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Abstract 

The aircraft is faced with complex and uncertain aerodynamic load environment when flying at a high speed, 

the severe vibration caused by which poses a great challenge to the safety and life of the aircraft. Nevertheless, 

so far, the vibration reduction design of aircraft has always been a difficult problem to be solved. In particular, 

considering the randomness of the load is an important aspect that cannot be ignored. Therefore, it is of great 

significance to carry out vibration reduction design of aircraft under random exciting response. As the 

engineering application of topology optimization extends from component-level to system-level, large-scale 

topology optimization has become an international frontier research topic. In recent years, significant progress 

has been made in large-scale static topology optimization, breaking through the billion-mesh scale and 

achieving a substantial improvement in structural performance. However, due to the enormous computational 

cost of dynamic response analysis, large-scale dynamic topology optimization design has not yet been 

reported. In response to the urgent need for vibration reduction design for aerospace vehicles, this work 

develops a large-scale high-resolution structural dynamic topology optimization method to obtain excellent 

vibration reduction structural designs. Firstly, the structure topology optimization system under random exciting 

response is constructed based on pseudo-excitation method and relative motion method so as to realize 

vibration reduction design. The adaptive second-order Krylov subspace method and the multi-grid method are 

combined to solve the problem of stochastic dynamics with high-resolution design, and it is successfully 

implemented in parallel computing. Some numerical designs validate the validation of the proposed method 

and show it engineering application ability in aircraft vibration reduction. 

Keywords: aircraft vibration reduction; random exciting response; pseudo excitation method; second order 
Krylov subspace method; topology optimization 
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1. Introduction 

High-speed aircraft can speed up the attack efficiency, with long-range precision attack, high mobility 

and other characteristics, has become an extremely important development direction in the world's 

aerospace field. However, the dynamic load failure caused by the complex aerodynamic load 

environment it faces has always been an urgent problem to be solved in the structural bearing and 

vibration reduction design [1]. How to carry out the optimization design of aircraft vibration reduction 

under random load has become a research hotspot. 

As early as the 1980s, Adami and Seide [2] et.al. used the time domain numerical simulation method 

and Galerkin method to solve the random response. Witt and Wentz [3] discussed the mean dynamic 

response of weakly stationary random excitation and wide-band random acoustic excitation by 

statistical methods, wherein Wentz also considered the influence of geometric nonlinearity. Over the 

past decades, many scholars have made large research achievements in different fields of random 

vibration [4,5]. Among them, the pseudo excitation method [6,7] can efficiently and accurately 

analyze the stochastic response of linear time-invariant systems under stationary/non-stationary, 

fully coherent/partially coherent, uniform modulation/non-uniform modulation evolution random 

excitation. 

With the rapid development of computer technology, structure optimization plays an increasingly 

important role in configuration design. According to the type of design variables, structure 

optimization is generally divided into three categories, including size optimization, shape optimization 

and topology optimization [8]. Among them, the topology optimization method combines numerical 

simulation and optimization algorithm to optimize the material layout in the design domain to meet 

the actual performance requirements. This method does not need to rely on existing design 

experience, and can produce unexpected innovative designs, which is favored by researchers and 

engineering designers Topology optimization methods have been developed in a variety of ways, 

including homogenization based methods[9], density-based methods[10, 11], level set methods[12, 

13], evolutionary methods[14], evolutionary methods evolutionary methods[15, 16], etc. In recent 

years, the problem of structural topology optimization under random load has been widely concerned 

by the academic community, and a series of achievements have been made. Rong et al. [17, 18] 

first carried out a study on the structural lightweight problem constrained by the stationary random 

response mean square, based on the asymptotic optimization method[19] and the complete 

quadratic combination method. Based on the variable density method and the complete quadratic 

combination method, Zhang et al. [20] realized the topology optimization design of the structure 

under the combined action of static load and random load. In order to realize the topology 

optimization design of large-scale structures under random loads, Zhang et al. [21] used pseudo 

excitation method and modal reduction technology to replace the complete quadratic combination 

method under the topology optimization framework of variable density method, which greatly 

improved the efficiency of solving the sensitivity of structural random response in optimization 

problems. 

