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Abstract 

This paper presents an optimization design for a high-altitude propeller. The machine learning method are 
coupled into the propeller analysis and optimization workflow to improve the calculation accuracy and 
efficiency. The selected E387-based propeller is from a HALE UAV, which designed to cruise at 25.9km 
altitude, 0.4 Mach. The propeller aerodynamic analysis is conducted by ARI_PROP, an in-house code based 
on Standard Strip Theory. To better solve the problem of prediction inaccuracy and complexity at high altitudes 
(high subsonic and low Reynolds number condition), the code employs Gaussian Progress Regression (GPR) 
to generate airfoil section aerodynamic performance. The GPR model can be trained by small amount of RANS 
CFD or experimental samples, and output accurate predictions at desired state instantly. Compared with 
literature and Moving Reference Frame (MRF) CFD results, ARI_PROP code shows good accuracy and 
automation capability. Next, the ARI_PROP code is coupled with our ARI_XunZhu optimization software, which 
is advantageous in high-efficiency and robustness. The software employs the Surrogate-based optimization 
scheme, which uses models like Kriging to establish the surrogate approximation model and guide the 
searching for better designs. By using the proposed overall workflow, the radial distribution of chord and pitch 
angle of referenced propeller that can offer maximum thrust at design point is found. The result shows that the 
optimized propeller’s thrust increases 75.2% with efficiency set as 81%, compared to the original design. 
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1. General Introduction 
Recently, many attention has turned towards to high-altitude long-endurance unmanned air vehicles 
(HALE UAV) and Martian exploration UAVs. And propellers are the most widely-used propulsion 
system for these aircrafts. One of the common challenges they faced is the high subsonic and low 
Reynolds number aerodynamics (Ma=0.4~0.9 ， Re=104~105), as both the earth near-space 
atmosphere and Martian atmosphere has low air density and speed of sound. Therefore, for these 
aircrafts with limited energy sources, it is of great necessity to study the propeller design and 
optimization. And the primary goal of this paper is to improve the high-altitude propeller’s 
aerodynamic efficiency by optimization design. 
Prior researches mainly focused on low-altitude propeller design and optimization, with few works 
dedicated for high-altitude propeller. Koch[1] studied the high-altitude propeller with ADPAC code. 
Kelly[2] and Young[3] analyzed a Martian rotor by both experiment and calculation, finding that the 
propeller tip sections need to be carefully designed. Recently, some studies[4][5] devoted to 
designing unconventional section airfoil, such as flat/cambered plate and triangular airfoil, for 
propeller at ultra-low Re=103~104. In summary, the majority of current works still use the traditional 
propeller design and optimization method, which is developed particularly for low-altitude propeller. 
By doing so, the high subsonic and low Reynolds number effect of high-altitude propeller is 
mistakenly neglected, and the results reliability is questionable.  
This paper focuses on improving aerodynamic performance of high-altitude propeller at cruise state, 
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which is a typical high subsonic and low Reynolds number condition. And a new set of approaches 
especially for this unique problem is proposed. Particularly, with the recent rapid development of 
machine learning techniques, these ideas are coupled into our approaches for propeller calculation 
and surrogate-model-based optimization. Finally, the result analysis and conclusions are presented. 

2. Optimization Design Methodology 
The optimization design method used in this paper is shown in Figure 1. It mainly consists of two 
parts, the ARI_PROP propeller analysis code and ARI_XunZhu optimization software. Both parts 
are our self-developed in-house software written in FORTRAN programming language. The 
ARI_PROP is a Standard-Strip-Theory-based fast analysis tool. It is developed particularly for high-
altitude propeller and can give accurate results in several minutes. The ARI_XunZhu software is our 
general optimization platform. It is capable of solving single/multi-objective optimization problem 
under multi-constraints, and has been applied on many high-precision CFD aerodynamic 
optimization cases, as well as aerodynamic/structural/stealth multi-disciplinary optimization design 
projects. It contains surrogate-based optimization scheme, which is advantageous in high-efficiency 
and robustness.  
In present work, two parts are coupled together. The optimization workflow will repeatedly call the 
propeller analysis code to fill the Data container with calculated results. The contained data will be 
used to build the surrogate model for optimal-seeking process. On the other hand, the iterative 
calculation procedure of ARI_PROP code will repeatedly call the CL and CD of blade element airfoils. 
These aerodynamic characteristics are modelled and predicted by Gaussian Process Regression 
method, which employs sampled numerical and experimental data as inputs, and outputs result of 
desired state almost instantly. 

