulation and optimization algorithm to optimize the material layout in the design domain to meet
the actual performance requirements. This method does not need to rely on existing design
experience, and can produce unexpected innovative designs, which is favored by researchers and
engineering designers Topology optimization methods have been developed in a variety of ways,
including homogenization based methods[9], density-based methods[10, 11], level set methods[12,
13], evolutionary methods[14], evolutionary methods evolutionary methods[15, 16], etc. In recent
years, the problem of structural topology optimization under random load has been widely concerned
by the academic community, and a series of achievements have been made. Rong et al. [17, 18]
first carried out a study on the structural lightweight problem constrained by the stationary random
response mean square, based on the asymptotic optimization method[19] and the complete
guadratic combination method. Based on the variable density method and the complete quadratic
combination method, Zhang et al. [20] realized the topology optimization design of the structure
under the combined action of static load and random load. In order to realize the topology
optimization design of large-scale structures under random loads, Zhang et al. [21] used pseudo
excitation method and modal reduction technology to replace the complete quadratic combination
method under the topology optimization framework of variable density method, which greatly
improved the efficiency of solving the sensitivity of structural random response in optimization
problems.

However, although the topology optimization method considering random response has been
successfully applied to some extent, it still faces great challenges in the application of practical
engineering problems due to the computational limitations. When analyzing the frequency response
of a specific frequency interval, it is necessary to carry out fine frequency dispersion of the frequency
interval, especially in the case of formant. Since the essence of frequency response analysis is to
solve frequency-dependent linear equations, for a large number of discrete frequency points, the
linear equations need to be solved repeatedly at each frequency point. Since the equation matrix is
not predecomposed because of the frequency correlation, it brings an unbearable calculation scale.
In addition, repeated iterations in topology optimization will further lead to an explosion of
computational dimensions, and for non-self-adjoint optimization problems, adjoint equations need to
be solved.

To solve this problem, establishing a reduced order model with relatively small degrees of freedom
and effective retention of the original system dynamics characteristics becomes an effective means
for fast frequency response analysis of large complex structures. Generally, it can be divided into
two categories, namely, explicit model reduction method and subspace mapping reduction method.
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The basic idea of the explicit model reduction method is to assume a direct explicit function of
displacement and frequency with finite unknown parameters, solve the unknown parameters by
substituting the frequency response equation, and obtain the explicit frequency response function of
displacement. Commonly used explicit functions include Taylor series expansion and Pade series
expansion[22]. Among them, Pade expansion method has higher calculation precision. However,
due to the large number of matrix conditions caused by computer truncation error and the low
accuracy of matrix ill-condition, this method can only provide accurate approximate solution of
frequency response in a narrow frequency range.

In order to solve the problem of ill-conditioned matrix in the explicit expansion method, the reduced
order method based on subspace mapping has attracted much attention. Modal superposition
method[23, 24] is one of the most commonly used model order reduction methods, which first solves
the eigenvector of the model, and then projects the original problem into the modal space. However,
solving all modes of large-scale eigenvalue problems requires a huge amount of computation and
low computational efficiency. Ritz vector method is an alternative non-modal expansion technique.
Yoon[25] compared the application of Ritz vector method (RV), quasi-static Ritz vector method
(QSRV) and standard Modal displacement method (MDM) in topology optimization. The results show
that QSRV method can be used as an alternative ROM scheme which can achieve stable
optimization process. Similar to QSRV is the Krylov subspace method[26, 27] ,which forms the basis
of many reduced order models. For example, these are commonly used to solve large-scale linear
systems and eigenvalue problems. For most dynamic problems, the system is second-order, so the
second-order Kryloy subspace method is proposed, which has been successfully applied to the
frequency space analysis of large-scale structures[28], acoustic systems[28, 29], etc., but has not
been applied to topological optimization.