However, although the topology optimization method considering random response has been 

successfully applied to some extent, it still faces great challenges in the application of practical 

engineering problems due to the computational limitations. When analyzing the frequency response 

of a specific frequency interval, it is necessary to carry out fine frequency dispersion of the frequency 

interval, especially in the case of formant. Since the essence of frequency response analysis is to 

solve frequency-dependent linear equations, for a large number of discrete frequency points, the 

linear equations need to be solved repeatedly at each frequency point. Since the equation matrix is 

not predecomposed because of the frequency correlation, it brings an unbearable calculation scale. 

In addition, repeated iterations in topology optimization will further lead to an explosion of 

computational dimensions, and for non-self-adjoint optimization problems, adjoint equations need to 

be solved. 

To solve this problem, establishing a reduced order model with relatively small degrees of freedom 

and effective retention of the original system dynamics characteristics becomes an effective means 

for fast frequency response analysis of large complex structures. Generally, it can be divided into 

two categories, namely, explicit model reduction method and subspace mapping reduction method. 
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The basic idea of the explicit model reduction method is to assume a direct explicit function of 

displacement and frequency with finite unknown parameters, solve the unknown parameters by 

substituting the frequency response equation, and obtain the explicit frequency response function of 

displacement. Commonly used explicit functions include Taylor series expansion and Pade series 

expansion[22]. Among them, Pade expansion method has higher calculation precision. However, 

due to the large number of matrix conditions caused by computer truncation error and the low 

accuracy of matrix ill-condition, this method can only provide accurate approximate solution of 

frequency response in a narrow frequency range. 

In order to solve the problem of ill-conditioned matrix in the explicit expansion method, the reduced 

order method based on subspace mapping has attracted much attention. Modal superposition 

method[23, 24] is one of the most commonly used model order reduction methods, which first solves 

the eigenvector of the model, and then projects the original problem into the modal space. However, 

solving all modes of large-scale eigenvalue problems requires a huge amount of computation and 

low computational efficiency. Ritz vector method is an alternative non-modal expansion technique. 

Yoon[25] compared the application of Ritz vector method (RV), quasi-static Ritz vector method 

(QSRV) and standard Modal displacement method (MDM) in topology optimization. The results show 

that QSRV method can be used as an alternative ROM scheme which can achieve stable 

optimization process. Similar to QSRV is the Krylov subspace method[26, 27] ,which forms the basis 

of many reduced order models. For example, these are commonly used to solve large-scale linear 

systems and eigenvalue problems. For most dynamic problems, the system is second-order, so the 

second-order Kryloy subspace method is proposed, which has been successfully applied to the 

frequency space analysis of large-scale structures[28], acoustic systems[28, 29], etc., but has not 

been applied to topological optimization. 

It is of great importance to develop an efficient random vibration response solution strategy for the 

topology optimization design of large-scale aircraft vibration reduction. In this paper, the pseudo 

excitation method and relative motion method are applied to the topology optimization design of 

structural vibration reduction. Based on the second-order Krylov subspace method, a SOAR method 

with adaptive addition of extension points is proposed to ensure the universality of the reduced order 

model, and it is successfully applied to the topology optimization design of structures under random 

excitation in the broadband domain. 

2. Random vibration analysis theory 

2.1 Pseudo excitation method 

Random vibration means that the vibration size at any time can not be determined in advance, and 

its waveform changes with time without regular vibration, which can not be expressed by a 

deterministic function. For example, the vibration of aircraft subjected to complex aerodynamic loads 

is a typical random vibration. The single test results of random vibration have uncertainty and non-

repeatability, but the multiple tests under the same conditions have inherent statistical rules. 

Generally, it should be described by the method of probability statistics. 

The schematic diagram of pseudo excitation method is shown as Figure 1. ( )xxS   is the self-power 

spectral density of random excitation ( )x t , and ( )H   is the structural frequency response function, 

then the power spectral density of any output response ( )y t  is shown at the right end. When a linear 

system is subjected to a unit harmonic excitation 
i te 

, the corresponding response is 
i tHe 

.  