 
Figure 1. Overall flow diagram 

2.1 Propeller Aerodynamic Analysis 
The Standard Strip Theory is the formulation basis for propeller analysis. It treats blade as a set of 
divided blade elements, and the blade element is regarded as a two dimensional airfoil. The local 
flow schematic of the airfoil is presented in Figure 2. 
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Figure 2. Schematic of blade element forces 

The detailed formulation will not be elaborated here for simplicity. Basically, by correlating the 
momentum theory and blade element force analysis, the induced angle β  can be calculated by 
below equation using Newton iteration method.  
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Here, the blade element’s radial position is r, local chord is b, V0 is the forward speed of the propeller, 
θ is the pitch angle, φ is the actual flow angle, ratio arctan( / )D LC Cγ = , axial induction factor 0/aa Vν=
, BN  is the number of blades, sn  is the rotational speed. The current formulations also take into 
account the hub and tip loss. These corrections are given by Prandtl and Glauert[6] for momentum 
equations during each iteration. The radial movement of the flow is also considered. The 3D Flow 
Equilibrium Model of Saravanamuttoo[7] is applied. By integrating equation (2) and equation (3) 
along the blade radius, the thrust and power coefficients are calculated as  
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Usually, there are two ways to obtain the aerodynamic data of airfoil section in common propeller 
fast analysis software: (a) Direct calculation of code like panel-method-based XFOIL; (b) Imported 
datasets. The first one is the most widely used way. However, it does not work for high-altitude 
propeller. Because the element airfoils work at high subsonic and low Reynolds number condition, 
this often leads to convergence failure for XFOIL calculation. The second way is a more accurate 
option. But traditional practice also does not work well for high-altitude propeller. Traditionally, small 
amount of data either from experiment or numerical simulation are directly used or by simple linear 
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interpolation. This is because the airfoil sections of ordinary propellers work at high Reynolds number 
condition, and the aerodynamic characteristics nearly does not change at subsonic speeds. Thus, 
one only needs to search the published experimental reports or conduct numerical simulations to get 
several typical data, then it would be enough.  
Contrarily, the high-altitude propeller should require large amount of accurate data. Because, as 
mentioned before, the airfoil section work at high subsonic and low Reynolds number condition. 
Figure 3 shows the reference propeller designed for near-space aircraft[1]. The propeller uses E387 
airfoil as blade element, and is designed to cruise at 25.9km altitude, 0.4 Mach. In this environment, 
as show in Figure 3, the airfoil section from hub to tip works at Ma=0.41~0.79, Re=4.8×104~1.88×105. 
Under this unique flow regime, the aerodynamic characteristics is very sensitive to flow conditions. 
In other words, from propeller hub to tip, a slight change of Re or Ma will lead to big differences of 
CL and CD [8][9]. Therefore, large amount of wind tunnel experimental or numerical simulation data 
that covers the whole Re, Ma, AoA range is required, which makes the practice very expensive and 
time-consuming.  

 
Figure 3. Reference propeller and its radial distribution of Re and Ma  

Presently, with the rapid development of machine learning, the technique has been applied on 
various fields including aerodynamic modelling. It establishes an approximate relationship between 
input flow conditions and output aerodynamic forces, based on a few set of trusted data. And use 
this relationship model to predict forces at desired conditions, to reduce or partially replace CFD and 
wind tunnel experiments. Here, as the Gaussian Process Regression (GPR) method[10] shows 
excellent performance of prediction reliability and robustness[11], it is selected from many machine 
learning techniques in this work. The Python Scikit-learn toolbox is used here. The aerodynamic 
characteristics CL and CD are the model prediction objects. The model input parameters are Re, Ma 
and AOA, which should cover the range of Ma=0.4~0.8, Re=4×104~2×105, AOA=-4°~12°. The 
Latin Hypercube Sampling (LHS) method[12] is used in the Design of Experiment (DoE) process to 
randomly sample the inputs, 300 samples are used to train the approximation model, and the other 
239 samples are used to analyze the errors of the model. The CFD method is used to calculate the 
samples’ response. Specifically, Transition SST (γ-Reθ) RANS is used for E387 airfoil section 
aerodynamic forces simulation. The details of CFD settings and validation can be found in our 
previous work[9]. The calculated results of 300 LHS samples are shown in Figure 4, It again 
demonstrates that the CL and CD are very sensitive to Ma, Re and AoA within studied realm 
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Figure 4. Distribution and values of DoE samples 

