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Abstract 

Sintered silver has a wide range of promising packaging applications in power electronics because of its 

superior mechanical properties, thermal conductivity. However, it contains pore structures induced by sintering 

process which significantly affect its mechanical properties. Research on predicting this effect is therefore 

essential for reliable applications in power electronics. In this paper, tensile test simulation is carried out and 

mechanical properties are obtained for sintered silver containing pore structure through fracture phase field 

and finite element method. Based on the data set generated from simulation, a deep learning network structure 

based on residual network structure and attention mechanism module is established. The network is trained 

and enhanced by hyperparameter optimization and structure fine-tuning. The proposed deep learning network 

achieves precise prediction of yield stress, ultimate tensile strength and fracture strain of sintered silver samples 

with different pore structures. The method provides an effective support for the prediction of pore structure 

mechanical properties, which significantly save the time consumed in experiments and simulations. 
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1. Introduction 

As an advanced electronic packaging material, sintered silver can be used in high-power electronic 

devices, high-end optoelectronic devices and flexible electronic devices. Sintered silver has superior 

thermal conductivity and mechanical properties. Moreover, the low-temperature sintered interconnect 

technology for sintered silver can realize the electrical interconnection between the chip and the 

substrate in a low-temperature and pressure-free environment [1]. Currently, domestic and foreign 

scholars have carried out effective research on the application of sintered silver and its reliability [2-

5]. The high-energy free surface of silver enables sintering at about 200 °C. Thus, the sintering 

temperature is much lower than its melting point [6]. The low temperature sintering process reduces 

chip damage. However, the occurrence of pores in the bonding structure is unavoidable. During low-

temperature sintering, the necking process produces a large number of unfilled regions in the material. 

As a result, a large number of randomly shaped pore structures exist in the interconnect structure 

formed by sintering. The pore structure has a great impact on the mechanical properties of the 

electronic interconnect structure. Tests on the mechanical, thermal and electrical properties of chips 

show that the spatial distribution characteristics of the random pore structures inside the sintered 

silver interconnect structures have a significant impact on their mechanical, thermal and electrical 

properties [3,7]. And the mechanical properties are crucial for the performance of solder in service. 

Crack defects inevitably appear in sintered silver interconnect structures under long-term complex 

and alternating thermal environments. 

The relationship between the pore structure and the mechanical properties of sintered silver is 

imperative in the development of sintered silver applications. Studies have been conducted to explore 
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the quantitative relationship between porosity and mechanical behavior [8,9]. Carr et al. investigated 

the quantitative relationship between porosity and elastic modulus through a combination of 

simulation and experiment methods [10]. The finite element model was created based on images 

obtained from scanning electron microscope images of silver layer sections. The modulus of elasticity 

predicted by the simulation of this study agrees with the experimental measurements. Obviously in 

practical studies, tensile tests are needed in order to obtain mechanical characterization parameters 

of sintered silver such as elastic modulus, yield strength, ultimate tensile strength, and fracture strain. 

However, experiments are costly in terms of manpower and financial resources. Therefore, simulation 

is an important method used in related materials science in order to achieve efficient research. In 

recent years, with the development of computer science, numerical methods based on computational 

mechanics have been successfully applied to fracture analysis [11]. Among the related methods, the 

phase field method well simulates the process of material tensile fracture by establishing a brittle 

fracture analysis formula. The fracture phase-field method provides an efficient description of the 

fracture evolution inside various types of homogenized materials. Cho et al. described the multi-crack 

sprouting and extension behavior inside laminated composites based on the fracture phase-field 

model, which demonstrated the validity of the fracture phase-field model [12]. Pillai et al. investigated 

an efficient prediction method of fracture sprouting and extension inside materials with a random pore 

structure. combining the macroscopic theory of pore materials and phase field modeling. The method 

was applied to the simulation of the macroscopic mechanical behavior of pore materials [13]. Under 

complex thermal or mechanical stresses, a large number of fractures can be generated inside the 

sintered silver in interconnect structures. Therefore, the phase field method is suitable to be used to 

study the tensile process of sintered silver containing pore structures. 