If the acceleration power spectral density of the input excitation is ( )  xxS f , when the input virtual 

excitation amplitude is xxS , the square of the output response is the power spectral density of the 

output displacement: 

 
2 2

uu xxS H S u u u= = =  (1) 

                  

Then the output acceleration power spectral density is: 
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uu uuS u S= =  (2) 

The mean square value of the output acceleration is: 

 ( ) ( )
2 1

2
uu uuE u S f df S d 



+ +

− −

  = =
      (3) 

Therefore, the random vibration analysis is essentially a frequency response analysis. This is a 

means to determine the structural response of a system under simple harmonic load, which is often 

used in the vibration control design of engineering structures. For general dynamics problems, the 

equation of state can be written in the following matrix form: 

 ( ) ( ) ( ) ( )t t t t+ + =Mu Cu Ku f  (4) 

where K , C and M  denote the standard global stiffness, damping, and mass matrices, 

respectively, and ( )tu  is the time-dependent displacement. The dot denotes differentiation with 

respect to time, and hence ( )tu  and ( )tu  represent velocity and acceleration vectors, respectively. 

Assuming the structure is subjected to a time-harmonic external force ( ) ( )=Re i tt e 
f F , the equation 

of motion can be cast in the frequency space by substituting the solution ( ) ( )( )Re i tt e =u U  into 

equation: 

 ( ) ( )2 i  − + + =M C K U F  (5) 

where  ,L R   is the excitation frequency, and i  is the imaginary number satisfying 2 1i = − . For 

convenience, we define the frequency dependent system matrix as 

 ( ) 2-i  = +S K C M  (6) 

Then, formula (5) can be simplified as: 

 ( ) ( )  =S U F  (7) 

 

 

Figure 1 – Schematic diagram of pseudo excitation method. 

2.2 Reduced order solution strategy 

The reduced order method based on subspace mapping focuses on constructing a set of orthogonal 

vector basis and expanding into a subspace, and projecting the original model onto the subspace to 

obtain a reduced order model with greatly reduced number of degrees of freedom, so as to realize 

fast sweep frequency analysis. Because of the orthogonality of the basis vector of the subspace, the 

symmetry and positive properties of the original system matrix can be effectively maintained, thus 

ensuring the accuracy and stability of the reduced order model. In this paper, In this paper, 
nQ  is 

used to represent the reduced subspace, where n represents the dimension of the subspace, which 

is usually much smaller than the degree of freedom of the original model. Substituting it into the 

frequency response equation can construct: 
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 ( ) ( )2

R R R R Ri  − + + =M C K U F  (8) 

where 

 H H H H= , = , = ,R n n R n n R n n R n      =K Q KQ C Q CQ M Q ΜQ F Q F  (9) 

 ( ) ( )H

n R =U Q U  (10) 

The following is the construction of orthogonal basis vectors for Krylov subspace methods, which 

was originally an iterative method for solving large sparse linear equations and linear eigenvalue 

problems. It is spanned by a sequence of vectors defined by a linear homogeneous recurrence 

relation of first order. However, since the equation of the problem under consideration is a second-

order system, it needs to be rewritten as a first-order system before applying the Krylov subspace 

method, i.e. : 

 
i

i



        
        

−        

C K M 0 U F
+ =

I 0 0 I U 0
 (11) 

Where 0  and I  represent the zero matrix and the identity matrix respectively. However, this 

strategy will double the size of the original problem matrix and may destroy good properties of the 

matrix, such as symmetry and positive character. To solve this problem, a second-order Krylov 

subspace can be generated at the expansion point: 

 

0 0

0 1 1 0

0 1 1 2 2      2,..., 1j j j for j N− −

 =


= −
 = − − = −

P q F

P q Pq

P q Pq P q

 (12) 

where 

 

2

0 0 0 0

1 0 0

2

2 02

( )

( ) 2

1
( )

2

i

i

  

 






 = = − + +



= = − +


 

= = −


P S M C K

S
P M C

S
P M

 (13) 

Where, 
jq is the basis vector obtained by the orthogonal normalization process of 

jq . The results 

show that with the increase of subspace dimension, the generated basis vector is easy to lose 

orthogonality due to the numerical truncation error brought by the computer, resulting in convergence 

stagnation. Therefore, it is very important to choose the basis vector orthogonalization method 

reasonably. 