It is of great importance to develop an efficient random vibration response solution strategy for the
topology optimization design of large-scale aircraft vibration reduction. In this paper, the pseudo
excitation method and relative motion method are applied to the topology optimization design of
structural vibration reduction. Based on the second-order Krylov subspace method, a SOAR method
with adaptive addition of extension points is proposed to ensure the universality of the reduced order
model, and it is successfully applied to the topology optimization design of structures under random
excitation in the broadband domain.

2. Random vibration analysis theory
2.1 Pseudo excitation method

Random vibration means that the vibration size at any time can not be determined in advance, and
its waveform changes with time without regular vibration, which can not be expressed by a
deterministic function. For example, the vibration of aircraft subjected to complex aerodynamic loads
is a typical random vibration. The single test results of random vibration have uncertainty and non-
repeatability, but the multiple tests under the same conditions have inherent statistical rules.
Generally, it should be described by the method of probability statistics.

The schematic diagram of pseudo excitation method is shown as Figure 1. S, (a)) is the self-power
spectral density of random excitation X(t), and H (co) is the structural frequency response function,
then the power spectral density of any output response y(t) is shown at the right end. When a linear

iot

, the corresponding response is He' .

system is subjected to a unit harmonic excitation e"*
If the acceleration power spectral density of the input excitation is SXX( f) , When the input virtual
excitation amplitude is \/Q the square of the output response is the power spectral density of the
output displacement:

a 1)

Then the output acceleration power spectral density is:

3



LARGE-SCALE DYNAMIC TOPOLOGY OPTIMIZATION DESIGN UNDER RANDOM EXCITING RESPONSE

Suu = ‘a‘z = a)4suu (2)
The mean square value of the output acceleration is:
.22 +o0 1 +00
E| |0 | =[5 (1) [ 8 (0)do 3)

Therefore, the random vibration analysis is essentially a frequency response analysis. This is a
means to determine the structural response of a system under simple harmonic load, which is often
used in the vibration control design of engineering structures. For general dynamics problems, the
equation of state can be written in the following matrix form:

MUi(t)+Cu(t)+Ku(t)=f(t) (4)
where K, C and M denote the standard global stiffness, damping, and mass matrices,
respectively, and u(t) is the time-dependent displacement. The dot denotes differentiation with
respect to time, and hence U(t) and u(t) represent velocity and acceleration vectors, respectively.
Assuming the structure is subjected to a time-harmonic external force f(t) :Re(Fei“’t ) , the equation
of motion can be cast in the frequency space by substituting the solution u(t) = Re(U(a)) e""t) into
equation:

(~*M+iaC+K)U(w)=F (5)
where @ €[ @, , a ]is the excitation frequency, and i is the imaginary number satisfying i* =—1. For
convenience, we define the frequency dependent system matrix as

S(w)=K+iaC-o’M (6)

Then, formula (5) can be simplified as:

S(w)U(w)=F @)
@ S, ——| H) —— 5, =H[S,
(b)  x=e™ ——{ H@) —— y=He"

©  Fo|Sien——| Ho) —— F=y5.He"

Figure 1 — Schematic diagram of pseudo excitation method.

2.2 Reduced order solution strategy

The reduced order method based on subspace mapping focuses on constructing a set of orthogonal
vector basis and expanding into a subspace, and projecting the original model onto the subspace to
obtain a reduced order model with greatly reduced number of degrees of freedom, so as to realize
fast sweep frequency analysis. Because of the orthogonality of the basis vector of the subspace, the
symmetry and positive properties of the original system matrix can be effectively maintained, thus

ensuring the accuracy and stability of the reduced order model. In this paper, In this paper, Q, is
used to represent the reduced subspace, where n represents the dimension of the subspace, which

is usually much smaller than the degree of freedom of the original model. Substituting it into the
frequency response equation can construct:
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(™M, +iaC, + K, ) U, (0) =F, (8)

where
K;=Q/KQ,, C,=Q;'CQ,, M;=Q/MQ,, F, =Q,'F (9)
U(@)=0Q;Ug () (10)

