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Abstract

The present study aims to design an efficient elytra-inspired honeycomb cell structure for enhanced energy
absorption. Various regression models are evaluated and then integrated into a metamodel for multiobjec-
tive optimisation. Multivariate Polynomial Regression (MPR), Linear Ridge Regression (LRR), Kernel Ridge
Regression (KRR) and Deep Neural Network (DNN) regression models were evaluated. The LRR and DNN
models were selected to be coupled with a genetic algorithm (NSGA-II) for multi-objective optimisation aimed
at minimising peak crushing force and maximising Specific Energy Absorption (SEA), while also considering
Crushing Force Efficiency (CFE). The DNN-derived configuration showed the highest SEA (+106.2%) and CFE
(+37.3%). While the LRR model proved to be faster (5.3 s vs. 868 s), the DNN model provided higher accuracy
with significantly lower mean relative errors between the values determined by the FEA and the metamodel
(18.54% and 6.83% vs. 1.39% and 2.0% for peak force and SEA, respectively). The combined DNN/NSGA-II
metamodel was 10* times faster than the conventional finite element analysis. It proved to be effective for initial
structural optimisation and provides a cost-effective approach for advanced structural engineering solutions.

Keywords: Deep Neural Networks (DNN), Finite Element Analysis (FEA), Bio-inspired structure, Multi-
Objective optimization, Crashworthiness

1. Introduction

The demand for lightweight structures with high energy absorption capacity has increased signifi-
cantly in areas such as aerospace, transport, nuclear reactors and construction [1]. To meet this
demand, various energy absorbers with different structures have been tested to reduce weight while
improving safety and functional properties in the event of a direct axial impact [2].

Nature-inspired and biomimetic geometries exhibit remarkable efficiency and versatility, optimally
utilising materials and structures to perform in demanding environments. These geometries, which
incorporate design concepts such as structural hierarchies, density gradients and thin-walled tubu-
lar/cellular structures, combine lightweight properties with impact resistance [3]. In aerospace, lightweight,
low-density structures, such as sandwich structures, play an important role in ensuring compressive
strength in impact scenarios. These structures, which often contain foam, lattice or truss cores, offer
a low weight-to-area ratio while ensuring stiffness, strength and absorption of impact energy [4].
Additive Manufacturing (AM) contributes to passive safety in aviation by reducing production costs
and enabling higher design complexity [5]. Various bio-inspired structures have already been pro-
duced using 3D printing technologies and show excellent energy absorption properties, especially
those inspired by insect wing covers [1, [6]. The geometries and structures described in this article
appear to be particularly well suited to this particular manufacturing process.

Optimising the impact behaviour and energy absorption of structures is an important research focus
that benefits public safety and the economy as a whole [7]. Engineers use Computer-Aided Engineer-
ing (CAE) design software and simulation tools, such as Finite Element Analysis (FEA) packages, to
predict the performance of lightweight structures before production [8]. However, direct non-linear
FEA can be resource intensive. As an alternative, surrogate models or metamodels that express
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design criteria in the form of an explicit function of the design variables prior to optimisation are often
used [7]. This approach has proven successful for applications in the field of structure and crash
behaviour [9] 10} 1 1].

Artificial Intelligence (Al), particularly Machine Learning (ML) and Deep Learning (DL), has become a
powerful tool for predicting non-linear properties and optimising structures. ML uses algorithms and
analytics to create predictive models by analysing large datasets and identifying patterns and rules
using various techniques, and serves as a cost-effective replacement for FEA. A widely accepted ap-
proach involves a two-step process: model approximation using an Artificial Neural Network (ANN)
and variable optimisation using a Multi-Objective Optimization (MOO) algorithm [12]. This combina-
tion has proven to be efficient in predicting optimal structures, especially when combined with genetic
algorithms [14, [15].

The integration of DL into structural optimisation leads to new perspectives and refinements in data
regression approaches. In contrast to traditional models, DL can handle complex, non-linear rela-
tionships more accurately and dynamically adapts to changes in structural parameters, leading to
improved prediction accuracy. This research presents an alternative to standard surrogate structural
optimisation that builds on the results of a previous study [16] and compares traditional methods with
DL-based approaches.

The paper is organised as follows: Section 2 presents the optimisation methods used. Section 3
presents and discusses the results, focusing on the comparison between the results obtained with
classical polynomial regression and those obtained with DL algorithms. Finally, the conclusions are
presented in Section 4.

2. Materials and methods
2.1 Structural crashworthiness indices

The criteria for quantitatively evaluating the crashworthiness of different structures are determined
using the force-displacement profile of an energy absorber subjected to either crushing force or con-
trolled displacement, as defined in the literature [1]. Key parameters include the axial crushing force
F(x) as a function of the displacement x, the effective deformation distance d,,.,, the maximum crush-
ing force (F,.4x) and energy absorption (EA). Four indicators are used to define crashworthiness per-
formance [17]:

Energy absorption (EA): EA(d) = fod’””F(x)dx. This evaluates an energy absorber’s ability to
dissipate crushing energy through plastic deformation, represented by the area under the force-
displacement curve.

Specific Energy Absorption (SEA): SEA(d) = EA(d)/M. This is the ratio of the EA of a structure to
its mass (M), allowing comparison of energy absorption performance across different materials and
structures.