A method to ensure moment matching is to generate orthogonal basis vectors by the Arnoldi strategy 

proposed by Bai et al. This method is named the second-order Arnoldi method (SOAR), which is 

expressed in the following pseudo-code format: 

Second-order Armoldi method (SOAR) 

1.
0 0  Solve =P q F  

2.
0 0 0/=q q q  

3.
0 0=p          

4.   1,2,..., 1,for j N do= −  

5.    0 1 2  j jsolve = − −P r Pq P p  

6.    j=s q  
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7          0,1,..., ,for i j do=  

8.            ,i i= −r r q r q  

9.            ,i i= −s s q r p  

10.         end for  

11.       
1 2

/j+ =q r r  

12.       
1 2

/j+ =p s r  

13.   end for  

14.
0 1 2 1  { , , ,..., }N NOutput span −=Q q q q q  

where,Lines 1-3 and 5-6 correspond to second-order Krylov processes, and lines 7-10 are for loops 

that orthogonalize the basis vector. 

3. Structural optimization design for random vibration problems 

In this paper, the topology optimization design of structural vibration reduction under random 

excitation is carried out based pseudo excitation method and relative motion method, and the 

response optimization formula is as follows: 

 

( ) ( ) ( )

( )

( )( ) ( ) ( ) ( )
( )( )

( )

H4

*

1

, , , ,

, , 2

min     max , , ,     = ,     

. .       / 0

            , ,   1,...,

            , -

            0 1,   1,...,

   

f

e

e

N

i d e

k k k k k

k

N
d

e e

e

i d e i d e

e k k f

i d e

e k k k

e e

J J J J J J

s t v V V

k N

i

e N


  



  

   



=

 =

− 

= =

= +

  =





U LU

S U F

S K C M

( )         c= 1 s s


=F U

 (14) 

Where, J  is the objective function representing the mean square value of the output acceleration. 

The constraint columns are volume constraint and structural compliance constraint, ev  is the 

element volume, *V  is the target volume fraction, 
s

F  and s
U  are the static load and displacement 

vector respectively. e  is the design variable, eN  represents the number of discrete units,   is the 

frequency, and 
fN  is the number of discrete frequency points. 

 
0

0

ii is ii is ii isi i i

si ss si ss si sss s s

            
+ + =            

           

M M C C K KU U U

M M C C K KU U U
 (15) 

where, 
sU ,

sU and
sU  are the absolute acceleration, velocity and displacement of the nodes at the 

supports, 
iU ，

iU and 
iU  represent the absolute acceleration, velocity and displacement of the 

nodes inside the structure, respectively. 

Based on the principle of superposition, the relative motion method divides the absolute 

displacement iU  at the non-support position into quasi-static displacement s

iU  caused by the 

movement s

sU  at the support position and dynamic relative displacement d

iU  caused by the 

acceleration of the movement s

sU  at the support position. 

 
0

sd
i ii

s
s s

   
= +    

     

U UU

U U
 (16) 
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where, superscript d  and s  represent dynamic response and quasi-static response respectively, 

and subscript i  and s  represent free node and support node respectively. Support nodes include 

fixed nodes and nodes that apply excitation. 

Ignoring the inertial force and damping force, the quasi-static response satisfies the following formula: 

 
0

0

s
ii is i

s
si ss s

    
=    

    

K K U

K K U
 (17) 

The quasi-static response of the free node can be obtained by solving equation(17): 

 \s s

i ii is s= −U K K U  (18) 

Substituting formula (16) into formula (15) yields: 

 
0

00 0 0

s s s
ii is ii is ii isi i i

s s s
si ss si ss si sss s s

d d d
ii is ii is ii isi i i

si ss si ss si ss

          
+ + +          

          

            
+ + =            

           