The following is the construction of orthogonal basis vectors for Krylov subspace methods, which
was originally an iterative method for solving large sparse linear equations and linear eigenvalue
problems. It is spanned by a sequence of vectors defined by a linear homogeneous recurrence
relation of first order. However, since the equation of the problem under consideration is a second-
order system, it needs to be rewritten as a first-order system before applying the Krylov subspace

T e

Where 0 and | represent the zero matrix and the identity matrix respectively. However, this
strategy will double the size of the original problem matrix and may destroy good properties of the
matrix, such as symmetry and positive character. To solve this problem, a second-order Krylov
subspace can be generated at the expansion point:

F)oqo =F
"o =~ (12)
P, =-Pq,,-Pq,, for j=2,.,N-1
where
P, =S(®,) = —oM +iw,C+K
ow
10%S
P = 2 =M

Where, q; is the basis vector obtained by the orthogonal normalization process of q;- The results

show that with the increase of subspace dimension, the generated basis vector is easy to lose
orthogonality due to the numerical truncation error brought by the computer, resulting in convergence
stagnation. Therefore, it is very important to choose the basis vector orthogonalization method
reasonably.

A method to ensure moment matching is to generate orthogonal basis vectors by the Arnoldi strategy
proposed by Bai et al. This method is named the second-order Arnoldi method (SOAR), which is
expressed in the following pseudo-code format:

Second-order Armoldi method (SOAR)

1.Solve P,g,=F

2.0o =9 /HQOH

3.py =0

4. for j=1,2,..,N-1,do

5. solve Pjr=-Pq;-P,p;
6. S=(;
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7 for 1=0,1,..., j,do
8. r=r—(q;r)g;

9. s=5—(q;,r)p;
10. end for

1. Q= r/HrH2
2. Pjy :S/HrH2
13.end for

14. Output QN = Span{quq]_;qu--'qu—l}

where,Lines 1-3 and 5-6 correspond to second-order Krylov processes, and lines 7-10 are for loops
that orthogonalize the basis vector.

3. Structural optimization design for random vibration problems

In this paper, the topology optimization design of structural vibration reduction under random
excitation is carried out based pseudo excitation method and relative motion method, and the
response optimization formula is as follows:

min - max(3',9%3°), I=Y a3, I =|U(a)" LU(a,)
k

Pe

s.t. :ed)ve IV-V"<0
e=1
S(:éi,d,e)’a)k)U(i,d,e)(wk):F, (k:]_1___1Nf) (14)
S :e(i,d e)’wk): K+iw,C-0,°M
0<p, <1 (e=1..,N,)
c:‘(FS)TUS 1

Where, J is the objective function representing the mean square value of the output acceleration.
The constraint columns are volume constraint and structural compliance constraint, v, is the

element volume, V~ is the target volume fraction, F° and U® are the static load and displacement
vector respectively. p, is the design variable, N, represents the number of discrete units, @ is the

frequency, and N, is the number of discrete frequency points.

vl A £ S A o Il S

where, US, Usand U, are the absolute acceleration, velocity and displacement of the nodes at the

supports, Ui ) L'Ji and U, represent the absolute acceleration, velocity and displacement of the
nodes inside the structure, respectively.

Based on the principle of superposition, the relative motion method divides the absolute
displacement U; at the non-support position into quasi-static displacement U; caused by the

movement U; at the support position and dynamic relative displacement Uid caused by the

acceleration of the movement Uz at the support position.

MEEEM
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where, superscript d and S represent dynamic response and quasi-static response respectively,
and subscript i and S represent free node and support node respectively. Support nodes include
fixed nodes and nodes that apply excitation.