However, the time consumption of simulation solving computations for mechanical properties of 

materials is not negligible. In recent years, with the development of machine learning methods, 

regression tasks for fast prediction of parameters have been realized. Deep learning is one of the 

methods with outstanding advantages. Typical applications include PHM [14-16], target detection 

[17,18]. Such methods have also been successfully applied in the field of material parameter 

prediction. P. Narloch et al. used deep convolutional neural networks to achieve the prediction of 

compressive strength of cement-stabilized compacted soil, based on scanning electron microscope 

images [19]. R. Cui et al. used U-net and convolutional neural networks to achieve the prediction of 

elasticity parameters of rock images [20]. Deep learning methods can adapt well to the nonlinear 

relationship between input and output parameters. This makes its prediction performance better, 

compared with traditional modeling prediction methods. Deep learning methods represented by 

convolutional neural networks exhibit advantages in the data-sufficient situation. When the input of 

the task is high dimensional, the input contains information that cannot be fully absorbed by traditional 

modeling methods and machine learning methods. As a result, the phenomenon of dimensionality 

explosion emerges. Convolutional neural networks solve this problem well through convolutional 

kernels. Moreover, machine learning and deep learning methods have been effectively used in the 

field of phase field simulation. One of the application ideas is to accelerate the solution of phase field 

simulation. C. Hu et al. use principal component analysis (PCA) and long short-term memory network 

(LSTM) to learn the evolution of microstructure phase field images in the time domain. Highly accurate 

simulation acceleration was achieved by predicting the simulation results through LSTM [21]. S. 

Goswami et al. proposed a physical informative neural network (PINN) algorithm based on transfer 

learning to solve brittle fracture simulations. The output of this method is consistent with the 

experimental results in six brittle fracture cases [22]. Another idea is to use machine learning or deep 

learning as a direct alternative to phase field simulation for the prediction of the required parameters. 

PC. Vilalta et al. successfully used machine learning methods to predict the yield stress in high 

entropy alloys based on the dataset of the variations of the stacking fault energy landscape [23].  SZ. 

Feng et al. used the simulation results of the fracture phase field method with a convolutional neural 

network to achieve the prediction of the remaining useful life of the structure [11]. A Cheloee Darabi 

et al. used the simulation method combining the phase field method and the finite element method to 
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generate a dataset of the microstructural and mechanical behaviors of duplex steels under different 

heat treatment conditions. The prediction of yield stress, ultimate stress and fracture stress of dual-

phase steel was realized based on ResNet and VGG16 [24]. However, no study has attempted to 

predict the mechanical properties of sintered silver containing porous structure by machine learning 

or deep learning methods. 

Thus, in this paper, we propose a predicting approach for mechanical properties of sintered silver 

containing porous structures based on phase field simulation and neural network method. Satisfying 

results are achieved in prediction accuracy. This method can significantly save the time consumed 

in experiments and simulations and facilitate power electronics packaging applications of sintered 

silver. 

2. Data Generation 

2.1 Phase Field Method 

The papers should be prepared, if possible, using the format like this document. 

The phase field method developed by Miehe for fracture simulation is used in our research [25,26]. 

For a system with cracks, the total internal potential energy is consisted of the bulk energy and the 

energy required for the formation of cracks, which is expressed as 
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In the above equation, k is a parameter chosen for numerical convenience. Its value is taken as small 

as possible while keeping the system of equations is well conditioned. The parameter Gc is the critical 

energy release for unstable crack damage extension which is a material property. ɸ ∈ [0, 1] is the 

phase field variable that represents the fracture state. Ψ(ε) is the strain energy. 

The external power energy Wext are: 
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According to the above equation, the residual vectors of the phase field and the displacement can 

be obtained separately, for the displacement: 
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The resulting residual term for the internal energy is: 
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where N is the FEM shape function matrix and B denotes the gradient matrix. For crack growth 

analysis, the coupled nonlinear system can be solved through Newton-Raphson iteration, which is 

expressed as: 
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The above equations can be solved by making 𝑅𝑒
𝜙

 = 0 and 𝑅𝑒
𝑢 = 0 in a staggered system. The 

Newton-Raphson method is employed in this work to solve the above nonlinear equations. The 

staggered scheme was utilized with Abaqus Standard [27]. In each calculation step, the obtained 

information of displacement field and phase field will be preserved in the form of calculating data, 

which can generate cracks on the input samples in the form of images and stress-strain curves for 

mechanical properties. 

