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Abstract

Sintered silver has a wide range of promising packaging applications in power electronics because of its
superior mechanical properties, thermal conductivity. However, it contains pore structures induced by sintering
process which significantly affect its mechanical properties. Research on predicting this effect is therefore
essential for reliable applications in power electronics. In this paper, tensile test simulation is carried out and
mechanical properties are obtained for sintered silver containing pore structure through fracture phase field
and finite element method. Based on the data set generated from simulation, a deep learning network structure
based on residual network structure and attention mechanism module is established. The network is trained
and enhanced by hyperparameter optimization and structure fine-tuning. The proposed deep learning network
achieves precise prediction of yield stress, ultimate tensile strength and fracture strain of sintered silver samples
with different pore structures. The method provides an effective support for the prediction of pore structure
mechanical properties, which significantly save the time consumed in experiments and simulations.
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1. Introduction

As an advanced electronic packaging material, sintered silver can be used in high-power electronic
devices, high-end optoelectronic devices and flexible electronic devices. Sintered silver has superior
thermal conductivity and mechanical properties. Moreover, the low-temperature sintered interconnect
technology for sintered silver can realize the electrical interconnection between the chip and the
substrate in a low-temperature and pressure-free environment [1]. Currently, domestic and foreign
scholars have carried out effective research on the application of sintered silver and its reliability [2-
5]. The high-energy free surface of silver enables sintering at about 200 °C. Thus, the sintering
temperature is much lower than its melting point [6]. The low temperature sintering process reduces
chip damage. However, the occurrence of pores in the bonding structure is unavoidable. During low-
temperature sintering, the necking process produces a large number of unfilled regions in the material.
As a result, a large number of randomly shaped pore structures exist in the interconnect structure
formed by sintering. The pore structure has a great impact on the mechanical properties of the
electronic interconnect structure. Tests on the mechanical, thermal and electrical properties of chips
show that the spatial distribution characteristics of the random pore structures inside the sintered
silver interconnect structures have a significant impact on their mechanical, thermal and electrical
properties [3,7]. And the mechanical properties are crucial for the performance of solder in service.
Crack defects inevitably appear in sintered silver interconnect structures under long-term complex
and alternating thermal environments.

The relationship between the pore structure and the mechanical properties of sintered silver is
imperative in the development of sintered silver applications. Studies have been conducted to explore
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the quantitative relationship between porosity and mechanical behavior [8,9]. Carr et al. investigated
the quantitative relationship between porosity and elastic modulus through a combination of
simulation and experiment methods [10]. The finite element model was created based on images
obtained from scanning electron microscope images of silver layer sections. The modulus of elasticity
predicted by the simulation of this study agrees with the experimental measurements. Obviously in
practical studies, tensile tests are needed in order to obtain mechanical characterization parameters
of sintered silver such as elastic modulus, yield strength, ultimate tensile strength, and fracture strain.
However, experiments are costly in terms of manpower and financial resources. Therefore, simulation
is an important method used in related materials science in order to achieve efficient research. In
recent years, with the development of computer science, numerical methods based on computational
mechanics have been successfully applied to fracture analysis [11]. Among the related methods, the
phase field method well simulates the process of material tensile fracture by establishing a brittle
fracture analysis formula. The fracture phase-field method provides an efficient description of the
fracture evolution inside various types of homogenized materials. Cho et al. described the multi-crack
sprouting and extension behavior inside laminated composites based on the fracture phase-field
model, which demonstrated the validity of the fracture phase-field model [12]. Pillai et al. investigated
an efficient prediction method of fracture sprouting and extension inside materials with a random pore
structure. combining the macroscopic theory of pore materials and phase field modeling. The method
was applied to the simulation of the macroscopic mechanical behavior of pore materials [13]. Under
complex thermal or mechanical stresses, a large number of fractures can be generated inside the
sintered silver in interconnect structures. Therefore, the phase field method is suitable to be used to
study the tensile process of sintered silver containing pore structures.

