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Abstract

The increasing use of optimisation during early design phases raises challenges associated with computa-
tional efficiency and simulation fidelity. Surrogate-based optimisation is a promising tool for designers that
seek to understand multi-objective trade-offs and produce optimal solutions to problems involving high-fidelity
aerodynamic simulations, in a short amount of time. Its potential reduction in the number function evaluations
merits the application of surrogate modelling, yet there are associated challenges, including the occurrence
of simulation failures which is rarely addressed in optimisation research. This work investigates the effect of
simulation failure handling strategies in surrogate-based evolutionary optimisation, applied to airfoil design op-
timisation using low- and high-fidelity aerodynamic simulation. Convergence studies on a supercritical airfoil
design problem demonstrate the importance of selecting the correct simulation failure handling strategy when
using surrogate-based optimisation algorithms. Moreover, the characterisation of simulation failures in the de-
sign space demonstrate differences in occurrence and distribution between low- and high-fidelity simulation
(Euler and Reynolds-Averaged Navier Stokes codes, respectively), which is critical to inform algorithm design
and tailoring to the desired simulation fidelity for efficient surrogate-based optimisation.

Keywords: Aerodynamic shape optimisation, airfoil design, multi-objective optimisation, simulation failures,
surrogate-based optimisation, high-fidelity simulation

1. Introduction

Real-world engineering design problems involving simulation-based optimisation are subject to simu-
lation failures [1, 2, 3, 4]. In aerodynamic shape optimisation, infeasible geometries and poor quality
meshes can cause solutions to not convergence or lead to numerical instability in Computational
Fluid Dynamics (CFD) codes [5]. Such simulation failures impose additional computational burden
and add complexity to design problems that already exhibit other challenges like high-dimensionality
in the input variables, multi-objective trade-offs, highly-constrained design spaces, and computation-
ally expensive high-fidelity simulation [6, 7, 8, 9, 10, 11]. Few global optimisation algorithms can
effectively solve these problem challenges within reasonable computational timeframes. Surrogate-
based optimisation is a promising alternative to traditional gradient-free optimisers, as the number
of required function evaluations can be drastically reduced compared to evolutionary algorithms [9].
Surrogate-based methods typically use regression models to approximate the underlying functions
and reduce the number of calls to the expensive simulation code [7, 12]. The ability to optimise at
a reduced computational expense is of particular interest given the growing trend in higher-fidelity
simulation during the early design stages in the aerospace industry [7, 13]

Despite the potential benefits, surrogate-based optimisation algorithms face many unresolved chal-
lenges when applied to real-world engineering problems [7, 9, 12]. In particular, the occurrence and
effect of simulation failures on surrogate modelling and algorithm convergence has received limited
attention in literature, especially in the context of aerodynamic shape optimisation. Early work by
Tenne and Armfield [14] proposed a surrogate-based memetic algorithm capable of handling simu-
lation failures, in the context of airfoil shape optimisation for a small business jet. A penalty method
approach was used to modify the surrogate landscape, increasing the objective function value in the
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vicinity of undefined evaluations. Baert et al. [2] incorporated a probabilistic Support Vector Machine
(SVM) model within the MINAMO framework [15] to classify failure regions in the design space. The
proposed methodology was successfully used to optimise a highly-constrained transonic compressor
[2]. Similarly, Wilke [3] trained a surrogate on simulation failure information to predict a probability
of failed evaluation, as a pre-filtering step in the infill criterion. High-fidelity optimisation of helicopter
rotor blades was performed using the surrogate-based framework, achieving up to 78% reduction in
computational resources when applying the pre-filtering surrogate, compared to classical simulation
failure handling [3]. Other work by Arsenyev et al. [1] built a Gaussian Process (GP) regressor on
simulation failure information by considering the Euclidean distance to the nearest successful evalu-
ation to limit oscillations in the surrogate model. A multi-disciplinary optimisation of a Low-Pressure
Turbine (LPT) vane cluster was demonstrated using high-fidelity Reynolds-averaged Navier Stokes
(RANS), with the incorporated simulation failure handling surrogate.

Various simulation failure handling strategies for surrogate-based optimisation have been proposed in
literature, including its application towards expensive, high-fidelity aerodynamic shape optimisation.
Nevertheless, the tools proposed in literature have only been evaluated on single-objective optimi-
sation problems, with a relatively small percentage of simulation failures. Additionally, the effects of
solver fidelity on simulation failure in surrogate-based optimisation is yet to be characterised. This
work aims to quantify the effectiveness of simulation failure handling (SFH) strategies for surrogate-
based evolutionary optimisation, as applied to the aerodynamic shape optimisation of an airfoil sub-
ject to a high degree of simulation failures. A baseline surrogate-based constrained multi-objective
evolutionary algorithm is considered, and six methodologies to handle simulation failures, as modified
from literature, are investigated. The effect of simulation failure handling on algorithm convergence is
evaluated on a constrained, multi-objective airfoil design problem, using low- and high-fidelity aero-
dynamic solvers, MSES [16] and SU2 [17], respectively. Results are discussed with respect to the
applicability of solving complex aerodynamic shape design problems, and the viability of surrogate-
based optimisation to handle simulation failures.