M M C C K KU U U

M M C C K KU U U

M M C C K KU U U

M M C C K K

 (19) 

By substituting formula (17) into the above formula, the quasi-static stiffness term is 0, ignoring the 

quasi-static damping term and focusing on the internal node equation of the structure, the equation 

can be simplified to: 

 d d d s s

ii i ii i ii i ii i is s+ + = − −M U C U K U M U M U  (20) 

By substituting formula (18) into the above formula, the dynamic response satisfies: 

 
( )

                          
 

\

d

ii i i

s

i ii ii is is s

 =


= −

S U F

F M K K M U
 (21) 

Define * \ s

i ii is s=U K K U  and substitute it into the above formula to get: 

 

*

*

00 0

0 0 0 00

  

ii isi

s

s

ii i is s

      
= −      

      

= −

M MU
F

U

M U M U

 (22) 

The power spectral density of the output displacement can be expressed as: 

 ( ) ( )s d s d

kJ


= = + +U LU U U L U U  (23) 

Then, the sensitivity of the power spectral density of the output displacement relative to the design 

variable can be written as: 

 ( ) 0 12 2 2
s d ds d

s d s dkJ

       


           

= + + + + + + −    
            

U U FU U K S
U U L λ U K λ U S

 (24) 

where, 

 

**
* *

1 1 2
ii ii i

i ii i ii  
    

        
= + + +   

       

M K UF U
U M U K  (25) 

Define: 
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( )

( )

( )

0

1

2 1

\

\

\

= −

= −

= −

λ K LU

λ S LU

λ K Mλ

  (26) 

By substituting it into the formula (24), the power spectral density sensitivity expression of the output 

displacement can be simplified to: 

 
* *

0 1 1 22Re s dkJ

    

        
= + − − 

     

K S M K
λ U λ U λ U λ U  (27) 

Then the sensitivity of the power spectral density of the output acceleration relative to the design 

variable is: 

 
4

fN

k
k

k

JJ


 


= 

 
  (28) 

4. Numerical examples 

4.1 Damping block design 

In order to realize omnidirectional support and vibration reduction, a three-dimensional cube 

optimization model is designed. The design domain is 0.1m×0.1m×0.1m. The optimized frequency 

range is 15-2000Hz. Constraints are fixed on the bottom, left side and back of the model, and the 

input acceleration power spectral density function is shown in Table 1 and Table 2. The optimization 

objective is to minimize the mean square value of acceleration on the upper surface, right side and 

front of the structure (optimal vibration damping performance). In order to ensure the bearing 

performance of the structure, static constraints are applied, and uniform load is applied to the upper 

surface, right side and front. The resultant force F=500N, and the maximum deformation in x, y and 

z directions is required not to exceed 10mm. The material properties of dual-material are shown in 

Table 3. 

Table 1 – Acceleration power spectral density function in the X and Y directions. 

Frequency (Hz) 15 500 600 900 1000 1200 1400 2000 

( )  xxS f (g2/Hz) 0.02 0.02 0.05 0.05 0.07 0.07 0.05 0.05 

Table 2 – Acceleration power spectral density function in the Z direction. 

Frequency (Hz) 15 35 50 300 350 450 500 600 

( )  xxS f (g2/Hz) 0.05 0.09 0.02 0.02 0.04 0.04 0.1 0.13 

Frequency (Hz) 800 850 1200 1300 1600 1700 2000  

( )  xxS f (g2/Hz) 0.13 0.06 0.06 0.04 0.04 0.02 0.02 
 

Table 3 – Material properties. 

Materials Density (kg/m3) Modulus (MPa) Poisson's ratio     

Material 1 
1120 

2000 0.3 1e-6 1e-7 

Material 2 1120 1 0.3 1e-5 1e-6 

 

A 24×24×24 grid was used to disperse the design domain, and the volume fraction of material 1 was 

0.45. Density filtration is adopted, and the filtering radius is 2.5. Static analysis was carried out to 

calculate the relationship between the bulk fraction of material 1 and the maximum displacement of 

the structure under static load and the degree of compliance of the structure. As shown in the 

following table, in order to ensure that the maximum displacement under static constraint is less than 



LARGE-SCALE DYNAMIC TOPOLOGY OPTIMIZATION DESIGN UNDER RANDOM EXCITING RESPONSE 

9 

 

 

10mm, the compliance constraint is set from c≤1. 