However, the time consumption of simulation solving computations for mechanical properties of
materials is not negligible. In recent years, with the development of machine learning methods,
regression tasks for fast prediction of parameters have been realized. Deep learning is one of the
methods with outstanding advantages. Typical applications include PHM [14-16], target detection
[17,18]. Such methods have also been successfully applied in the field of material parameter
prediction. P. Narloch et al. used deep convolutional neural networks to achieve the prediction of
compressive strength of cement-stabilized compacted soil, based on scanning electron microscope
images [19]. R. Cui et al. used U-net and convolutional neural networks to achieve the prediction of
elasticity parameters of rock images [20]. Deep learning methods can adapt well to the nonlinear
relationship between input and output parameters. This makes its prediction performance better,
compared with traditional modeling prediction methods. Deep learning methods represented by
convolutional neural networks exhibit advantages in the data-sufficient situation. When the input of
the task is high dimensional, the input contains information that cannot be fully absorbed by traditional
modeling methods and machine learning methods. As a result, the phenomenon of dimensionality
explosion emerges. Convolutional neural networks solve this problem well through convolutional
kernels. Moreover, machine learning and deep learning methods have been effectively used in the
field of phase field simulation. One of the application ideas is to accelerate the solution of phase field
simulation. C. Hu et al. use principal component analysis (PCA) and long short-term memory network
(LSTM) to learn the evolution of microstructure phase field images in the time domain. Highly accurate
simulation acceleration was achieved by predicting the simulation results through LSTM [21]. S.
Goswami et al. proposed a physical informative neural network (PINN) algorithm based on transfer
learning to solve brittle fracture simulations. The output of this method is consistent with the
experimental results in six brittle fracture cases [22]. Another idea is to use machine learning or deep
learning as a direct alternative to phase field simulation for the prediction of the required parameters.
PC. Vilalta et al. successfully used machine learning methods to predict the yield stress in high
entropy alloys based on the dataset of the variations of the stacking fault energy landscape [23]. SZ.
Feng et al. used the simulation results of the fracture phase field method with a convolutional neural
network to achieve the prediction of the remaining useful life of the structure [11]. A Cheloee Darabi
et al. used the simulation method combining the phase field method and the finite element method to
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generate a dataset of the microstructural and mechanical behaviors of duplex steels under different
heat treatment conditions. The prediction of yield stress, ultimate stress and fracture stress of dual-
phase steel was realized based on ResNet and VGG16 [24]. However, no study has attempted to
predict the mechanical properties of sintered silver containing porous structure by machine learning
or deep learning methods.

Thus, in this paper, we propose a predicting approach for mechanical properties of sintered silver
containing porous structures based on phase field simulation and neural network method. Satisfying
results are achieved in prediction accuracy. This method can significantly save the time consumed
in experiments and simulations and facilitate power electronics packaging applications of sintered
silver.

2. Data Generation
2.1 Phase Field Method
The papers should be prepared, if possible, using the format like this document.

The phase field method developed by Miehe for fracture simulation is used in our research [25,26].
For a system with cracks, the total internal potential energy is consisted of the bulk energy and the
energy required for the formation of cracks, which is expressed as

W, = [ [ (@=9) +K Jw(e)dv +jv%{|ov¢-\7¢+ll¢2}dv . )

In the above equation, k is a parameter chosen for numerical convenience. Its value is taken as small
as possible while keeping the system of equations is well conditioned. The parameter G is the critical
energy release for unstable crack damage extension which is a material property. ¢ € [0, 1] is the
phase field variable that represents the fracture state. ¥(¢) is the strain energy.

The external power energy Wex: are:
Wextzj'vb-udV+J'Nh-u5v, 2)

in which b and h are the components of body forces and boundary tractions on the surfaces 9V,
respectively.
Requiring that Wi, - 0Wex = 0. We have:
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According to the above equation, the residual vectors of the phase field and the displacement can
be obtained separately, for the displacement:
u_ Y u\' _ T _ T
R _jv[(l #)° +k](B') odv jVN bdV LNN hoV . @)
The resulting residual term for the internal energy is:
R? = J.V{GCI0 (Bfj )T V¢+[% - 21//(5)} N¢— 2N1//(g):| dv (5)
0

where N is the FEM shape function matrix and B denotes the gradient matrix. For crack growth
analysis, the coupled nonlinear system can be solved through Newton-Raphson iteration, which is
expressed as:
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The above equations can be solved by making R;” = 0 and R} = 0 in a staggered system. The
Newton-Raphson method is employed in this work to solve the above nonlinear equations. The
staggered scheme was utilized with Abaqus Standard [27]. In each calculation step, the obtained
information of displacement field and phase field will be preserved in the form of calculating data,
which can generate cracks on the input samples in the form of images and stress-strain curves for
mechanical properties.