Mean crushing force (P,,): P, = EA(d)/du.- This is the average compressive force exerted by the
energy absorber over the entire effective deformation distance.

Crush Force Efficiency (CFE): CFE = P,/ F,..x. This indicator measures the uniformity of the load
during energy absorption. A higher CFE value indicates minimal changes in the energy absorption
mechanism during deceleration, which is beneficial for reducing potential damage to passengers or
other payloads.

2.2 Feed-Forward Neural Networks (FFNN)

Feed-Forward Neural Networks (FFNNs) are a type of DL artificial nerual network commonly used
for creating input-output relationships and they are inspired by the structure of the human brain [18].
Each input parameter x; is multiplied by a corresponding weight w;, adjusted with a bias b and then
summed to a unit known as a neuron. Fig. 1| shows a diagram of a neuron with multiple weighted
inputs. Each neuron consists of a basic processing operation with the inherent ability to store infor-
mation about the weights [18]. The output of the neuron, y, is determined by an activation function
Z such that y = .7 (wix; + D).

A typical neural network can receive multiple input signals from different channels, process these in-
puts using the weights and biases of the network, and incorporate nonlinear factors via the activation
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function. By adding nonlinearity, the neural network can approximate any nonlinear function and im-
prove the overall robustness of the network. In a FFNN, a different number of neurons are connected
to the same set of input parameters via corresponding weights and bias values. The output of these
neurons is passed to another layer of neurons via an activation function, forming a multi-layer neural
network. Common activation functions include the Rectified Linear Unit (ReLU), the sigmoid func-
tion, Softmax and the hyperbolic tangent function (Tanh). This structure creates a multilayer FFNN in
which each input is passed through the neurons to the corresponding hidden layers without feedback.
Fig. [2 shows a schematic representation of such a network. As shown, each hidden layer contains
neurons that are connected to the next hidden layer via unique weights and bias matrices. These
weights and biases are adjusted to minimise a loss function that measures the difference between the
predicted output and the actual output of the network. The learning algorithm calculates the gradient
of the loss function with respect to the weights and biases of each hidden layer through backpropaga-
tion and then uses optimisers to minimise this loss. Common loss functions include Mean Squared
Error (MSE), Mean Absolute Error (MAE) and Cross Entropy Loss. Commonly used optimisation
algorithms are Stochastic Gradient Descent (SGD), Levenberg—Marquardt, RMSprop and Adam [8].
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Figure 1 — Scheme of a single neuron  Figure 2 — Scheme of a feed-forward multi-layered neural
with multiple weighted input. network.

2.3 Crashworthiness optimization framework methodology

The objective of this work is to identify the structure
that demonstrates the best crashworthiness performance
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analysis considered geometries with a maximum circum-

ference and height of 50 mm, calculating energy absorp-

tion up to a 20 mm compression.

To compare the structures, the COmplex PRoportional ASsessment (COPRAS) method was used
[19,19]. COPRAS is a Multi-Criteria Decision Making (MCDM) methodology that evaluates and selects
the best option based on conflicting criteria. In this case, energy absorption (EA) and crushing
force efficiency (CFE) were maximized, while peak compression force (F,...) was minimized. The
COPRAS method identified the circular configuration with 4 reinforcing cylinders (C4) as the best.
This configuration demonstrated a 68.4% higher specific energy absorption (SEA) than a simple
hollow metal cylinder with same dimensions and mass (refer to Fig. [5]and Tab. [{) and demonstrated
a progressive deformation mode, which reduces fluctuations in the crushing force (Fig. [4). The C4
geometry was therefore selected for multi-objective optimization to be performed in the current work.

Table 1 — Design variables comparison for C4 COPRAS results.

Geometry SEA [J/g] F.. [kKN] EA[kJ] CFE[-]
Reference cylinder 19.38 215.53 3.04 0.6701
C4 32.65 285.22 5.14 0.8671
% variation +68.47%  +32.33% +69.08% +29.40%
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Figure 5 — C4’s force-displacement
Figure 4 — Undeformed and deformed shapes of C4 graph comparison with reference
investigated with the COPRAS methodology. cylinder.

2.5 Design of Experiments (DOE) approach

According to the comparative analyses mentioned above, structure C4 performs best from a multi-
criteria point of view and under axial impact loading. Therefore, a multi-criteria optimisation was
performed to find the best possible design. Numerous non-linear FE simulations are normally carried
out to optimise crashworthiness. Surrogate modelling has established itself as an efficient method
for solving this problem. A Design of Experiment (DOE) is a widely used technique for structural
optimisation in an initial design phase, as design of experiment plays a crucial role in optimising
production processes in science and engineering. It can lead to reduced variability, better compliance
with target requirements, shorter development times and lower overall costs when performed in the
early stages of process development [21]. The DOE approach consists of the following four steps:
1) Pre-experimental planning, 2) Choice of experimental design, 3) Conduction of the experiment, 4)
Data analysis, modelling and validation. The individual phases are explained in more detail in the
following sections.

2.5.1 Pre-experimental planning
The first step in multi-criteria optimisation was to identify the response variables and the geometric
factors with their ranges. The geometric design factors are the variables that were varied during
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the experiment and were thus considered as input factors that influence the performance of the
system. In this case, the response variables of interest were the maximum crushing force (Fux),
which should be minimised as excessive impact force can lead to significant deceleration that could
result in serious injury or even death to the occupants, and the specific energy absorption (SEA),
which should instead be maximised as the primary goal for an energy absorber is to maximise its
energy absorption capacity [22].