Here, the residual normality test is conducted to verify the model’s rationality. Figure 5 shows the 
residual histogram of CL and CD of 239 predicted results. It can be seen that the results well satisfy 
the normal distribution, which indicating that the prediction residual is generated completely 
randomly. The modelling method causes no bias to prediction results and is therefore rational.  

 
(a) Lift coefficient residual                               (b) Drag coefficient residual 

Figure 5. Residual histogram of GPR model ratioanlity verification 
Moreover, the Mean Absolute Percentage Error (MAPE) is used to evaluate the accuracy of model 
prediction results. 
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where 
prey  is GPR model predicted value, caly  is RANS CFD value, 239N =  is the number of 

predicted results. The MAPE value ranges from 0~100%, the smaller the value, the more accurate 
the prediction. The MAPE of CL and CD are 4.63% and 3.06%, respectively. It indicates that the GPR 
model has good non-linear fitting ability with relatively small amount of training samples.  
To further demonstrate the prediction effect of present model, the lift and drag coefficients at Ma=0.4, 
Re=5×104, AOA=-5°~15° and Ma=0.63, Re=1×105, AOA=-5°~15° are compared with RANS 
CFD results. Note that in Figure 6, some marginal AOAs predicted here are out of the range of 
training samples, which could happen when calculating the propeller off-design performances. 
However, the predictions still well match CFD results over the whole range, which exhibits good 
model prediction accuracy.  
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Figure 6. Comparison of GPR prediction and CFD results 

To demonstrate the validity of the ARI_PROP code, the performance of aforementioned reference 
propeller is calculated for a wide range of advance ratio. Due to the lack of experimental data, the 
results are compared with other strip theory analysis[1] and Moving Reference Frame (MRF) CFD 
simulation. For MRF CFD, the computational domain and grid are shown in Figure 7. The domain 
consists of two parts, the inner rotating zone and the outer stationary zone. The total grid contains 
23.4 million cells. The detailed introduction of case setup and grid information can be found in our 
previous work[9]. The JBLADE[13] software is also used for comparison. The software couples the 
Blade Element Method formulation and XFOIL for propeller design and analysis. However, 
unfortunately, the XFOIL code fails to give converged results at high subsonic and low Reynolds 
number condition. Therefore, the airfoil aerodynamic dataset at different radial stations has to be 
calculated by RANS CFD firstly and then imported into JBLADE, which is a manual and cumbersome 
process. 

     
Figure 7. MRF CFD grid of propeller 

The thrust coefficient CT, power coefficient CP and efficiency η  of the propeller are shown in Figure 
8. As no published experimental data exists, the MRF CFD results is considered to be a reliable 
reference. It can be seen that all the fast analysis results well match the MRF CFD result. This is 
because the strip theory of literature uses validated ADPAC code to calculate the airfoil section 
performance, and the JBLADE also uses our imported airfoil section performance by RANS CFD. 
Even though, compared with others, our ARI_PROP code exhibits a better agreement with MRF 
CFD result over the whole range of advance ratio. This is largely because of the airfoil section GPR 
model trained by accurate RANS CFD results. Besides, our code can be executed fully automatically 
and requires no data-import manual operations, which is crucial for optimization process. Hence, the 
ARI_PROP code prove its reliability and will be used in the following optimization study. 
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Figure 8. Propeller performance comparison 