The initial value of the design variable is the total volume fraction. The design variable is updated 

based on MMA, and the maximum number of iteration steps is 100. The optimization results and 

control results are shown in the Table 5. Table 6 shows the performance parameters of the 5 groups 

of results. It can be seen that the optimization results have obvious vibration reduction effect under 

the bearing conditions, and the output is 20%-30% of the input. The frequency response curves of 

optimization results and control results are shown in Figure 2. 

 

Table 4 – Material volume fraction and corresponding structural compliance. 

Volume fraction of 
material 1 

1 0.2 0.1 0 

Maximum displacement 
(mm) 

0.01 0.12 0.26 20 

Compliance 0.0036 0.045 0.1 7.2 

Table 5 – Optimization results and control results. 

1 2 3 4 5 

     

     

 

Table 6 – The performance parameters of the optimization and comparison results. 

Results 1 2 3 4 5 

Objective function 1.44 0.974 3.52 4.30 1.85 

The proportion of vibration 
reduction (%) 

32.9 22.2 80.2 98.0 42.0 

Volume fraction 0.30 0.32 0.25 0.27 0.20 

Compliance 0.74 1.82 2.02 1.24 5.96 

Maximum displacement (mm) 3.1 9.9 4.3 3.7 18.1 
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Figure 2 – Frequency response curves of optimization results and control results. 

4.2 Reduced order solution strategy 

In this work, the topology optimization design for vibration reduction of aircraft wall panels is carried 

out. The optimized design domain is approximately a rectangular flat plate, as shown in Figure 3. 

The bottom layer is an undesignable domain, which is fixed and constrained by 8 bolts, and random 

excitation is applied. The load spectrum value and inflection point frequency are shown in Table 3.  

 

Figure 3 – Aircraft panel model. 

Table 7 – Load spectrum value and inflection point frequency. 

Inflection point (Hz) 20 89 124 1000 20000 

Value (g2/Hz) 0.064 0.064 0.1 0.1 0.025 

 

Aiming at structural stress power spectrum density, this work applies mass and stiffness constraints 
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to carry out random vibration topology optimization design. The optimized topology configuration is 

post-processed and modeled by software, as shown in Figure 4. 

 

Figure 4 – Topology optimization result. 

The vibration reduction performance data of the topology optimization results are shown in Table 4. 

The peak stress PSD is 6.33e14Pa2 /Hz, which is smaller than 7.63e14Pa2 /Hz of the dimensional 

optimization solution (Figure 4), and the structural vibration performance is improved by 17%. 

Table 8 – Vibration reduction performance. 

Max stress 

（Pa） 

Average stress

（Pa） 

Max strain

（m/m） 

Stress PSD peak 

value（Pa2/Hz） 

1.12e8 9.11e6 5.13e-4 6.33e14 

 

5. Conclusion 

In this paper, a large scale and high resolution structural dynamic topology optimization method is 

developed for the urgent need of vibration reduction design of aerospace vehicles. (1) Aiming at the 

random excitation problem, the pseudo excitation method and relative motion method are applied to 

the topology optimization design of structural vibration reduction. By converting random loads into 

deterministic virtual excitation, the efficiency of solving random problems is greatly improved, and 

topology optimization of aircraft vibration reduction design under random loads is successfully 

realized. (2) In view of the unbearable computational scale brought by the intensive frequency 

sweeping problem to the optimization design, this paper constructs an adaptive SOAR reduced order 

model method and successfully applies it to the topology optimization design of structures under 

random excitation in the broadband domain. This work intends to integrate the solution method 

established above into the topology optimization software, focusing on the development of reduced 

order model module and dynamic response analysis module. According to the engineering 

application background, the optimization objectives and constraint functions will be determined, so 

as to carry out large-scale dynamic topology optimization design for typical components in aerospace 

structures. 
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