The following sections describe the methodology developed to evaluate the aerodynamic shape op-
timisation problem. This includes; problem definition, airfoil parametrisation, and aerodynamic evalu-
ation with a low- and high-fidelity solvers. The surrogate-based optimisation framework is introduced
alongside with six simulation failure handling strategies investigated. Results are presented for the
convergence studies conducted, highlighting key take-aways for surrogate-based optimisation algo-
rithm design. Lastly, simulation failures are characterised in the design space for both the low- and
high-fidelity aerodynamic solvers.

2. Aerodynamic Shape Optimisation Problem Methodology

The selected airfoil design problem is derived from the development of the NASA supercritical airfoll
family [18]. Specifically, the NASA third phase design methodology is applied to an operating regime
subjected to compressibility effects. This problem is particularly interesting to optimise given the high
degree of simulation failures. These are expected as the operating conditions will result in weak
and strong shock effects, as well as complex nonlinear flowfields that are difficult to (re)-solve. The
SC(2)-0412 airfoil is used as the baseline, which has a design lift coefficient of C;, = 0.4 at a Reynolds
number (Re) of 30- 10° with a maximum thickness of 12% of the chord ¢. The design objectives include
maximising the weighted lift-to-drag at the design coefficient across the Mach number operating range
(Equation 1) and maximising the drag-divergence Mach number M,,; (Equation 2).

L/D—%“"Cl . for M €[0.6,0.8] (1)
- & Gl o
Maa = M|yc,jam = 0.1 Tor M €0.6,0.82] (2)

The partial derivative of the drag coefficient with respect to Mach number requires a smooth continu-
ous function, which is achieved through quadratic interpolation of the evaluated points (a minimum of
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three non-failed points are required). The objective weightings @; = 1 are set equal for the Mach num-
ber range. Specifically, the evaluated Mach numbers are M = [0.6,0.68,0.74,0.78,0.8], which equates
to five flight conditions (Ny. =5).

The parametrisation of the airfoil is achieved with Bezier spline curves for the top and bottom sur-
faces, respectively. A total of ten uniformly spaced control points are used to define both Bezier
curves, which are affine summations of Berstein polynomials [19]. The parametrisation scheme is
visualised in Figure 1 for the SC(2)-0412 section, which defines some of the geometric constraints
used. A total of 16 geometrical constraints are applied to obtain reasonable airfoil geometries, as
summarised in Table 1.
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Figure 1 — Bezier parametrisation of the SC(2)-0412 section with ten shape variables, showing
control points on upper and lower surfaces. Key geometric features relating to constraints are
labelled.

Table 1 — Summary of geometrical constraints applied to the airfoil problem.

Constraint Number of constraints Expensive Description

CR 1 N Crossover between upper and lower surfaces
t 7 N Minimum airfoil thickness at chord location ¢;

Nevrop 1 N Number of curvature reversals on the upper surface
Nevrbor 1 N Number of curvature reversals on the bottom surface

Org 2 N Trailing edge angle with the horizontal (degrees)

Yre 2 N Trailing edge boat-tail angle (degrees)
CrL|climb 1 Y Minimum lift coefficient requirement at climb conditions
Total 16

Here, the crossover constraint CR is the negative minimum thickness between the upper and lower
surfaces, so that if the surfaces overlap at any chord location, CR becomes positive. The airfoil thick-
ness 1; at chord locations ¢; € [0.005¢,0.01¢,0.05¢,0.2¢,0.8¢,0.9¢,0.95¢] is used to maintain a minimum
thickness t,,,|; relative to the baseline SC(2)-0412 section. Two angles (yrg and 6r¢) are used to
control the trailing edge shape, and the bounds for the four corresponding constraints are selected to
avoid excessively thin and highly-cambered trailing edges. This is important as supercritical sections
are typically aft-loaded [20]. Limiting the number of curvature reversals (N¢y;op @nd Neyrpor) €NSUTES
that excessive local oscillations are not present in the optimal shapes. This constraint is evaluated
by counting the number of sign reversals in the derivative of the local spline curvature with respect to
the arclength, for the top and bottom surfaces individually. The maximum airfoil thickness #,,,, must
be larger than 12% of the chord, to match the specifications of the SC(2)-0412 section. Lastly, one
computationally expensive constraint is applied, which is a minimum lift coefficient requirement of
C; > 0.9 for an angle of attack of 5 degrees at climb conditions (Re = 8.8-10° and M = 0.22). The
optimisation problem is thus defined in Equation 3, where x; and x;; are the lower and upper bounds
of the design space, respectively. The Bezier airfoil bounds are determined by fitting the University
of lllinois Urbana-Champaign (UIUC) airfoil database with the Bezier parametrisation and extracting
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the minimum and maximum values for each control point.