2.2 Propeller Optimization Design 
The design parameters of propeller usually include diameter, rotation speed, blade number, pitch 
angle distribution, local chord distribution and sectional airfoil shape. Here, the pitch angle 
distribution θ(r) and local chord distribution b(r) are selected. For the purpose of reducing design 
variables, the parameterization method is used to mathematically describe θ(r) and b(r). Here, we 
choose the improved Hicks-Henne method, which uses original geometry and linear superposition 
of disturbance shape functions to describe deformed geometries.  
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Here, θ0(r) and b0(r) are original distributions in the form of discrete points, pk and qk are the 
coefficients to control deformation, N is the number of coefficients, ( )kf r  is Hicks-Henne function as 
below, 
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Where ( ) lg0.5 / lg , 0k ke k r r R= ≤ ≤ ,and kr  is the set points between blade hub and tip. The 
coefficients of disturbance shape function are used as design variables, and the optimal design 
shape can thus be determined by original shape and design variables. Here, the θ(r) and b(r) at the 
hub and tip are fixed. And there are eight variables to be optimized, four variables for θ(r), which 
value from -15.0 to 15.0, and four other variables for b(r), which value from -0.2 to 0.2. 
In optimization process, the thrust coefficient at design point λ=1.814 is considered as optimization 
object. The aerodynamic efficiency is set to higher than 81% as that of the maximum thrust point. 
The optimization problem is described as follows: 

)
. . 81%

TObjective: max(C
s t   :   η ≥

 (11) 

The optimization is based on the ARI_XunZhu[14] optimization software. The design of experiment 
(DoE) process uses the Latin Hypercube Sampling (LHS) method, the Kriging model is employed 
for establishing surrogate model, the EI and MSP mixed sample-adding method is adopted. Genetic 
algorithm is used to optimize the surrogate model, the maximum evolution is 200 generations, the 
crossover probability is 0.9, and the mutation probability is 0.05. The optimization starts with 60 initial 
samples, and reaches convergence of optimization criteria after about 400 evaluations, as shown in 
Figure 9. 

 



PROPELLER OPTIMIZATION WITH MACHINE LEARNING 

10 

  

 

 
Figure 9. ARI_XunZhu optimization software 

Figure 10 shows the comparison of optimized propeller geometry with original. Significant changes 
can be clearly witnessed. The optimized airfoil section chord distribution is greatly increased over 
the whole span, with maximum increment 56.35% at r/R=0.7. The pitch angle distribution is also 
increased, mainly around r/R=0.75 which contribute the main thrust. 

 
(a) Chord and pitch angle distribution                (b) Blade profile 

Figure 10. Comparison of propeller geometries 
The aerodynamic performances of optimized propeller and original one are compared in Table 1 and 
Figure 11. As shown in the table, the efficiency of optimized propeller well satisfies the constraint  

81%η ≥ . The optimized trust is dramatically increased by 75.2%. The MRF CFD is also conducted 
for optimized propeller, and the results confirmed the optimization. Figure 11 further demonstrate the 
pressure distribution on the blade and turbulence kinetic energy iso-surface. More flow separation 
for the optimized can be seen, which means more thrust is obtained at a cost of less efficiency. 

Table 1. Propeller performance comparison 

 Method Efficiency % CT ΔCT 

Original design 
ARI_PROP 86.31 0.1468 / 
MRF CFD 83.72 0.1393 / 

Optimized design 
ARI_PROP 81.00 0.2572 +75.2% 
MRF CFD 78.52 0.2300 +65.1% 
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Figure 11. Comparison of propeller MRF CFD result. Left: original. Right: optimized (Turbulence 

kinetic energy=55J/kg, Contour color: Velocity). 

3. Conclusion 
A new set of optimization approaches has been proposed particularly for high-altitude propeller. The 
approaches combine the self-developed ARI_PROP propeller analysis code and ARI_XunZhu 
optimization software. By using machine learning techniques, the unique optimization problem 
regarding to high-altitude propeller can be well solved. The validity and accuracy of the new 
approaches are demonstrated by optimization case of reference propeller. Significant improvement 
of propeller thrust 75.2% is achieved by the optimal design, with efficiency set as 81% at design 
point, compared to the original design.  
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