The selected design variables, which instead represent geometric parameters that are varied to cre-
ate different geometries, include the wall thickness (z,,) in the range of 1 to 2.5 mm, the thickness of
the reinforcing cylinders (z.) in the range of 1 to 2.5 mm, the radius of the reinforcing cylinders (r)
within 2.5 to 6 mm (where the maximum outer diameter is fixed, which affects the variation of the
diameter of the main feature) and a parameter of the leading line of the deformations. Regarding
this last variable, according to some studies [23], the mechanical properties of a crash box can be
adapted to different technical requirements by varying the amplitude of the deformation lines. These
results inspire the application of bionic structures based on beetle elytra and the use of new buffer
structures to mitigate the damaging effects of collision events and improve crashworthiness safety.
A sinusoidal deformation line of the form Z = Asin(0.3 x X) was implemented along the height of the
structure to investigate these effects. Here, A is a parameter that controls the amplitude (in the range
from 0 to 1.5) of the sinusoidal function, while the periodicity is kept constant with a parameter equal
to 0.3.

To summarise, this study dealt with 2 response variables and 4 design variables whose ranges were
selected according to possible manufacturing (e.g. the lower limits for the thicknesses), geometric
(e.g. for A) and common-sense limits. The mathematical formulation of the optimisation problem can
be given as Eq. [{}

Min Fuax(tw,te,1,A)
Max SEA(ty,tc,1,A)
s.t. 1.0 <#t,,t. <25 (1)
25<r<6.0
00<AK1S

\

2.5.2 Choice of experimental design

Optimal Latin Hypercube Sampling (OLHS) [9] is an advanced sampling technique used to select an
optimised set of points within a Latin hypercube. It is a variant of Latin Hypercube Sampling (LHD),
but it aims to further improve the coverage and efficiency of parameter space exploration. OLHS was
used to generate 150 training points that were tested in the next phase of the DOE.

2.5.3 Conduction of the experiment

Once the DOE test points were selected, the configurations corresponding to the selected design
variables were simulated by computational experiments using Abaqus/CAE Explicit Solver. The sim-
ulations were carried out according to the same procedure described in Ref. [16] to obtain the
COPRAS-optimal geometry. The force-displacement diagrams and mass properties were saved for
each simulation performed so that the desired values for SEA and F,,,. could be calculated.

2.5.4 Data analysis, modelling and validation

Once the simulation data had been collected, the next step was to create a regression model to anal-
yse the sample data. This model should fit the data to reveal the relationship between a response
variable and the independent geometric factors. To achieve this, four different supervised ML algo-
rithms are used for training, fine-tuning and testing. These algorithms are Multivariate Polynomial
Regression (MPR), Linear Ridge Regression (LRR), Kernel Ridge Regression (KRR) and a Deep
Neural Network (DNN). The numerical dataset used to tune the ML algorithms is divided into three
segments: the training set (104 data points, i.e. 70% of the entire dataset), the validation set (23
data points, i.e. 15% of the entire dataset) and the test set (23 data points, i.e. 15% of the entire
dataset). The training set is used to help the ML algorithms learn the parameters that define the

5
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regression models, in particular to establish the relationship between the input design variables (x;)
and the output crashworthiness indicators (y;). The validation and test sets serve different purposes:
the former is used to fine-tune the hyperparameters of the algorithms, while the latter is used to eval-
uate the quality of the approximation, as it has never entered in the model fitting cycle. Following this
process, the optimal metamodel is determined and then used in the genetic algorithm to calculate the
mechanical properties of non-FE simulated geometric models. Fig. [f]illustrates the workflow used in
this process.

Finite element analyses

Crashworthiness

Structure generator R
indices

Design parameters
sampling

Dataset generation

(Xi! SEA\)! (xi’ Fmax i)

Validation
set
Test set

Training set ’
o
E Supervised learning

]
)

Multi-objective optimization Optimal structures

Figure 6 — The workflow diagram illustrates the process used in the DOE to create the numerical
dataset, train the DL algorithms, predict the crashworthiness indices of the structures and perform a
multi-objective optimisation through a genetic algorithm to obtain optimal geometries.

SEA regression model

Fonax regression model

Two regression models were required: one for the maximum crushing force and one for the specific
energy absorption. All input and output parameters are normalised between 0 and 1 to avoid any bias
due to the different scales of the parameters and thus improve the performance of the ML algorithms.
The data normalisation processing method is illustrated by the following equations:
o _ " —min(x) (o) __ Yspa—min(ysea) () __yf —min(yr)
TS max(ysga) —min(ysea) 7 max(yr) —min(yr)

" max(x;) — min(x;)
where i represents the i-th input parameter (i = 1,...,4), d denotes the d-th design sample (d

1,...,150), xl@ represents the normalised value of the i-th input feature of the d-th input sample; xfd) is

the value of the i-th input feature of the d-th input sample; yg”QA and yl(f) denote the normalised value of

the output parameters SEA and F;,,, of the d-th output samples, respectively; yg‘QA and y(ﬁfi) denote the
value of the output SEA and F,,,, output parameters of the d-th output samples, respectively; min(x;),
min(ysga ), min(yg), max(x;), max(ysg4) and max(yr) denote the minimum and maximum values of all
input features, SEA and F;,,, output values, respectively.