2.2 Tensile Test Simulation for Sintered Silver

Before carrying out tensile tests, it is first necessary to generate images of sintered silver samples
with random pore structures. In this paper, random pore structure images are generated based on
the method of [28]. The image size is 100x100 pixels, as shown in Figure 1. Where, white color is
silver and black color is pores. The pore binary images were entered as coordinates of silver and
pores into an input file in Abaqus for sample generation in the simulation software.

After importing the samples, a two-dimensional plane model can be created. Uniaxial tensile tests
are simulated on the basis of this model after assigning material parameters to the sample. The
material parameters of the displacement field for silver and porosity are set as in Table 1. The
phase field parameter settings are also included in Table 1 as well. The side length L of the
samples are set to 0.02 mm. The bottom of the sample is fixedly constrained in the X and Y
directions, while the top is allowed to displace in the Y direction. The simulation is performed using
static displacement analysis. A total of 400 incremental steps are set up, and the upper edge
displacement for each step is AU= 103um.

Table 1. Parameters setting for fracture simulation

Ag Pores
Elastic modulus 81500 (MPa) 8.15x10° (MPa)
Poisson’s ratio 0.38 0.38
Displacement Initial yield
field strength 275 (MPa) /
Hardening 8150 (MPa) /
modulus
Length-scale 0.0004 (mm)
Phase field Critical energy 0.016 (N/mm)
release rate

Figure 1. The image of sintered silver with pore structures
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Figure 2. The fracture phase field simulation result of a porous sintered silver sample
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Figure 3. The stress-strain curve of a porous sintered silver sample

2.3 Dataset Preparation

Based on the tensile test simulation in the previous section, the batch simulation can be realized by
looping the input file. The simulation outputs are the fracture process of the samples under continuous
loading with tensile displacement as well as the stress and strain simulation results of the samples.
The fracture phase field simulation result of a porous sintered silver sample is shown in Figure 2. The
red area represents the fracture region. Based on the simulation results, stress-strain curves are
generated as Figure 3. From the stress-strain curve, yield strength, ultimate tensile strength, and
fracture strain can be extracted. In the generated dataset, the data samples are images of sintered
silver containing pore structures. Its corresponding labels are normalized 3x1 vectors containing yield
strength, ultimate tensile strength, and fracture strain from the stress-strain curve. The sample size
of the dataset is 7000.

3. Deep Learning Method

3.1 Network Framework

Papers are accepted on the basis that they may be edited for style and language. The author himself
is responsible for the correctness of the scientific content.

Abbreviations should be spelt out in full the first time they appear and their abbreviated form included
in brackets immediately after. Words used in a special context should appear between single
quotation marks the first time they appear.
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Figure 4. The framework of proposed network
The aim of this paper is to present an image and three mechanical properties of sintered silver
containing pore structures obtained based on phase field simulations. They are used as input image
features and labels for training and testing, respectively. The mechanical properties include yield
strength, ultimate tensile strength, and fracture strain.