Minimize {L/ﬁ, Mdd}

S.t. CR<O
tmin|i_ti gO ZZO, ,6

0.12 — e <0

1 _chrJop g 0

2_chr,bot < 0

Org —25<0

0—-6r <0

Yre—12.5<0

5—1re<0

0.9 — Cr|climb < 0
X, <X Xy

2.1 Low fidelity simulation

The MSES code from the Massachusetts Institute of Technology (MIT) [16] is a low fidelity solver
capable of capturing transonic effects. MSES solves the Euler equations with a two-equation integral
boundary layer solver, almost identical to that of XFOIL [21]. The accuracy and general agreement of
MSES with experimental data is recognised for subsonic and transonic compressible flows [22, 23,
24, 25], similarly to XFOIL for subsonic flows [13, 26, 27]. Due to the similar viscous-drag correction
methodologies of XFOIL and MSES, is it expected that the simulation failure-prone tendencies of the
former [14, 27] are also observed for the latter. An additional source of convergence difficulty that
features in the MSES code derives from the angle of attack specification in the initial inviscid panel
solution. This step defines the iso-potentials used to discretise the grid generation for the numeral
evaluation of the Euler equations. In practice, experience shows that the convergence failure rate of
MSES for transonic flows is pronouncedly higher than for XFOIL in subsonic flows, including very low
Reynolds numbers.

2.2 High fidelity simulation

To compare the occurrence and frequency of simulation failures in aerodynamic solvers, a compar-
ison against MSES is made by incorporating a high-fidelity CFD solver within the surrogate-based
optimisation framework. The Stanford University Unstructured (SU2) multi-physics code [17] is used
to solve the compressible RANS equations using a Green-Gauss cell discretisation for spatial gradi-
ents. The flow inviscid terms are discretised with a Flux Difference Splitting (FDS) upwind scheme.
Slope-limiting is set using the Venkatakrishnan method, and Flexible Generalised Minimum Residual
(FGMRES) is used as the linear solver with LU-SGS preconditioning [17]. The Spalart-Allamaras
one-equation BCM transition turbulence model (SA-BCM) [28] is is chosen through experimentation
and solver validation at the airfoil design conditions. The minimum residual is set to 1- 107 for the
density field and a maximum of 15,000 iterations is allowed. An O-grid mesh is generated using the
automated meshing tool, Construct2d [29]. The selection of the mesh structure eliminates the need
to re-generate the geometry for different angles of attack. The mesh domain boundaries are at 20
chord-lengths from the airfoil. The airfoil surface is discretised with 501 points, and the boundary
layer is captured with a first-layer height of y* = 0.5. The mesh discretisation is selected through a
convergence study conducted in ref. [30], where the current settings result in an acceptable trade-off
between computational runtime and variation in aerodynamic coefficients.

2.3 Aerodynamic solver validation

A comparison of MSES and SU2 against experimental wind tunnel data is conducted for the SC(2)-
0710 airfoil. This section is evaluated over the baseline SC(2)-0412 due to availability of experimental
results in ref. [31]. Both aerodynamic solvers are evaluated for a Mach number sweep between
M € [0.5,0.8] at a design lift coefficient of C, = 0.7 and a Reynolds number of Re = 40 - 10°%, which
represent very similar operating conditions to the design problem to be optimised. MSES is evaluated
with free-transition and a critical intensity factor of N.,;; = 8.1 to match the turbulence intensity factor
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of TI =0.1% used in SU2, as per the wind tunnel conditions [31]. The rest of the solver settings are
as previously described. Comparison to experimental wind tunnel results in Figure 2 demonstrates
a general under-prediction of drag by MSES. SU2 with the SA-BCM model demonstrates strong
agreement with experimental drag measurements up to Mach 0.7, after which the onset of wave
drag from compressibility effects is over-predicted. Subsequently, the drag-divergence Mach number
(shown as vertical lines in Figure 2) is under-predicted. A similar trend is observed for MSES, however
the onset of wave drag initially appears more aligned due to the drag offset. The drag-divergence
Mach numbers are evaluated as M, = 0.764,0.766,0.780 for MSES, SU2, and experimental data,
respectively. As seen, both low- and high-fidelity codes fail to capture the localised reduction in
drag around Mach 0.77 seen in the experimental results. The onset of wave drag is thus over-
predicted, however, a small discrepancy in the M;, predictions is obtained, with a relative error of
-2.1% and -1.7% for MSES and SU2, respectively. The observed trends from both solvers agree well
with experimental data, and enable sufficient confidence to conduct numerical optimisation using the
aerodynamic predictions obtained from MSES and SU2.
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Figure 2 — Experimental validation of MSES and SU2 against wind tunnel data [31] for the
SC(2)-0710 airfoil at C;, = 0.7, Re = 40 - 10°. Vertical lines represent the calculated drag-divergence
Mach number.