Ignoring the inertial force and damping force, the quasi-static response satisfies the following formula:

( )
si SS S

The quasi-static response of the free node can be obtained by solving equation(17):
U =-K, \K U: (18)

IS S

Substituting formula (16) into formula (15) yields:

Mi M, _Uf Ci G Uus Ki K _Uis
.. + . + +
Msi Mss _Uz Csi Css Uz Ksi Kss _U:
Mii Mis _U|d Cii Cis U|d I(ii Kis_ U|d 0
+ + =
M si M SS 0 Csi Css O Ksi Kss B 0 0

19)

By substituting formula (17) into the above formula, the quasi-static stiffness term is 0, ignoring the
quasi-static damping term and focusing on the internal node equation of the structure, the equation
can be simplified to:

MiiUid +CiiUid +KiiUid Z_MiiUis_Mis[Jz (20)
By substituting formula (18) into the above formula, the dynamic response satisfies:

SiiUid :Fi 1)
F =(MiiKii \Kis _Mis)U:

Define U; =K, \ K, U? and substitute it into the above formula to get:

Fo M, O]lU; 0 M, O
Lo ojo |0 o]0, (22)
= MIIOT - “7'.503
The power spectral density of the output displacement can be expressed as:

Jk=\UHLU\=‘(US+U")HL(U5+ud) (23)

Then, the sensitivity of the power spectral density of the output displacement relative to the design
variable can be written as:

s d s d d
‘%—k:z(uuud)H L(aU + ] 2xT(aKu ik j+2xf(as Ut +s2 —i)

op op Op op op op op Op
(24)
where,
A % A [82:')" U +M, %}@T[%Unknz—fj (25)
Define:
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ho = K\(-LO)
), =S\(-LU) (26)
b, =K\ (=M, )

By substituting it into the formula (24), the power spectral density sensitivity expression of the output
displacement can be simplified to:

a,
op

=2Re XT%US A — oS U - xTaMu xTaKu (27)
op op op op

Then the sensitivity of the power spectral density of the output acceleration relative to the design
variable is:

& ad,
; a— (28)

4. Numerical examples
4.1 Damping block design

In order to realize omnidirectional support and vibration reduction, a three-dimensional cube
optimization model is designed. The design domain is 0.1mx0.1mx0.1m. The optimized frequency
range is 15-2000Hz. Constraints are fixed on the bottom, left side and back of the model, and the
input acceleration power spectral density function is shown in Table 1 and Table 2. The optimization
objective is to minimize the mean square value of acceleration on the upper surface, right side and
front of the structure (optimal vibration damping performance). In order to ensure the bearing
performance of the structure, static constraints are applied, and uniform load is applied to the upper
surface, right side and front. The resultant force F=500N, and the maximum deformation in x, y and
z directions is required not to exceed 10mm. The material properties of dual-material are shown in
Table 3.

Table 1 — Acceleration power spectral density function in the X and Y directions.
Frequency (Hz) 15 500 600 900 1000 1200 1400 2000

Sw(f) (@¥Hz) 002 002 005 005 007 007 005 005

Table 2 — Acceleration power spectral density function in the Z direction.
Frequency (Hz) 15 35 50 300 350 450 500 600

Si(f) (gHz) 005 009 002 002 004 004 01 013

Frequency (Hz) 800 850 1200 1300 1600 1700 2000

Si(f) (@¥Hz) 013 006 006 004 004 002 0.02

Table 3 — Material properties.

Materials Density (kg/m?) Modulus (MPa) Poisson's ratio a p
Material 1 1120 2000 0.3 le-6 le-7
Material 2 1120 1 0.3 le-5 le-6

A 24x24x24 grid was used to disperse the design domain, and the volume fraction of material 1 was
0.45. Density filtration is adopted, and the filtering radius is 2.5. Static analysis was carried out to
calculate the relationship between the bulk fraction of material 1 and the maximum displacement of
the structure under static load and the degree of compliance of the structure. As shown in the
following table, in order to ensure that the maximum displacement under static constraint is less than

8
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10mm, the compliance constraint is set from c<1.