We built a deep learning model with ResNetl8+CBAM. Sintered silver images containing pore
structures are used as input. Firstly, the input is processed through feature extraction by ResNet18
network. ResNet18 consists of 4 residual blocks. After that, the feature maps are fed into the CBAM
attention module. The channel features and spatial features of feature maps are enhanced by CBAM
module. After average pooling operation and flatten operation, the feature maps are downscaled into
1D vectors and fed into the fully connected layer. Through the mapping of the fully connected layer,
the final 1x3 vector is output as the prediction result. During training, based on the prediction results
and the actual labels, the loss is computed by a loss function. Adam optimizer is used to implement
the backpropagation. Adam optimizer has been proved to be one of the best methods based on the
adaptive gradient. The advantage of Adam optimizer is that it maintains the momentum of the
previous gradient, which leads to better estimation of the direction of the gradient update. Adam
optimizer is more adaptive to different learning rates. is better. Also, it has high stability in the
convergence process. Figure 4 illustrates the deep learning model proposed in this paper.
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Figure 5. The structure of residual block
ResNet network is proved to be effective deep learning network structure. It uses residual block
structure for residual learning of features. The residual block structure is shown in Figure 5. Residual
learning solves the problem that deep networks are difficult to train. Deep neural networks have the
problem of vanishing or exploding gradients. The idea of residual learning is to ensure that the
performance of the network at least does not degrade. Assuming an input of x, the residual block is
implemented as F(x)+x. This ensures that the network structure does not lose at least some of its
learned features as it passes through the block. Whereas in practice the residual block tends to learn
the residual features while preserving the original features. This makes it easier to optimize the
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training of deep networks. The input image in this paper is a single channel black and white image
with relatively less feature information. Therefore, we choose to construct an 18-layer ResNet
structure. Meanwhile, the number of input channels of the initial convolutional layer is set to 1 to adapt
to the single-channel image in this paper.
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Figure 6. The structure of channel attention module
After the ResNet structure, we use Convolutional Block Attention Module (CBAM) to enhance the
information of feature maps through the attention mechanism. CBAM contains the channel attention
module and spatial attention module. The structure of the channel attention module is shown in
Figure 6. First the feature maps are subjected to average pooling and maximum pooling operations.
This allows the spatial information of the feature maps to be aggregated and compressed. The
average pooling feature Fag and the maximum pooling feature Fmax are generated separately. Then
the Multilayer Perceptual Machine (MLP) is built, which is shared by both Fayg and Frax. The MLP
consists of three layers. The dimensions of the first and third layers are the same as the feature
vectors. The second layer dimension is reduced to decrease the computational effort while
extracting the channel features. After mapping by the MLP layers, Fay and Fnax are merged by
element-wise addition. Channel attention values are obtained using the sigmoid layer. The final
channel information enhanced feature map is obtained by channel-wise multiplication of the original
feature map with the channel attention value.

Spatial
Input Concate Attention
Maxpool Conv Sigmoid

Output
Avgpool

Figure 7. The structure of spatial attention module
The structure of the spatial attention module is shown in Figure 7. The spatial attention module
compresses channel features through global average pooling of channels as well as global
maximum pooling operations. Two feature maps Favg and Fmax representing different information are
generated and merged by concatenation operation. Subsequently, spatial feature extraction is
performed on the feature maps by a 7x7 convolution with a large sense field. Finally, the weight
map is generated by a sigmoid operation and assigned to the original input feature map by channel-
wise multiplication, which allows the target region to be enhanced.
Overall, for spatial attention, the information interaction between channels is ignored as the features
in each channel are treated equally. Channel attention, on the other hand, directly processes the
information within a channel globally, ignoring the information interactions within the space. The
tandem connection of the two modules realizes the enhancement of the input channel information
and spatial information.

The regressor in the network of this paper is realized through fully connected layers. The first
dimension of the fully connected layer is the same as the input feature vector. The output vector is
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a 1x3 prediction of the mechanical properties. The number of layers and neurons in the
intermediate layer are parameters that are necessary to regulate. Through the intermediate layer of
the fully connected layer, a high-dimensional mapping of the input features to the target labeling
can be established. Therefore, these parameters will potentially affect the prediction performance of
the neural network. After the fully connected layer outputs the prediction results, the loss is
computed by the loss function, which is used to update the parameters of each node of the network
by back propagation. In this paper, the logarithmic hyperbolic cosine loss function is utilized. This
function is able to combine the fast convergence of the MAE loss and the derivability of the MSE
loss at zero. Liog-cosh iS the log-cosh loss function which is given as:

Llog—cosh = IOg(COSh(yp - y)) ) (9)

where y, are the prediction values of source domain samples.