3. Surrogate-based Optimisation Methodology

A simple Surrogate-Based Evolutionary Algorithm (SAEA) is considered in this work to solve the con-
strained multi-objective problem, as the baseline for simulation failure handling benchmarking. More
specifically, the traditional Non-dominated Sorting Genetic Algorithm (NSGA-II) [32] is augmented
with surrogates using regression models for each objective and constraint individually. The frame-
work and settings of the SAEA are as follows:

1. Initialisation: The initial Design of Experiments (DoE) is generated using Latin Hypercube
Sampling (LHS) with a size of 10D, where D = 10 is the number of design variables. These
designs are evaluated expensively using simulation codes MSES and SU2. Different LHS seeds
are pre-run and loaded a priori to each optimisation run for consistent comparisons between
simulation failure handling strategies and aerodynamic solvers.

2. Surrogate Management: Radial Basis Functions (RBF) are used as surrogates to regress
each objective and constraint individually. All RBF models use a cubic kernel and linear tail, as
they perform well for a range of problem landscapes [33]. The regression models are initialised
using the DoE evaluations and newly evaluated points are used at each generation to update
the surrogate models in an online optimisation approach.

5
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3. Evolution: The traditional NSGA-II evolutionary algorithm is evolved for ten generations with
a population size of 60 and offspring size of 300. Convergence is accelerated by evaluating
NSGA-II on the computationally-cheap surrogate predictions. The final evolved population after
ten generations survives to the next stage — the infill point selection.

4. Infill Criterion: To update the surrogate models efficiently towards the global optima, one infill
point is selected per iteration for expensive evaluation using simulation. The Hypervolume
Improvement (HVI) [34] (see Section 5. is calculated between the NSGA-II population and
the archived population. The infill point is the solution with the maximum HVI score, which
represents the point with the greatest convergence-gain over the current optimal population.

5. Termination: A total infill computational budget of 50D is used to terminate the algorithm, which
is 300 times smaller than the number of function evaluations used to approximate the Pareto
Front (PF) in Figure 4 — (a), using the standard constrained NSGA-II formulation. The online
optimisation infill process uses 83% of the allowed computational budget, which is conducted
serially. For the high fidelity SU2 optimisation runs, the budget is reduced by half to 25D due to
the long computational run-times. This particular problem requires eight full CFD evaluations
per geometry to calculate the objectives and constraints, which equates to over one hour of
computation on a 32-core machine.

4. Simulation Failure Handling Methodology

Six strategies to handle failed evaluations are investigated by modifying the baseline SAEA, of which
the first four are visualised in Figure 3. For the considered airfoil shape optimisation problem, simu-
lation failures can occur for both objectives and the expensive lift constraint, which are set to 'not-a-
number’ (NaN). A measure of failed evaluations can be defined by the Simulation Failure Rate (SFR),
which counts the proportion of NaN’s in the objectives and constraints for a population, as presented
in Equation 3.

SFR _ P E€P | failed(f,g)}|

|P|
Where p is an individual in the population set P and (f, g) are the corresponding objective and con-
straint vectors, respectively. The function failed(x,y) indicates whether any components of the vec-
tors x and y have any NaN’s present. Strategy one (SFH1) can be considered the ’naive’ approach

(3)

Figure 3 — Four simulation failure handling strategies in order SFH1-4 left-to-right: showing DoE
with black points, simulation failures with red points, and contours for the surrogate predictions.
Predicted failure-prone areas are shown in red shaded areas for SFH2 and SFH3. Light colours
represent the minima of the Branin-Hoo test function, and dark colours the high-objective regions.
White patches indicate missing objective information due to failed evaluations.

and consists only of filtering out failed evaluations from initial surrogate training after the DoE, and
through subsequent infill point evaluations. Strategy 2 (SFH2) extends upon SFH1 by applying a trust
region around previously failed evaluations to prevent the algorithm from evaluating points close to
failure regions in the design space. SFH2 is used to pre-select the NSGA-II population before infill
point selection, where the trust region threshold R.,; is set experimentally to 5% of the Euclidean
distance of the design space. If no infill candidates lie outside the trust regions, R..;; is decreased
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iteratively by 10% until at least one infill point exists. Strategy 3 (SFH3) uses a probabilistic SVM
classification surrogate, equivalent to Baert et al. [2]. The SVM surrogate is trained on simulation
failures to pre-filter points likely to return a failed evaluation before infill point selection, similarly to
SFH2. Strategy four (SFH4) can be considered the ’classical’ penalty approach, where large ob-
jective values are imputed for failed evaluations. The optimiser filters out these points due to their
poor fitness ranking, at the expense of the surrogate objective landscapes becoming distorted. For
each failed evaluation infill point, the surrogate objective prediction is penalised by a factor of 1.1 and
imputed into the archive, before updating the surrogate models.