Four different supervised learning approaches are used and compared [24]:

©

» Multivariate Polynomial Regression (MPR): MPR is an extension of linear regression that allows for
multiple input variables and non-linear (polynomial) relationships between the input variables and
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the target variable. A degree of 3 was used for the polynomial equation for both the SEA and the
Fnax models.

* Linear Ridge Regression (LRR): LRR is chosen due to its simplicity and computational efficiency.
Linear regression with L2 regularisation is used as an approximation tool. The implementation uses
the corresponding Python package Scikit-learn, whereby a regularisation parameter o = 0.1 was
chosen to prevent underfitting.

* Kernel Ridge Regression (KRR): KRR is used to capture complex input-output relationships using
nonlinear kernel algorithms while maintaining high computational efficiency. In this approach, we
define a kernel regression model based on Radial Basis Functions (RBF) by utilising the capabilities
of Scikit-learn. The regularisation strength a and the hyperparameter y associated with RBF were
setto 0.1.

» Deep Neural Network (DNN): DNNs are chosen for their ability to approximate functions without
limits[18]. However, compared to previous approaches, they require a significantly higher compu-
tational effort for training and hyperparameter selection due to the large number of parameters and
hyperparameters that need to be tuned. In this project, we develop our own DNN with Keras, a
user-friendly front-end API for TensorFlow. The two chosen DNN architectures include an input
layer with 4 neurons (one for each design variable), an output layer with one neuron (SEA and F,,,,
are predicted by different models), and 3 and 2 fully connected hidden layers with 256 neurons each
for the models of SEA and F,,.,, respectively. A uniform variance scaling of He was used to initialise
the weights of the hidden layers, while a uniform initialiser of Glorot was used to initialise the output
layer. L2 regularisation was also used to regularise the kernel weight matrix of the hidden layer.
The Exponential Linear Unit (ELU) activation function is applied to all layers except the output layer,
where a "linear" activation function is used, which is commonly used for regression tasks in the last
layer. ELU was chosen instead of the classical ReLU to avoid the vanishing gradient problem and
to speed up the learning process as it brings the mean activation closer to zero [25]. Finally, the
Adam optimisation algorithm is used to minimise the Mean Absolute Error (MAE) loss function. The
training of the DNNs and their parameters comprises a total of 2000 epochs with a batch size of 16,
taking into account early stopping and a reduction of the learning rate in case of plateau callbacks.

In order to verify the robustness and goodness of fit of the models and to ensure a robust agree-
ment between the data obtained from the experiments and the data derived from the regression,
two parameters had to be calculated and checked: the relative error and the value assumed by the
coefficient of determination [26], which are respectively defined as follows:

| Srem(X) = frir(X)
R, = From®) (3)

0 LT (@—5)?
=t YWY, (i—2)? @

R? normally ranges from 0 to 1 and it serves as an indicator of how effectively a statistical model can
predict an outcome. On this scale, a value of 1 means a perfect match with the available data. In Eq.
7 is defined as the mean value of the simulated response z, while y; is the predicted value.
Subsequently, the Non-dominated Sorting Genetic Algorithm (NSGA-I1) [27] was used in multi-objective
optimisation to identify a Pareto-Optimal (PO) front that represents the best and optimal solutions. It
was chosen because it has the lowest possible computational complexity that can be achieved with
any non-dominated sorting approach, namely O(MN?), where M is the number of objectives and N is
the population size, and because it has been shown to be effective in solving problems of optimising
the crashworthiness of energy-absorbing structures [22, 28]. Two performance metrics were used
to evaluate the performance and correct functioning of the algorithm: the hypervolume and the run-
ning performance metric [29]. The hypervolume metric quantifies the area dominated by the given
set of solutions relative to a reference point. Maximising this performance metric is desirable and it
is usually between 0 and 1 when the response variables are normalised. In contrast, the running
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metric evaluates the improvement of the PO front from one generation to the next. It compares the
non-dominated points of one generation with those of the following generation, providing insight into
the progress of the algorithm without requiring knowledge of the true PO front. This metric is used
to determine whether and at which iteration the algorithm converges. The population size is set to
150 individuals, with 40 offspring generated per iteration. New individuals are generated by a random
selection of floating point numbers. To combine individual traits, the algorithm uses simulated binary
crossover and polynomial mutation to change individual characteristics. To ensure diversity within the
population, duplicate individuals are removed.