3.2 Evaluation Method

In this paper, model performance is assessed by three evaluation indexes commonly used in
regression analysis. The prediction results are evaluated in terms of relative and absolute errors
respectively. The evaluation indexes include the mean absolute percentage error (MAPE), the mean
absolute error (MAE), and the root mean squared error (RMSE) as follows:

MAPE = iz“u‘ , (10)
nid vy,
10
MAE = =3y, - yi|, (11)
ni=t
10,
RMSE = H;( -y, (12)

where yi is the true label. ¥ is the predicted value. n is the number of samples.

4. Experiment Study

To demonstrate the effectiveness of the model proposed in this paper for the prediction of mechanical
properties of sintered silver, experiments based on simulation samples were carried out. The dataset
generated from the simulation is divided into training set and test set in the ratio of 9:1. The study of
model hyperparameters was carried out by grid search method to determine the optimal
hyperparameters of the model. Comparison experiments were also conducted. By comparing the
present model with other common deep learning structures, the superiority of the present model in
the prediction of mechanical properties of pore images is presented. All the work was done using
Python 3.7 in Pytorch framework.

4.1 Study of Hyperparameters

In this section, the study of hyperparameters is conducted to determine the appropriate
hyperparameters for the model. For our network, the main hyperparameters include the learning rate
and batchsize. For each hyperparameter experiment, the other parameter space was set consistent.
We used the grid search method to investigate the optimal hyperparameter selection.

Firstly, the gird search for learning rate was conducted. The test average results of 3 labels are shown
in Table 2. The table shows that the effect of different learning rates on the model prediction results
is huge. When the learning rate is too large as 0.005, the model prediction error is huge. Therefore,
too large learning rate is obviously unsuitable. When the learning rate is too small, the prediction error
shows a slow increasing trend. This means that too small learning rate may cause the model learning
efficiency to be too slow and cannot learn the knowledge of the sample well in the limited number of



A PHASE FIELD BASED DEEP LEARNING APPROACH FOR MECHANICAL PROPERTY
iterations. Therefore, the learning rate is chosen to be 0.0005, when the prediction error is the lowest.

Table 2. Average errors of learning rate study

Learning MAPE MAE RMSE
rate
0.005 20.31% 0.0926 0.1063
0.0005 3.63% 0.0144 0.0197
0.00005 4.25% 0.0156 0.0210
0.000005 6.53% 0.0246 0.0329

The test average results of batchsize experiments are shown in Table 3. As can be seen from the
table, batchsize is not a sensitive hyperparameter. There are only minor fluctuations in the prediction
error during its variation. In this case, we choose the parameter with the best prediction effect.
Therefore, batchsize is set to be 8.

Table 3. Average errors of batchsize study

Batchsize MAPE MAE RMSE
4 4.20% 0.0167 0.0217
8 3.63% 0.0144 0.0197
16 4.30% 0.0170 0.0232
32 4.16% 0.0159 0.0211

4.2 Model comparative analysis

comparative analysis of the models is carried out in this section in order to verify the effectiveness of
the proposed model in predicting the mechanical properties of sintered silver. AlexNet and VGG are
chosen as the comparative models. Their effectiveness in image processing tasks with neural
networks has been widely verified. We set up four different image processing methods as four
experimental conditions. The difficulty of the comparison experiments can be increased by flipping,
rotating and cropping the images. Therefore, the effectiveness of the model can be fully verified.

The test results of the comparison experiments are shown in Tables 4, 5, 6 and 7. Label 1, 2, and 3
represent yield strength, ultimate tensile strength, and fracture strain respectively. Figures 8, 9 and
10 show the MAPE, MAE and RMSE results of the comparison experiments respectively. From the
experiments it can be seen that the proposed model is optimal in all the prediction tasks. AlexNet
performs moderately well on tasks 1, 2, and 4, but worst on task 3. However, VGG performs worst in
tasks 1, 2 and 4 and also has comparable errors to AlexNet in task 3.