Strategy five (SFH5) is identical to SFH1 besides in augmenting the standard LHS initialisation. Evo-
lution is conducted to obtain a prescribed size of geometrically-feasible solutions before conducting
expensive evaluation of the LHS population. Geometric constraints for this problem are analytical and
considered ‘computationally cheap’ to evaluate. This strategy aims to reduce the occurrence of initial
simulation failures, whilst maintaining as much diversity in the design space as possible. Geometric
filtering has the added benefit of automatically bypassing the redundant regions of the search space,
such that the surrogate models are trained to be more accurate in the regions of interest. Lastly,
strategy six (SFH6) extends SFH5 by exploiting computationally-cheap geometric constraint informa-
tion throughout the entire optimisation process. Specifically, the surrogate predictions for geometric
constraints are replaced with the real-evaluated constraint values during the internal offspring evolu-
tions in each optimisation iteration. The purpose of SFH6 is to reduce surrogate accuracy biases for
constraints that need not be regressed due to the availability of fast, exact constraint information.

5. Optimisation Convergence Methodology

The Hypervolume indicator metric [34] is used to calculate the HVI in the infill point selection during
the surrogate-based optimisations. It is also used to calculate the Hypervolume Coverage (HVC) of
an optimal set of solutions against a pre-determined Pareto Front. The HVC measures the level of
coverage of a set of Pareto-optimal solutions with respect to the best-known Pareto front (PF*) of
the problem.The Hypervolume Improvement (HVI) is defined as per Equation 4 and the HVC as per
Equation 5.

HVI=HV(P,r) — HV (PF*,r) (4)
_ HV(Pr)
HVC = HV (PF*,r) ©)

Where HV is the Hypervolume of a population P with respect to a nadir point r. The HVC is expressed
as a fraction (HVC € [0,1]), therefore a value of HVC = 1 means the population P has a perfect
coverage, and is identical, to the best-known Pareto front (PF*). For the considered objectives, in the
context of minimisation, the nadir point is approximated from MSES runs as r = [—45.171,—0.7885].
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6. Results

The following section presents the convergence studies conducted on the supercritical airfoil design
problem using the low- and high-fidelity aerodynamic solvers, MSES and SU2, respectively. Firstly,
the approximated Pareto Front for MSES is obtained and the aerodynamic performance of the optimal
airfoils is discussed. Secondly, the convergence efficiency of the six simulation handling strategies is
compared and distinctions between the MSES and SU2 optimisation runs are determined. Lastly, the
frequency and characterisation of simulation failures in the search space is explored, drawing conclu-
sions on the differences between low- and high-fidelity simulation for supercritical airfoil optimisation.

6.1 Airfoil optimisation results

Due to the small evaluation times of MSES it is possible to obtain an approximated Pareto Front
of the trade-off between the weighted lift-to-drag and the drag-divergence Mach number. Multiple
surrogate-based optimisation runs are collated together and the combined PF is extracted to ini-
tialise the NSGA-II population. This step ensures the approximated PF is not dominated by any of
the surrogate-based optimisation runs. The NSGA-II population size is set to 100 and 1,500 gener-
ations are evolved, equalling a total of 150,000 function evaluations. The obtained Pareto front and
subset of Pareto-optimal airfoils are visualised in Figure 4 — (a). Figure 4 — (b) compares the aero-
dynamic performance of the obtained optima to the baseline airfoil, SC(2)-0412, for a Mach number
sweep at Re = 30-10° and lift coefficient C; = 0.4 using MSES.

The convergence difficulty of the airfoil design problem is moderately high due to the non-linear
mapping between objectives and design variables. This aspect is magnified by the high occurrence
of simulation failures. The geometric and lift constraints are easy to satisfy and are not a significant
challenge for the optimiser. However, the disjointed regions of the PF indicate a high degree of sim-
ulation failures. After the initialisation, 96% of airfoil shapes evaluated with MSES fail, which is more
severe for the weighted lift-to-drag objective than the drag-divergence Mach number. After 1,500
generations, the simulation failure rate near the vicinity of the PF decreases to 45%. This proportion
of simulation failures is significantly higher than those reported in previous studies [1, 2, 3, 14, 15],
which highlights the simulation failure handling difficulty of the considered airfoil design problem.
Importantly, this enables the robust design of simulation failure handling mechanisms in surrogate-
based optimisation, where almost all of the initial population is undefined in objectives and some
constraints.

Pareto Front

=
00 3 W00 00121 T it
@ T =  Optimum 2
2 0805{1C__  _—F—. 1200 —0.011 Optimum 3 .
2 . . " l 1000 @ = Optimum 4 4
Rt Plem— £ 0.010
g 2 ' 800 g
£

§ 0.795 600 3 0.009
S s __— o
& 0.790 400 & 0.008
= a
a 0

40 45 50 55 0.006

0.60 0.65 0.70 0.75 0.80

. : L
Weighted Lift-to-Drag (5) Mach Number [-]

(a) Convergence of NSGA-II for 1,500 generations. (b) Comparison of wave-drag build up for the four
optima and the baseline SC(2)-0412 airfoil.