2.2 Tensile Test Simulation for Sintered Silver 

Before carrying out tensile tests, it is first necessary to generate images of sintered silver samples 

with random pore structures. In this paper, random pore structure images are generated based on 

the method of [28]. The image size is 100×100 pixels, as shown in Figure 1. Where, white color is 

silver and black color is pores. The pore binary images were entered as coordinates of silver and 

pores into an input file in Abaqus for sample generation in the simulation software. 

After importing the samples, a two-dimensional plane model can be created. Uniaxial tensile tests 

are simulated on the basis of this model after assigning material parameters to the sample. The 

material parameters of the displacement field for silver and porosity are set as in Table 1. The 

phase field parameter settings are also included in Table 1 as well. The side length L of the 

samples are set to 0.02 mm. The bottom of the sample is fixedly constrained in the X and Y 

directions, while the top is allowed to displace in the Y direction. The simulation is performed using 

static displacement analysis. A total of 400 incremental steps are set up, and the upper edge 

displacement for each step is ΔU= 10-3μm. 

Table 1. Parameters setting for fracture simulation 

  Ag Pores 

Displacement 
field 

Elastic modulus 81500 (MPa) 8.15×10-5 (MPa) 

Poisson’s ratio 0.38 0.38 

Initial yield 
strength 

275 (MPa) / 

Hardening 
modulus 

8150 (MPa) / 

Phase field 
Length-scale 0.0004 (mm) 

Critical energy 
release rate 

0.016 (N/mm) 

 

 

Figure 1. The image of sintered silver with pore structures 
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Figure 2. The fracture phase field simulation result of a porous sintered silver sample 

 

Figure 3. The stress-strain curve of a porous sintered silver sample 

2.3 Dataset Preparation 

Based on the tensile test simulation in the previous section, the batch simulation can be realized by 

looping the input file. The simulation outputs are the fracture process of the samples under continuous 

loading with tensile displacement as well as the stress and strain simulation results of the samples. 

The fracture phase field simulation result of a porous sintered silver sample is shown in Figure 2. The 

red area represents the fracture region. Based on the simulation results, stress-strain curves are 

generated as Figure 3. From the stress-strain curve, yield strength, ultimate tensile strength, and 

fracture strain can be extracted. In the generated dataset, the data samples are images of sintered 

silver containing pore structures. Its corresponding labels are normalized 3×1 vectors containing yield 

strength, ultimate tensile strength, and fracture strain from the stress-strain curve. The sample size 

of the dataset is 7000. 

3. Deep Learning Method 

3.1 Network Framework 

Papers are accepted on the basis that they may be edited for style and language. The author himself 

is responsible for the correctness of the scientific content. 

Abbreviations should be spelt out in full the first time they appear and their abbreviated form included 

in brackets immediately after. Words used in a special context should appear between single 

quotation marks the first time they appear. 
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Figure 4. The framework of proposed network 

The aim of this paper is to present an image and three mechanical properties of sintered silver 

containing pore structures obtained based on phase field simulations. They are used as input image 

features and labels for training and testing, respectively. The mechanical properties include yield 

strength, ultimate tensile strength, and fracture strain. 

We built a deep learning model with ResNet18+CBAM. Sintered silver images containing pore 

structures are used as input. Firstly, the input is processed through feature extraction by ResNet18 

network. ResNet18 consists of 4 residual blocks. After that, the feature maps are fed into the CBAM 

attention module. The channel features and spatial features of feature maps are enhanced by CBAM 

module. After average pooling operation and flatten operation, the feature maps are downscaled into 

1D vectors and fed into the fully connected layer. Through the mapping of the fully connected layer, 

the final 1×3 vector is output as the prediction result. During training, based on the prediction results 

and the actual labels, the loss is computed by a loss function. Adam optimizer is used to implement 

the backpropagation. Adam optimizer has been proved to be one of the best methods based on the 

adaptive gradient. The advantage of Adam optimizer is that it maintains the momentum of the 

previous gradient, which leads to better estimation of the direction of the gradient update. Adam 

optimizer is more adaptive to different learning rates. is better. Also, it has high stability in the 

convergence process. Figure 4 illustrates the deep learning model proposed in this paper. 