From a task perspective, random harizon filp experiment is a relatively easy task. The MAPE of the
proposed method in this paper reaches 3.36%. This is lower than the result of no preprocessing. It
indicates that this case enriches the dataset and allows the model to more fully accomplish the
learning of information. In contrast, the random rotation experimental task has the largest prediction
error for each model. The largest prediction error is for AlexNet's label 3 with a MAPE of 16.11%.
This reveals that rotation leads to serious information errors, which makes it difficult for the models
to learn effective knowledge for effective mapping of features and labels.

In addition, the prediction accuracy of label 2 is generally higher than the other two labels across
tasks. This reflects the fact that the images of pore structures in the dataset contain relatively more
information about the ultimate tensile strength. This allows the model to create a better mapping
between the images and the ultimate tensile strength. From the point of view of labeling error balance,
the balance of the method proposed in this paper is also better than other methods. The difference
between the prediction errors of each label is relatively small.
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Overall, through the comparison experiments, it can be verified that the deep learning model
proposed in this paper can well realize the prediction of mechanical properties of sintered silver pore

images.

Table 4. Random horizon filp experiment results

Model Label 1 Label 2 Label 3
MAPE 5.54% 3.84% 5.61%
AlexNet MAE 0.0216 0.0160 0.0219
RMSE 0.0282 0.0218 0.0286
MAPE 9.25% 5.97% 9.44%
VGG MAE 0.0341 0.0238 0.0346
RMSE 0.0467 0.0344 0.0473
MAPE 3.81% 2.36% 3.89%
Ours MAE 0.0159 0.0110 0.0160
RMSE 0.0216 0.0137 0.0207
161 [ AlexNe [ VGG M Ours
14
12
£ 10
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Figure 8. The average MAPE results of comparative experiments

Table 5. Random vertical filp experiment results

Model Label 1 Label 2 Label 3
MAPE 6.17% 3.90% 6.22%

AlexNet MAE 0.0233 0.0158 0.0233
RMSE 0.0305 0.0217 0.0306

MAPE 8.94% 5.02% 9.03%

VGG MAE 0.0341 0.0209 0.0342
RMSE 0.0450 0.0289 0.0455

MAPE 3.84% 2.20% 3.91%

Ours MAE 0.0153 0.0091 0.0155
RMSE 0.0198 0.0123 0.0201

10
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Figure 9. The average MAE results of comparative experiments

Table 6. Random rotation experiment results
Model Label1 | Label2 | Label 3

MAPE 16.00% | 12.46% | 16.11%
AlexNet MAE 0.0626 0.0548 0.0626
RMSE 0.0818 0.0732 0.0821
MAPE 15.68% | 12.24% | 15.94%
VGG MAE 0.0585 0.0511 0.0585
RMSE 0.0779 0.0691 0.0783
MAPE 14.62% | 10.89% | 14.92%
Ours MAE 0.0591 0.0512 0.0597
RMSE 0.0777 0.0682 0.0785
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Figure 10. The average RMSE results of comparative experiments

11
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Table 7. Random crop experiment results
Model Label 1 | Label 2 | Label 3

MAPE 9..65% 7.50% 9.78%
AlexNet MAE 0.0415 0.0344 0.0416
RMSE 0.0565 0.0460 0.0565
MAPE 12.20% 9.10% 12.38%
VGG MAE 0.0439 0.0366 0.0442
RMSE 0.0571 0.0493 0.0576
MAPE 8.33% 6.77% 8.49%
Ours MAE 0.0343 0.0298 0.0347
RMSE 0.0463 0.0401 0.0468

5. Conclusion

In our research, a mechanical property and corresponding image dataset of porous sintered silver
samples is built by fracture phase field simulation. Meanwhile, a deep learning network based on
residual network and CBAM attention module is established for realizing the prediction of mechanical
properties of porous sintered silver. By hyperparameter analysis, the optimal hyperparameters of the
model are determined. In the comparison experiments, the model proposed in this paper is proved
to achieve better results under a variety of experimental conditions, compared with the existing
excellent models. The proposed deep learning network provides an effective method for the
prediction of porous structure mechanical properties, which is sintered silver in this paper for power
electronics applications. The results of the study also reflect the feasibility of applying deep learning
methods on the prediction of simulation results. In the future, our research will focus on the more
accurate application of machine learning and deep learning methods for phase field evolution
simulation prediction.
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