Figure 4 — Visualisation of optimisation results obtained from NSGA-Il and the MSES solver. The
colour-map represents generations and the Pareto Front is shown in red with four optimal airfoils
annotated in black.
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The optimal sections visualised in Figure 4 — (a) show that MSES predictions correctly drive the
optimiser towards supercritical profiles. A higher M, is obtained through a blunter nose and flatter
upper section, delaying the onset of strong shock formations, at the expense of higher drag for the
operating Mach numbers. At the other extreme of the front, a lower M,; and higher weighted lift-to-
drag solution, leads to a sharper undercut leading edge nose and a more rounded upper surface. As
a result, a reduction in aft-loading is obtained by decreasing the trailing edge angle yrg. The optimal
solutions feature similar aspects to the conclusions made in the third phase design of the NASA
supercritical airfoils [18]. Figure 4 — (b) shows that all optimal airfoils achieve a higher (predicted)
drag-divergence Mach number than the baseline SC(2)-0412. Optima 1 and 2 achieve equal or
lower drag coefficients at Mach numbers below M = 0.74, with reasonably flat drag curves until the
critical Mach number is reached. On the contrary, optima 3 and 4 achiever a higher M,, value by
maintaining the dC,/dM rate-of-change below 0.1 with a more pronounced build up in drag and a
higher base-drag. This results in inferior aerodynamic performance below M = 0.78. The obtained
optimisation results demonstrate the aerodynamic performance of the baseline SC(2)-0412 airfoil
can be improved using a low fidelity solver. However the varied wave-drag characteristics observed
makes the selection of an optimal design from the Pareto Front a non-trivial task for the designer.

6.2 Simulation failure handling effect on convergence

A convergence study on the six proposed simulation failure handling strategies is conducted using
both low- and high-fidelity solvers. Figure 5 — (a) shows the convergence of the Hypervolume Cov-
erage (HVC) for the MSES runs, and Figure 5 — (b) shows the corresponding simulation failure rates
during the optimisation history. The equivalent is shown for the high fidelity SU2 optimisation runs in
Figure 6 — (a) and (b), respectively. The final median Pareto fronts for each SFH strategy are shown
for MSES and SU2 runs in Figure 7 —(a) and Figure 7 — (b), respectively. Table 2 summarises the
mean convergence scores and simulation failure ratios for the MSES and SU2 optimisation runs.
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Figure 5 — Convergence and simulation failure ratios for SFH strategies using MSES. Solid lines
represent the mean performance and shaded areas are the best and worst performance of 10
independent runs.



ON THE CHALLENGES OF SURROGATE-BASED AERODYNAMIC SHAPE OPTIMISATION

100
o 0.80 &
o
g 2
2 0.60 c 80
O g
@ _ =
Eo040 E 60
[= _i‘"- c
% SFH2 =
20.20 [T SFH4 =
T ' & SFHS g 40
00 , —— SFH6 0
100 150 200 250 300 350 100 150 200 250 300 350
Number of Evaluations Number of Evaluations
(a) Hypervolume Coverage (b) Simulation Failure Ratio

Figure 6 — Convergence and simulation failure ratios for SFH strategies using SU2. Solid lines
represent the mean performance and shaded areas are the best and worst performance of 5
independent runs.

The convergence studies highlight a number of differences when conducting optimisation with differ-
ent solver fidelity. The best mean HVC score of approximately 79% is obtained with strategies SFH4
and SFH5 for the MSES runs, in comparison to 58% for SFH5 in the SU2 runs. The reduction in
convergence from the SU2 runs is explained by two aspects; 1. the computational budget is reduced
from 50D to 25D due to long run times, and 2. the Pareto front used to calculate the HVC is the MSES
approximation of the true front. Validation of the aerodynamic solvers showcased an under predic-
tion of drag for MSES and very similar drag-divergence Mach number predictions for both solvers.
This behaviour is seen in Figure 7 — (a) and Figure 7 — (b), where the MSES non-dominated fronts
have equivalent M;, objectives to the SU2 runs, but higher lift-to-drag predictions, thus closer to the
PF obtained from Figure 4 — (a). Comparing MSES runs in isolation, is it observed that imputing
values for failed evaluations (SFH3) does not perform well, with a 59% reduction in HVC relative to
the best-performing strategy and no improvement in the final SFR values. For this reason, this strat-
egy is omitted from the computationally-expensive SU2 runs. Penalty methods introduce significant
distortion in the regression models and will likely result in poor surrogate modelling accuracy.