Convolution Layer

Convolution Layer

X

X
F(X)

F(X)+X
 

Figure 5. The structure of residual block 

ResNet network is proved to be effective deep learning network structure. It uses residual block 

structure for residual learning of features. The residual block structure is shown in Figure 5. Residual 

learning solves the problem that deep networks are difficult to train. Deep neural networks have the 

problem of vanishing or exploding gradients. The idea of residual learning is to ensure that the 

performance of the network at least does not degrade. Assuming an input of x, the residual block is 

implemented as F(x)+x. This ensures that the network structure does not lose at least some of its 

learned features as it passes through the block. Whereas in practice the residual block tends to learn 

the residual features while preserving the original features. This makes it easier to optimize the 
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training of deep networks. The input image in this paper is a single channel black and white image 

with relatively less feature information. Therefore, we choose to construct an 18-layer ResNet 

structure. Meanwhile, the number of input channels of the initial convolutional layer is set to 1 to adapt 

to the single-channel image in this paper. 

Input
Maxpool

Avgpool

MLP Maxpool
Attention

Avgpool
Attention

Channel
AttentionAdd

Sigmoid

Output

 

Figure 6. The structure of channel attention module 

After the ResNet structure, we use Convolutional Block Attention Module (CBAM) to enhance the 

information of feature maps through the attention mechanism. CBAM contains the channel attention 

module and spatial attention module. The structure of the channel attention module is shown in 

Figure 6. First the feature maps are subjected to average pooling and maximum pooling operations. 

This allows the spatial information of the feature maps to be aggregated and compressed. The 

average pooling feature Favg and the maximum pooling feature Fmax are generated separately. Then 

the Multilayer Perceptual Machine (MLP) is built, which is shared by both Favg and Fmax. The MLP 

consists of three layers. The dimensions of the first and third layers are the same as the feature 

vectors. The second layer dimension is reduced to decrease the computational effort while 

extracting the channel features. After mapping by the MLP layers, Favg and Fmax are merged by 

element-wise addition. Channel attention values are obtained using the sigmoid layer. The final 

channel information enhanced feature map is obtained by channel-wise multiplication of the original 

feature map with the channel attention value. 

Input

Maxpool

Avgpool

Conv Sigmoid

Concate
Spatial

Attention

Output

 

Figure 7. The structure of spatial attention module 

The structure of the spatial attention module is shown in Figure 7. The spatial attention module 

compresses channel features through global average pooling of channels as well as global 

maximum pooling operations. Two feature maps Favg and Fmax representing different information are 

generated and merged by concatenation operation. Subsequently, spatial feature extraction is 

performed on the feature maps by a 7×7 convolution with a large sense field. Finally, the weight 

map is generated by a sigmoid operation and assigned to the original input feature map by channel-

wise multiplication, which allows the target region to be enhanced. 

Overall, for spatial attention, the information interaction between channels is ignored as the features 

in each channel are treated equally. Channel attention, on the other hand, directly processes the 

information within a channel globally, ignoring the information interactions within the space. The 

tandem connection of the two modules realizes the enhancement of the input channel information 

and spatial information. 

The regressor in the network of this paper is realized through fully connected layers. The first 

dimension of the fully connected layer is the same as the input feature vector. The output vector is 
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a 1×3 prediction of the mechanical properties. The number of layers and neurons in the 

intermediate layer are parameters that are necessary to regulate. Through the intermediate layer of 

the fully connected layer, a high-dimensional mapping of the input features to the target labeling 

can be established. Therefore, these parameters will potentially affect the prediction performance of 

the neural network. After the fully connected layer outputs the prediction results, the loss is 

computed by the loss function, which is used to update the parameters of each node of the network 

by back propagation. In this paper, the logarithmic hyperbolic cosine loss function is utilized. This 

function is able to combine the fast convergence of the MAE loss and the derivability of the MSE 

loss at zero. Llog-cosh is the log-cosh loss function which is given as: 

 ( )( )- log coshlog cosh pL y y= − , (9) 

where yp are the prediction values of source domain samples. 