3. Results and discussion
3.1 Regression models evaluation

Firstly, a sensitivity analysis was conducted on the size of the dataset and the corresponding per-
formance of the model to determine the appropriateness of the DOE dataset size. Starting with a
complete dataset of 25 simulations, the dataset size was gradually increased in increments of 25 up
to 150, maintaining the division into training, test and validation sets as specified in Section
[L The coefficient of determination calculated when fitting the test dataset, which is considered the
most meaningful value, was chosen as the reference measure of performance. Tab. [2 shows the R?
values for different models and dataset sizes. It is noticeable that a dataset of 25 samples is clearly
insufficient, as the coefficient of determination R? is even negative, indicating that the predictions of
the MPL and LRR SEA models are worse than a constant function that always predicts the mean
of the data. Furthermore, it is evident that especially for the neural network regression model, an
increase in the size of the dataset leads to an increase in R? for both the SEA regression model and
the F,.. regression model. This trend is also recognisable for the LRR model of SEA and the MPR
model of F,,,.. However, for the other models, with the exception of the 25-sample dataset, this be-
haviour does not appear to be as pronounced, but R? immediately stabilises around a constant value.
Fig. [7]shows, among other things, the trend of the training time for the DNN model of SEA and F,:
The former exhibits an increasing trend with the number of data points in the entire dataset, while the
training time of the latter remains approximately constant. The training times of the MPL, LRR and
KRR models were not reported in the figure because, as shown in Tab. |3, where the training times
with 150 DOE samples are given, they are negligible compared to those of the DNN. Considering
the highlighted coefficients of determination and training times, it was determined that 150 samples
are appropriate for the DOE to be developed. Additional simulations would lead to an unwarranted
increase in the training times of the DNN regression models without a corresponding increase in R?,
which appears to stabilise around a constant value.

Table 2 — Table of R? values for different models and dataset sizes.

Dataset size R? of SEA regression model [-] R? of F,,, regression model [-]
MPL LRR KRR DNN MPL LRR KRR DNN

25 -1.0952 -0.2171 0.9262 0.5097 0.9903 0.9879 0.7851 0.4611

50 0.9795 0.9343 0.9712 0.8995 0.7934 0.9981 0.9787 0.9692

75 0.9726 0.9862 0.9195 0.9538 0.9881 0.9948 0.9078 0.9788

100 0.8825 0.9670 0.8981 0.9656 0.9927 0.9967 0.9593 0.9831

125 0.9913 0.9973 0.9794 0.9866 0.9957 0.9981 0.9628 0.9770

150 0.9797 0.9835 0.9646 0.9941 0.9891 0.9880 0.9708 0.9894
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Figure 7 — Training times of the DNN models of SEA and F,,.., and execution times of the NSGA-II
metamodels coupled with DNN and KRR as a function of the number of samples in the entire
dataset.

Table 3 — Coefficient of determination R?, maximum relative error R,, and training time of the MPL,
LRR, KRR, and DNN models of SEA and F,,,.

SEA regression model Fax regression model
RZ[-]  Remax [%] Time[s] R[] Remax [%] Time[s]

MPL Training set 0.9939 11.18 <0.001 0.9992 7.50 0.003
model Test set 0.9797 8.98 - 0.9891 14.19 -
Validation set  0.9801 9.38 - 0.9976 4.26 -
Complete set  0.9904 11.18 - 0.9980 14.19 -

LRR Training set 0.9945 7.09 0.011 0.9990 4.39 0.003
model Test set 0.9835 7.30 - 0.9880 14.21 -
Validation set 0.9753 11.16 - 0.9965 4.89 -
Complete set  0.9907 11.16 - 0.9976 14.21 -

KRR Training set 0.9809 10.61 0.014 0.9863 20.93 <0.001
model Test set 0.9646 8.44 - 0.9708 15.65 -
Validation set  0.9554 13.08 - 0.9816 13.27 -
Complete set  0.9756 13.08 - 0.9842 20.93 -

DNN Training set 0.9987 4.11 34.04 0.9990 12.11 70.87
model Test set 0.9941 4.00 - 0.9894 12.53 -
Validation set  0.9847 8.03 - 0.9985 5.11 -
Complete set  0.9963 8.03 - 0.9980 12.53 -

Tab. [3 shows the parameters previously defined in Section [2.5.for evaluating the performance of
regression models in the case of 150 DOE points. It shows the coefficient of determination R?, the
maximum relative error between simulated and predicted data R, .., of the training, test, validation
and the entire dataset and the time required to train the models. To proceed with the selection of the
best model to be coupled with NSGA-II, parameters related to the test set are considered. The best
results for R? and R. ... are highlighted in green. Especially for the two regression models SEA and
F.ax the best results belong to the DNN model. These DNN parameters also prove to be the best for
the entire dataset. For this reason, it was decided to integrate this regression model with the genetic
algorithm to perform multi-objective optimisation. However, it is obvious that DNN models require sig-
nificantly longer training times compared to conventional regression models (several tens of seconds
against milliseconds). For this reason, it is legitimate to ask whether conventional regression models

9
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are a viable alternative to DNNs. KRR appears to be the least effective regression model for the case
considered here, as it has high errors and the lowest overall regression coefficients. Conversely, the
MPL and LRR models provide more convincing and comparable results. It is decided to also analyse
the coupling of LRR, together with DNN, and NSGA-II, as this model has slightly lower errors with
comparable R? values.

3.2 Multi-Objective Optimisation though NSGA-II

The regression models were then used in the context of MOO. The main objective was to determine
optimal configurations in relation to both response variables. As shown in Fig. |8 the Pareto-Optimal
fronts derived from DNN and LRR metamodels, which represent non-dominated solutions, are lo-
cated below and to the left of the DOE points. This positioning means achieving configurations that
both minimise the maximum force and maximise the SEA. The hypervolume parameters stabilise at
around 0.88 for the LRR metamodel and around 0.93 for the DNN metamodel. In both instances, the
running metric stabilizes at a constant value after approximately 100 generations, indicating conver-
gence for both models.