Table 2 — Summary of convergence results for the MSES and SU2 optimisation runs of the six SFH
strategies.

SFH strategy mean HVC (%) mean initial SFR (%) mean final SFR (%)

MSES SU2 MSES su2 MSES  SU2
1 783 432 65.8 56.7
2 765  50.3 68.5 57.6
3 473 - 963 9.3 74.4 -
4 792 497 64.1 55.2
5 797 575 74.3 53.3
6 69.7 549 OO 932 76.5 49.3

Exploiting cheap constraint information throughout the entire optimisation process (SFH6) results in
pronounced differences between MSES and SU2. For the low-fidelity optimisation runs, the effect of
SFH6 is detrimental compared to SFH5, whereas for SU2, strategy SFH6 is closer to SFH5 in perfor-
mance with the lowest mean SFR of 49%. The use of surrogates for all constraints in SFH5 does not
drastically increase the modelling errors for this problem, compared to SFH6, which evaluates the 15
geometric constraints exactly. This suggests that exploiting the constraint surrogate predictions has
the benefit of by-passing local optima and feasibility boundaries in the case of MSES, thus achieving
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more efficient convergence for the given computational budget. The discrepancy in SFH6 conver-
gence between MSES and SU2 likely relates to the higher simulation failure rates observed by the

former, especially near the Pareto front (Section 6.3).
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Figure 7 — Final median optimal front for SFH strategies, comparing MSES and SU2 runs.

Strategies SFH1, 2, 4, and 5 obtain near-identical mean HVC scores for MSES, with slight differences
in convergence robustness between optimisation runs. SFH5 is the most robust with the lowest vari-
ance between the best and worst optimisation runs, however, with a higher final SFR in the population
than all strategies besides SFH6. For the SU2 runs, a greater spread in convergence is seen for the
above-mentioned strategies. Initialising the population from only geometrically-feasible solutions is
most promising when using SU2, as higher HVC scores are achieved compared to strategies SFH1,
2, and 4. The pre-filtering and classification methods in SFH2 and SFH5 are superior to SFH1, which
performs the worst for SU2. It appears that simply ignoring failed evaluations is more appropriate
when the occurrence and distribution of simulation failures is more prominent and randomised (see
Figure 8), which explains why SFH1 performs as well as the other strategies for MSES but not for
SU2 runs.

The final SFR scores of the different SFH strategies show that the average failure rate in the final
population is 70.6% and 54.4% for MSES and SU2, respectively. As the infill computational budget
is halved for the high-fidelity runs, this outcome is significant and highlights that optimisation with
SU2 is more robust than MSES for the same high-subsonic flow conditions. It is assumed the higher
fidelity modelling of the RANS equations in SU2 accounts for this behaviour. Additionally, the spread
in the SFR between optimisation runs is much larger for MSES than for SU2, however this is in part
due to only evaluating five instead of ten optimisations runs. Finally, geometric constraint filtering of
the initial population only has a small effect on the initial SFR values for both MSES and SU2 runs.
This indicates that the initial airfoil geometries generated, although geometrically feasible, produce
complex flow behaviour that results in solution divergence or poor convergence, causing both low-
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and high-fidelity solvers to fail frequently. Strategies SFH5 and SFH6 reduce the initial simulation
failure rate by at most 5% for both solvers, compared to strategies SFH1—4 using a standard LHS
initialisation.

Given the obtained convergence results, the following conclusions can thus be derived:

1. Penalty methods must be avoided when training surrogate models and handling simulation

failures. They lead to inferior convergence for a surrogate-based optimiser regardless of the
solver fidelity.

2. Equivalent optimisation convergence can be obtained with different simulation handling strate-
gies despite different levels of simulation failures. The proportion of simulation failure rates will
heavily depend on the problem difficulty and vary drastically between different initialisations.
As such, less failed evaluations for a simulation failure handling strategy does not necessarily
correspond to improved algorithm convergence and vice versa.

3. The use of cheap constraint information to pre-filter the initial population before expensive eval-
uation decreases the initial simulation failure rate by approximately 5% both for low- and high-
fidelity solvers. This improves the robustness of the convergence for multiple optimisation runs,
as seen for strategy SFH5.

4. Exploiting cheap geometric constraint information throughout the entire optimisation process
might not yield optimal results depending the simulation failure occurrence and distribution in
the design space. For both MSES and SU2 solvers, strategy SFH5 is most appropriate, as the
use of surrogates for all constraints enables efficient search and identification of optimal regions
in the design space.

6.3 Simulation Failure Characterisation

The occurrence and distribution of simulation failures in the design space is investigated using two
high-dimensional data visualisation techniques, namely Uniform Manifold Approximation and Projec-
tion for Dimension Reduction (UMAP) [35] and parallel-coordinate plots [36], shown in Figure 8 and
Figure 9, respectively. The UMAP visualisations are obtained by projecting the entire optimisation
run history, and annotating the points that are simulation failures and geometrically-infeasible.