The initial value of the design variable is the total volume fraction. The design variable is updated
based on MMA, and the maximum number of iteration steps is 100. The optimization results and
control results are shown in the Table 5. Table 6 shows the performance parameters of the 5 groups
of results. It can be seen that the optimization results have obvious vibration reduction effect under
the bearing conditions, and the output is 20%-30% of the input. The frequency response curves of
optimization results and control results are shown in Figure 2.

Table 4 — Material volume fraction and corresponding structural compliance.
Volume fraction of

; 1 0.2 0.1 0
material 1
Maximum displacement 0.01 0.12 0.26 20
(mm)
Compliance 0.0036 0.045 0.1 7.2

Table 5 — Optimization results and control results.

99909090
IFIFX

Table 6 — The performance parameters of the optimization and comparison results.

Results 1 2 3 4 5

Objective function 1.44 0.974 3.52 4.30 1.85

The proportion of vibration

reduction (%) 32.9 22.2 80.2 98.0 42.0
Volume fraction 0.30 0.32 0.25 0.27 0.20
Compliance 0.74 1.82 2.02 1.24 5.96
Maximum displacement (mm) 3.1 9.9 4.3 3.7 18.1
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Figure 2 — Frequency response curves of optimization results and control results.

4.2 Reduced order solution strategy
In this work, the topology optimization design for vibration reduction of aircraft wall panels is carried
out. The optimized design domain is approximately a rectangular flat plate, as shown in Figure 3.
The bottom layer is an undesignable domain, which is fixed and constrained by 8 bolts, and random
excitation is applied. The load spectrum value and inflection point frequency are shown in Table 3.

0.000

0450

0.800 (m)

0225 0.675

Figure 3 — Aircraft panel model.

Table 7 — Load spectrum value and inflection point frequency.

Inflection point (Hz) 20 89 124 1000

20000

Value (g2/Hz)  0.064  0.064 0.1 0.1

0.025

Aiming at structural stress power spectrum density, this work applies mass and stiffness constraints

10



LARGE-SCALE DYNAMIC TOPOLOGY OPTIMIZATION DESIGN UNDER RANDOM EXCITING RESPONSE

to carry out random vibration topology optimization design. The optimized topology configuration is
post-processed and modeled by software, as shown in Figure 4.

Figure 4 — Topology optimization result.

The vibration reduction performance data of the topology optimization results are shown in Table 4.
The peak stress PSD is 6.33e14Pa2 /Hz, which is smaller than 7.63el14Pa2 /Hz of the dimensional
optimization solution (Figure 4), and the structural vibration performance is improved by 17%.

Table 8 — Vibration reduction performance.

Max stress Average stress Max strain Stress PSD peak
(Pa) (Pa) (m/m) value (Pa2/Hz)
1.12e8 9.11e6 5.13e-4 6.33el4

5. Conclusion

In this paper, a large scale and high resolution structural dynamic topology optimization method is
developed for the urgent need of vibration reduction design of aerospace vehicles. (1) Aiming at the
random excitation problem, the pseudo excitation method and relative motion method are applied to
the topology optimization design of structural vibration reduction. By converting random loads into
deterministic virtual excitation, the efficiency of solving random problems is greatly improved, and
topology optimization of aircraft vibration reduction design under random loads is successfully
realized. (2) In view of the unbearable computational scale brought by the intensive frequency
sweeping problem to the optimization design, this paper constructs an adaptive SOAR reduced order
model method and successfully applies it to the topology optimization design of structures under
random excitation in the broadband domain. This work intends to integrate the solution method
established above into the topology optimization software, focusing on the development of reduced
order model module and dynamic response analysis module. According to the engineering
application background, the optimization objectives and constraint functions will be determined, so
as to carry out large-scale dynamic topology optimization design for typical components in aerospace
structures.
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