‘ DOE points
e PO front - DNN

350 @
\\ e PO front-LRR
300

N
150 \
100 \‘.
50 e N
—40 -35 -30 -25 -20 -15 10
-SEA [1/al

Figure 8 — Pareto-Optimal fronts from DNN and LRR coulped with NSGA-Il and DOE simulation
points.

To validate the accuracy of the complete surrogate model, 10 points were randomly selected along the
entire PO front derived for both models. The design variables corresponding to these sample points
were used to create structures that were tested with Abaqus/CAE. This allowed the calculation of
the errors between the values of the crash indices obtained from the simulations and those predicted
by the metamodels. The results of comparing the crash indices from the simulations with those
predicted by the metamodels are as follows: for the SEA test predictions using the LRR model, the
maximum, mean, and minimum relative errors are 51.97%, 18.54%, and 0.44%, respectively. For
the F,... test predictions with the same model, the maximum, mean, and minimum relative errors are
21.98%, 6.83%, and 0.42%, respectively. In contrast, the SEA test predictions using the DNN model
show maximum, mean, and minimum relative errors of 5.22%, 1.39%, and 0.001%, respectively. For
the F,,, test predictions with the DNN model, the maximum, mean, and minimum relative errors are
3.22%, 2.0%, and 0.01%, respectively. The LRR metamodel encounters significant challenges in
accurately predicting the parameter values in the central region of the PO front. This is likely due
to the challenge of performing multivariate regression for four different variables, which the neural
network excels at due to its ability to process and learn from complex datasets [18]. This allows it to
overcome the limitations that often occur with classical linear and polynomial regression models.

While the Pareto front offers numerous potential design solutions in the initial design phase, a final
decision had to be made on the most desirable solution within this set. There are several aspects
to consider when selecting this point. An initial approach was to select the two configurations that
maximise the SEA and minimise the peak force and that are shown in Fig. [9 as Configuration 1
and Configuration 2, respectively. Alternatively, an optimal solution, referred to as "Knee Point" (KP)
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configuration, was determined using the "Minimum Distance Selection Method" (TMDSM) [30]. The
knee point usually provides an overall optimal solution in the objective space, as it is considered a
balanced compromise for conflicting and competing objectives [31].

These three configurations were selected for both LRR and DNN metamodels and simulated using
Abaqus/CAE. The results are shown in Fig. [9]

350 §*

e PO front ‘ e PO front
e Configuration 1, PO 350 ® Configuration 1, PO
300 - ® Configuration 2, PO \ ® Configuration 2, PO
® Knee point configuration, PO 300 4 ® Knee point configuration, PO
250 - * Configuration 1, FEM \ * Configuration 1, FEM
= N % Configuration 2, FEM = 2501 \ * Configuration 2, FEM
X \ * Knee point configuration, FEM X \ * Knee point configuration, FEM
200+
% \ % 200
W \ uE *\
1501 \ * 150 -
\
1007 \‘ 100 - \
‘\ .\
50 S 50 ——
T T T T T T T T T T T T T
—40 -35 -30 -25 -20 -15 -10 -35 -30 -25 -20 -15 -10
-SEA [l/al -SEA [l/al

(a) (b)

Figure 9 — PO and FEM results of selected geometry configurations for a) LRR metamodel and b)
DNN metamodel.

The four geometric variables, the absorbed specific energy and the maximum crushing force with
respect to the three identified configurations for both the LRR and DNN metamodels are shown in
Tab. [4] for both the PO and FEM cases, with the relative errors of the response variables highlighted.
In order to obtain a meaningful comparison of the crash performance parameters, the results and
geometric variables obtained with C4’s FEA are also shown in Tab. 4]

Table 4 — Structural parameters and optimized variables of selected configurations and of C4.

Conf. 1 Conf. 2 KP conf. Conf. 1 Conf. 2 KP conf. C4
(LRR) (LRR) (LRR) (DNN) (DNN) (DNN)

SEA (PO) [J/g] 39.48 11.14 29.17 38.35 10.49 30.00 -
SEA (FEM) 38.62 10.63 20.96 38.48 10.32 33.37 32.50
[J/g]

R.(SEA) [%] 2.21 4.76 39.15 0.35 1.63 10.11 -
Peak force 355.04  48.94 166.45  380.50  49.73 171.45 -
(PO) [kN]

Peak force 352.61  48.80 14658 38276  47.70 183.93  285.22
(FEM) [kN]

Re(Far) [%] 0.69 0.29 13.55 0.59 4.27 6.79 -

t,, [mm] 1.0 1.0 1.0 1.0 1.0 1.0 2.55
t [mm] 2.5 1.0 1.99 2.5 1.0 1.0 2.55
r [mm] 5.29 2.5 2.62 5.99 2.51 3.79 4.0
A[] 0.0 1.45 0.0 0.0 15 0.0 0.0
Mass [g] 162 73.9 98.4 176 741 98.7 157

Tab. [4] shows that both metamodels used lead to the selection of the optimal structures with similar
characteristics: in order to maximise the specific energy absorption, the waviness along the height
of the structure must be zero, while the values for the radius and the thickness of the reinforcing
cylinders must be high. As for the reduction of the maximum force peak, the parameter A should be
high, while the radius and the thickness of the reinforcing cylinders are small. However, there is no

11



ML AND NUMERICAL OPTIMIZATION OF BIO-INSPIRED 3D-PRINTABLE SANDWICH CORE CELL

such clearly defined trend for the KP configuration. For all three cases, the minimum possible wall
thickness is identified as optimal. It can be seen that the errors are quite small when considering the
DNN regression model, which has already been confirmed with the numerically tested PO sample
points. The agreement between the regression models, the results of the NSGA-II genetic algorithm
and the FEA values therefore underlines the effectiveness of the model in early design phases and
reduces the computational resources required for structural optimisation.