3.2 Evaluation Method 

In this paper, model performance is assessed by three evaluation indexes commonly used in 

regression analysis. The prediction results are evaluated in terms of relative and absolute errors 

respectively. The evaluation indexes include the mean absolute percentage error (MAPE), the mean 

absolute error (MAE), and the root mean squared error (RMSE) as follows: 
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where yi is the true label. ŷi is the predicted value. n is the number of samples. 

4. Experiment Study 

To demonstrate the effectiveness of the model proposed in this paper for the prediction of mechanical 

properties of sintered silver, experiments based on simulation samples were carried out. The dataset 

generated from the simulation is divided into training set and test set in the ratio of 9:1. The study of 

model hyperparameters was carried out by grid search method to determine the optimal 

hyperparameters of the model. Comparison experiments were also conducted. By comparing the 

present model with other common deep learning structures, the superiority of the present model in 

the prediction of mechanical properties of pore images is presented. All the work was done using 

Python 3.7 in Pytorch framework. 

4.1 Study of Hyperparameters 

In this section, the study of hyperparameters is conducted to determine the appropriate 

hyperparameters for the model. For our network, the main hyperparameters include the learning rate 

and batchsize. For each hyperparameter experiment, the other parameter space was set consistent. 

We used the grid search method to investigate the optimal hyperparameter selection. 

Firstly, the gird search for learning rate was conducted. The test average results of 3 labels are shown 

in Table 2. The table shows that the effect of different learning rates on the model prediction results 

is huge. When the learning rate is too large as 0.005, the model prediction error is huge. Therefore, 

too large learning rate is obviously unsuitable. When the learning rate is too small, the prediction error 

shows a slow increasing trend. This means that too small learning rate may cause the model learning 

efficiency to be too slow and cannot learn the knowledge of the sample well in the limited number of 



A PHASE FIELD BASED DEEP LEARNING APPROACH FOR MECHANICAL PROPERTY 
PREDICTION OF SINTERED SILVER IN POWER ELECTRONICS 

9 

 

 

iterations. Therefore, the learning rate is chosen to be 0.0005, when the prediction error is the lowest. 

Table 2. Average errors of learning rate study 

Learning 
rate 

MAPE MAE RMSE 

0.005 20.31% 0.0926 0.1063 

0.0005 3.63% 0.0144 0.0197 

0.00005 4.25% 0.0156 0.0210 

0.000005 6.53% 0.0246 0.0329 

The test average results of batchsize experiments are shown in Table 3. As can be seen from the 

table, batchsize is not a sensitive hyperparameter. There are only minor fluctuations in the prediction 

error during its variation. In this case, we choose the parameter with the best prediction effect. 

Therefore, batchsize is set to be 8. 

Table 3. Average errors of batchsize study 

Batchsize MAPE MAE RMSE 

4 4.20% 0.0167 0.0217 

8 3.63% 0.0144 0.0197 

16 4.30% 0.0170 0.0232 

32 4.16% 0.0159 0.0211 

4.2 Model comparative analysis 

comparative analysis of the models is carried out in this section in order to verify the effectiveness of 

the proposed model in predicting the mechanical properties of sintered silver. AlexNet and VGG are 

chosen as the comparative models. Their effectiveness in image processing tasks with neural 

networks has been widely verified. We set up four different image processing methods as four 

experimental conditions. The difficulty of the comparison experiments can be increased by flipping, 

rotating and cropping the images. Therefore, the effectiveness of the model can be fully verified. 

The test results of the comparison experiments are shown in Tables 4, 5, 6 and 7. Label 1, 2, and 3 

represent yield strength, ultimate tensile strength, and fracture strain respectively. Figures 8, 9 and 

10 show the MAPE, MAE and RMSE results of the comparison experiments respectively. From the 

experiments it can be seen that the proposed model is optimal in all the prediction tasks. AlexNet 

performs moderately well on tasks 1, 2, and 4, but worst on task 3. However, VGG performs worst in 

tasks 1, 2 and 4 and also has comparable errors to AlexNet in task 3.  

From a task perspective, random horizon filp experiment is a relatively easy task. The MAPE of the 

proposed method in this paper reaches 3.36%. This is lower than the result of no preprocessing. It 

indicates that this case enriches the dataset and allows the model to more fully accomplish the 

learning of information. In contrast, the random rotation experimental task has the largest prediction 

error for each model. The largest prediction error is for AlexNet's label 3 with a MAPE of 16.11%. 