Geometrically-infeasible - Simulation Failures +  Geometrically-infeasible - Simulation Failures
All Evaluations - Pareto front All Evaluations : _ Pareto front
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(a) All MSES optimisation runs (b) All SU2 optimisation runs

Figure 8 — Projection of all evaluated and simulation failure points for strategy SFH1 using UMAP.
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For both MSES and SU2 runs, the non-dominated points are projected at the extremities of the feature
map. Notably, the optimal design variables for MSES runs are surrounded by clusters of simulation
failures, whereas for SU2, less failures occur closer to the optimal regions. This phenomenon, in
conjunction with overall lower simulation failure rates, indicates that SU2 is more robust in transonic
regimes for supercritical airfoil design than MSES. Simulation failures for SU2 show greater global
structure compared to MSES, however, the frequency and randomness of failures makes it very diffi-
cult to predict and mitigate their occurrence during optimisation. Comparing geometrically-infeasible
solutions to failed evaluations reveals that 71% of simulation failures are attributed to geometric con-
straint violations for MSES and 67% for SU2. Although strategy SFH6 shows mixed results in replac-
ing geometric surrogate constraint predictions with exact evaluations, there appears to be a strong
correlation between simulation failures and airfoil geometries that violate the 15 geometric constraints
imposed of this airfoil problem.

Using parallel coordinate plots, similar observations to the UMAP visualisations can be made. Fail-
ures are widespread for all combinations of design variables, including around the non-dominated
solutions. For MSES, the clustering of failures is again more prevalent than for SU2, as shown in Fig-
ure 8. Whilst UMAP provides a visualisation of the design space, Figure 9 enables direct comparison
of the optimal design variables. Both MSES and SU2 solvers guide the optimiser towards very similar
geometries, besides the Bezier nodes X, and Xg, which show the greatest variation. These control
points affect the upper leading edge and lower surface maximum thickness regions, respectively. It
should be noted that the differences in PF coverage for the low- and high-fidelity runs explains some
of the variance observed. As shown, the occurrence and distribution of simulation failures in the de-
sign space is non-trivial. SU2 appears to be more robust than MSES once the optimal region of the
design space is identified by the surrogate-based optimiser. This is seen by the reduced number of
failed evaluations surrounding the Pareto front, which also results in greater variation in the optimum
design variables. Finally, a strong correlation between geometric constraint violations and simula-
tion failures is again observed, thus the key to reducing wasted computational effort likely lies in
filtering out geometrically-infeasible solutions before expensive evaluation and setting up appropriate
constraints during problem design.

All Evaluations Simulation Failures Pareto front All Evaluations Simulation Failures Pareto front
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(a) MSES optimisation runs (b) SU2 optimisation runs

Figure 9 — Projection of all evaluated and simulation failure points for strategy SFH1 using parallel
coordinates.

7. Conclusion

Surrogate-based shape optimisation has been applied to the design of a supercritical airfoil subject
to a high degree of simulation failures using low- and high-fidelity solvers MSES and SU2, respec-
tively. Convergence studies on six simulation failure handling strategies, inspired from literature, were
conducted to determine the occurrence and distribution of failed evaluations. Furthermore, two high-
dimensional data visualisation tools were used to analyse the differences in failures between solvers
of varying fidelity and the resulting optimal design variables of the Pareto fronts obtained.
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Results show that the frequency of simulation failures is approximately 23% lower for SU2 com-
pared to MSES at half the infill computational budget, and optimal regions of the design space are
much less failure-prone for SU2 than for MSES. Moreover, a strong correlation between geomet-
ric constraint violation and simulation failures of 71% and 67% is determined for MSES and SU2,
respectively. From the six strategies investigated, classical penalty methods are found to not be ap-
propriate for handling simulation failures, due to the impact on surrogate modelling accuracy. No
significant differences are found, besides robustness between the best and worst optimisation runs,
for failed evaluation pre-filtering and classification in simulation failure handling strategies (SFH) two
and four. A simple strategy that ignores failed evaluations (SFH1) is appropriate when the occur-
rence of simulation failures is high and very randomised, as with MSES. However, when there is
greater global structure to simulation failures in the design space, SFH1 performs poorly compared
to the other tested strategies, as shown for SU2 results. Pre-filtering the initialisation population for
geometric feasibility appears to reduce the number of simulation failures by approximately 5% ini-
tially. Nevertheless, the strong correlation between the geometric constraint violation and simulation
failures indicates that this information, if available to the designer, should be exploited when conduct-
ing aerodynamic shape optimisation. Lastly, it is expected that the outcomes observed in this study
are highly-problem dependent, and also reflect an extreme, yet common, occurrence of simulation
failures. Further work is warranted to capture the general trends in simulation failure handling for
surrogate-based optimisation on a wide range of (aerodynamic) shape optimisation problems subject
to simulation failures.
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