Fig. [10|shows the deformation modes of the three optimised structures obtained with LRR and DNN
metamodels. The LRR-KP configuration and the LRR and DNN configurations 1 exhibit a global
buckling mode, where the folding deformation occurs with local buckling, resulting in the walls having
larger folding wavelengths compared to the other modes [32]. Both configurations 2 instead show
an asymmetric transitional collapse behaviour, where the folding deformation is randomly generated
within the structure and the progressive deformation occurs alternately until the densification stage
occurs, with no symmetry about any axis or plane. Due to this progressive deformation, the crushing
force in the transitional mode is also less fluctuating during the plateau phase, which makes these
structures suitable for energy absorbers, although predicting the initial deformation in these structures
is challenging. DNN configuration 2 has a symmetric progressive deformation mode where regular
lobes are generated in the walls, resulting in less fluctuation in the crushing force [20].

(a) (b) (c)
. ; . V‘ - shee,
- i SNEG, (fraction = -1.0)
sl (Avg: 75%)

Figure 10 — Deformed and undeformed shapes of the optimized structures: (a) LRR Configuration 1,
(b) LRR Configuration 2, (c) LRR KP configuration, (d) DNN Configuration 1, ( ) DNN Conflguratlon
2, (f) DNN KP configuration.

(d)

+2.336e+02
+1.183e+02

DNN

In order to gain a comprehensive understanding of the increased crashworthiness of these geome-
tries, Abaqus/CAE simulations were carried out for reference hollow cylinders that have the same
masses as the respective optimised geometries.

The diagrams in Fig. show the force-displacement curves of the optimised geometries and their
respective reference cylinders, while Fig. present the values of the response variables for both
cases and their corresponding percentage increases. The CFE, F,,.., and SEA data presented in the
figures were calculated taking into account the compression of the structures up to a length of 20
mm.
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Figure 11 — Force-displacement curves comparison between selected optimized geometries and
reference cylinders: a) Configuration 1, b) Configuration 2, ¢c) Knee Point configuration
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Figure 12 — Crashworthiness parameters comparison between C4 / selected optimized geometries
(OG) and reference cylinders (RC) a) SEA results (LRR), b) F,... results (LRR), c) CFE results
(LRR), d) SEA results (DNN), €) F... results (DNN), f) CFE results (DNN).

As can be seen from Tab. [4] and the figures [T} [T1] and [T2] the solutions found by the LRR and
DNN metamodels are practically identical for configuration 2 and relatively similar for configuration
1 in terms of geometrical characteristics, deformation modes and crashworthiness indices. In the
case of the KP configuration, however, although the two structures identified at the PO front have
very similar masses, the differences in the other defining geometrical parameters lead to completely
different collapse behaviour and, consequently, to different crash parameters. As shown in Fig.
all optimised geometries significantly improve the properties of the base absorber while maintaining
the same mass, which was already confirmed in the previous work [16], with the exception of config-
uration 2. Indeed, configuration 1 (Fig. shows a significant improvement of the SEA and CFE
parameters for both metamodels. Despite an increase in maximum force, the high crushing efficiency
of the selected geometry ensures stable occupant accelerations without significant peaks. Configu-
ration 2 (Fig. [Tb) shows a slight decrease in SEA in both cases, in contrast to what was observed
in the previous work. However, the main improvements are the significant increase in CFE and the
reduction in maximum force during compression. This indicates that the absorber behaves more like
an ideal absorber. It achieves almost the same energy absorption as the basic geometry and at the
same time reduces the risk of excessive occupant acceleration. The knee point configuration (Fig.
11¢) is characterised, as one might expect from its definition, by the improvement in overall efficiency,
combining increased specific absorbed energy and minimised peak force, for which the percentage
increase is lower than in configuration 1. However, Fig[12] clearly shows that the configuration ob-
tained by the DNN metamodel performs significantly better than the one obtained by LRR at almost
the same mass. Overall, it shows the most significant increases in terms of the SEA and CFE values.
In all four cases, the optimised geometries significantly reduce the force peaks associated with the
instability of the folds in the height of the structure [33].