This reveals that rotation leads to serious information errors, which makes it difficult for the models 

to learn effective knowledge for effective mapping of features and labels.  

In addition, the prediction accuracy of label 2 is generally higher than the other two labels across 

tasks. This reflects the fact that the images of pore structures in the dataset contain relatively more 

information about the ultimate tensile strength. This allows the model to create a better mapping 

between the images and the ultimate tensile strength. From the point of view of labeling error balance, 

the balance of the method proposed in this paper is also better than other methods. The difference 

between the prediction errors of each label is relatively small. 
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Overall, through the comparison experiments, it can be verified that the deep learning model 

proposed in this paper can well realize the prediction of mechanical properties of sintered silver pore 

images. 

Table 4. Random horizon filp experiment results 

Model  Label 1 Label 2 Label 3 

AlexNet 

MAPE 5.54% 3.84% 5.61% 

MAE 0.0216 0.0160 0.0219 

RMSE 0.0282 0.0218 0.0286 

VGG 

MAPE 9.25% 5.97% 9.44% 

MAE 0.0341 0.0238 0.0346 

RMSE 0.0467 0.0344 0.0473 

Ours 

MAPE 3.81% 2.36% 3.89% 

MAE 0.0159 0.0110 0.0160 

RMSE 0.0216 0.0137 0.0207 

 

Figure 8. The average MAPE results of comparative experiments 

Table 5. Random vertical filp experiment results 

Model  Label 1 Label 2 Label 3 

AlexNet 

MAPE 6.17% 3.90% 6.22% 

MAE 0.0233 0.0158 0.0233 

RMSE 0.0305 0.0217 0.0306 

VGG 

MAPE 8.94% 5.02% 9.03% 

MAE 0.0341 0.0209 0.0342 

RMSE 0.0450 0.0289 0.0455 

Ours 

MAPE 3.84% 2.20% 3.91% 

MAE 0.0153 0.0091 0.0155 

RMSE 0.0198 0.0123 0.0201 
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Figure 9. The average MAE results of comparative experiments 

Table 6. Random rotation experiment results 

Model  Label 1 Label 2 Label 3 

AlexNet 

MAPE 16.00% 12.46% 16.11% 

MAE 0.0626 0.0548 0.0626 

RMSE 0.0818 0.0732 0.0821 

VGG 

MAPE 15.68% 12.24% 15.94% 

MAE 0.0585 0.0511 0.0585 

RMSE 0.0779 0.0691 0.0783 

Ours 

MAPE 14.62% 10.89% 14.92% 

MAE 0.0591 0.0512 0.0597 

RMSE 0.0777 0.0682 0.0785 

 

Figure 10. The average RMSE results of comparative experiments 
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Table 7. Random crop experiment results 

Model  Label 1 Label 2 Label 3 

AlexNet 

MAPE 9..65% 7.50% 9.78% 

MAE 0.0415 0.0344 0.0416 

RMSE 0.0565 0.0460 0.0565 

VGG 

MAPE 12.20% 9.10% 12.38% 

MAE 0.0439 0.0366 0.0442 

RMSE 0.0571 0.0493 0.0576 

Ours 

MAPE 8.33% 6.77% 8.49% 

MAE 0.0343 0.0298 0.0347 

RMSE 0.0463 0.0401 0.0468 

5. Conclusion 

In our research, a mechanical property and corresponding image dataset of porous sintered silver 

samples is built by fracture phase field simulation. Meanwhile, a deep learning network based on 

residual network and CBAM attention module is established for realizing the prediction of mechanical 

properties of porous sintered silver. By hyperparameter analysis, the optimal hyperparameters of the 

model are determined. In the comparison experiments, the model proposed in this paper is proved 

to achieve better results under a variety of experimental conditions, compared with the existing 

excellent models. The proposed deep learning network provides an effective method for the 

prediction of porous structure mechanical properties, which is sintered silver in this paper for power 

electronics applications. The results of the study also reflect the feasibility of applying deep learning 

methods on the prediction of simulation results. In the future, our research will focus on the more 

accurate application of machine learning and deep learning methods for phase field evolution 

simulation prediction. 
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