Finally, we compared the computational efficiency of the LRR metamodel, the DNN metamodel and
the FEA for results obtained on a computer with a 13th Gen Intel(R) Core(TM) i7-1370P CPU and
an Intel(R) UHD Graphics GPU. The calculation of a load curve exceeding 20 mm compression
distance of these elytra-inspired configurations in FEM takes on average about 13 minutes, with a
parallelisation of the tasks of each simulation on 4 processors. An evaluation of SEA and F,,,, with
the LRR regression model takes on average 0.00098 s and 0.00099 s, respectively, while it takes
0.0628 s and 0.0575 s to obtain the same parameters with the DNN regression model, respectively.
The difference between the two models is about 2 orders of magnitude. Looking at the computational
cost required by the complete metamodel to derive the PO front (Fig. [7), it can be observed the trend
of time with respect to the number of individuals in the original DOE dataset. For both the LRR model
and the DNN model, the time increases with the size of the population, although it seems to reach
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an asymptote around 860 s, especially in the case of the DNN metamodel. For a dataset of 150
individuals, the execution time of NSGA-II with the DNN model is 868.75 s on average, while for the
LRR model it is about 5.30 s. Comparing these times with the time required to train the models, it
becomes clear that the time required differs by around two orders of magnitude, as expected.

Tab. [5/shows the R? value, separately for SEA and F;,.. regression models, of a new dataset created
by adding to the original DOE dataset, consisting of 150 points, also the data of the points randomly
selected to test the LRR and DNN metamodels, as well as the data of their respective optimal con-
figurations. The table also presents the R? values obtained from fitting two separate datasets: one
consisting of SEA and F,,,. values from the FEM that are below the 10th and above the 90th per-
centiles, and another consisting of values between the 20th and 80th percentiles. The R? values for
the first dataset, which includes extreme values and outliers, indicate that both ML models effectively
predict these extremes, with R? values exceeding 0.99 for both SEA and F,,.. In the second dataset,
there is a pronounced discrepancy in predicting central values: the LRR-SEA regression model ex-
hibits greater difficulty in maintaining accuracy compared to the DNN model, leading to significantly
larger errors.

Table 5 — R? score of the LRR and DNN metamodels fitting of entire dataset (orignial entire dataset,
testing points datasets and optimal configurations data).

R? score
Below 10th and above Between 20th and
90th percentiles 80th percentiles
ML overall overall
algorithm  (SEA)  (Fuw) ~ SEA Frnax SEA Fonax
LRR 0.9585 0.9834 0.9955 0.9915 0.8167 0.9216
DNN 0.9952 0.9981 0.9996 0.9996 0.9906 0.9876

For these reasons, although the efficiency of the DNN metamodel is lower than that of the LRR, the
first option is still preferable due to its higher accuracy. Moreover, once trained, it is in any case
about 10* times faster than FEA in calculating the mechanical properties of honeycomb cells. This
significantly improves the process of exploring the design space.

4. Conclusions and future developments

In this study, an optimisation was carried out to enhance the crash performance of bio-inspired sand-
wich core cell structures. SEA, Fmnax, and CFE were used as measures of crashworthiness and were
calculated using Explicit finite element analysis. The study started with an elytra-inspired geometry
with four reinforcing cylinders (C4) selected based on the results of a previous parametric optimisa-
tion using the COPRAS method. A DOE was then formulated to proceed with a subsequent phase
of multiobjective optimisation. Four regression models (MPR, LRR, KRR and DNN) were developed
and tested to predict SEA and F,., values. After model fitting, it was decided to couple the LRR
and DNN regression models with the NSGA-II genetic algorithm, as the first model had a good bal-
ance between model accuracy and excellent prediction time, while the second model had the better
regression coefficients and relative errors. Subsequently, multi-objective optimisation was then per-
formed, including as design variables the radius of the reinforcing cylinders, a sine wave parameter
of a deformation line along the height, and the cylinder and wall thicknesses, with the objective of
minimising the peak of the maximum force F,,., while maximising the absorbed specific energy SEA.
Two Pareto fronts were then determined and the performance of the metamodels was analysed in
detail. Three optimal configurations were selected for both metamodels: Configuration 1 aiming to
maximise the SEA, Configuration 2 aiming to minimise Fmax, and the Knee Point configuration deter-
mined by the minimum distance selection method. All optimised geometries significantly improve the
properties of a basic absorber while maintaining the same mass. The KP configuration derived from
the DNN regression model shows the most significant increases in SEA and CFE values (+106.2%
and +37.3%, respectively), with the results of the PO and FEM calculations being very close. The
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calculation efficiency of the LRR metamodel, DNN metamodel and FEM is then compared. While
the LRR regression model requires about 10~ 3 s after training to evaluate a configuration and extract
each crash indices, the DNN requires about 5 x 1072 seconds. As a result, the computation time
for the complete run of the metamodel for the DNN (868.7 s) is two orders of magnitude higher than
for the LRR (5.3 s). However, looking at the R” obtained by fitting the values corresponding to the
extremes of the crash parameters and the intermediate values, it becomes clear that the combined
DNN / NSGA-Il metamodel achieves a significantly higher accuracy compared to the LRR one. More-
over, once trained, it is about 10* times faster than FEA in calculating the mechanical properties of
honeycomb cells.

It can be concluded that the coupling of NSGA-II and a neural network regression model with FEM
analysis has proven to be effective for structural multi-objective optimisation in an initial design phase.
The metamodel can predict the values much faster compared to a traditional numerical test while
reducing the errors between predicted and numerical values compared to more traditional regression
methods used for metamodels.

Future developments of this research should focus on designing a complete honeycomb panel to
study bending effects and the interactions between the walls of the structure. The inclusion of a
genetic algorithm that can handle more than two response variables for many-objective optimisation
could be beneficial in identifying even better performing structures.
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