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Abstract 

The tailless flying wing is one of the best configurations combining the high aerodynamic and stealth 

characteristics, but the lack of longitudinal control poses a significant challenge to aerodynamic shape 

optimization (ASO) of such configuration. Currently, the adjoint-based optimization method cannot meet the 

needs of multi-objective global optimization for aerodynamic/stealth/control multidisciplinary design, while the 

surrogate-based global optimization method faces these problems such as increased computational cost and 

poor generalization ability. In order to tackle this thorny problem, this paper establishes an efficient global 

aerodynamic/stealth multidisciplinary robust design optimization method based on the proposed gradient-

enhanced multi-fidelity polynomial chaos-Kriging (GEMF-PCK) surrogate model. The GEMF-PCK model 

utilizes the inexpensive gradient information, such as an adjoint method, as an auxiliary to enhance the 

adaptive multi-level multi-fidelity surrogate modelling. The partial least squares method is used to reduce the 

number of hyperparameters with the number of independent variables. This GEMF-PCK model was validated 

to be capable of improving modeling efficiency and global generalization for aerodynamic problems with high-

dimensional independent variables. An adaptive multi-fidelity sequential sampling technique based on leave-

one-out cross validation- Voronoi maximin scaled distance (LOOCV-Voronoi-MSD) and an efficient single-

cycle robust design optimization method based on the GEMF-PCK model are developed, which further 

improves the efficiency of multi-objective robust design optimization of the tailless flying wing. To examine the 

overall performance of the developed method, we apply it to the aerodynamic/stealth multidisciplinary design 

of the tailless flying wing. The results show that the developed aerodynamic/stealth multi-objective robust 

design optimization method significantly improves the optimization efficiency, meeting the needs of efficient 

aerodynamic/stealth design for the future tailless flying wing. The optimized new shape reduces the average 

drag by more than 20 counts over a wide Mach number range compared to the initial layout, increases the 

Mach number of drag divergence by 0.03, and significantly improves the robustness of drag coefficient. The 

longitudinal moment coefficient of the whole aircraft reaches self-leveling, and the reliability is also significantly 

higher. At the same time, stealth analysis shows that compared to the initial layout, the optimized layout 

reduces the average radar cross section (RCS) by more than 90% in the L, S, C, X bands, and reduces the 

forward RCS by more than one order of magnitude, resulting in comprehensive improvement in stealth 

characteristics, which can meet the needs of future high-stealthy flying wing layout aircraft for all-directional 

and all-frequency stealthy use. 

Keywords: gradient-enhanced multi-level multi-fidelity polynomial chaos-Kriging (GEMLMF-PCK), flying wing, 

robust aerodynamic/stealth design optimization, multi-fidelity sequential sampling, multi-fidelity surrogate 

model. 
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1. Introduction 

With the continuously increasing requirements for performance and fidelity for aerodynamic shape 

optimization (ASO), higher-fidelity CFD numerical simulations are expected to be applied in ASO. 

This leads to a sharp increase in computational costs for CFD analysis of the same number of 

samples, and therefore there is an urgent demand to develop more efficient surrogate optimization 

methods [1-4]. One of the most popular methods for this is to use a multi-fidelity surrogate model 

instead of the original single-fidelity surrogate model to reduce the number of high-fidelity samples 

used in the surrogate modelling and optimization process. The multi-fidelity surrogate model 

captures the trend of the physical model by building a low-fidelity (LF) model using a large number 

of inexpensive low-fidelity samples, and corrects the LF model using a small number of high-fidelity 

(HF) samples, which significantly reduces the computational cost required to construct a HF 

surrogate model and improving the efficiency of surrogate modeling and surrogate-based 

optimization (SBO)[5-7]. However, the insufficient generalization ability of multi-fidelity surrogate 

models also seriously affects the performance of SBO algorithms[8, 9]. In order to improve the 

performance of multi-fidelity surrogate-based optimization algorithms, one of the potential solutions 

to this problem is to improve the generalization ability of multi-fidelity surrogate models. As proved, 

currently popular multi-fidelity surrogate models, such as co Kriging[10] and multi-fidelity polynomial 

chaos expansion (MF-PCE)[11], exhibit significant differences in performance across different 

problems[6, 12]. What’s worse, if used improperly, their performance of modeling and optimization may 

be poor. Based on this reason, an adaptive multi-fidelity polynomial chaos-Kriging (AMF-PCK) 

surrogate model was proposed previously to solve this problem of poor generalization ability for 

multi-fidelity surrogate models[13-15]. Further, the AMF-PCK surrogate model has been validated by 

using complex numerical functions and aerodynamic data modeling problems, demonstrating that 

the AMF-PCK model have stronger generalization ability and higher modeling efficiency for high non-

linear/high-order responses than the popular universal Kriging, MF-PCE and Co-Kriging models[13-

15].  

However, with the increasing requirements for the performance and fidelity of aerodynamic shape 

global optimization, which requires the use of high-fidelity CFD numerical simulations and hundreds 

of independent design variables (DVs) to describe the aerodynamic shape, which leads to a higher 

computational cost, a longer design cycle, and a severer challenge of the curse of dimensionality for 

SBO methods[14, 16-21]. What’s worse, the curse of dimensionality also continues to be an obstacle for 

the further development of multi-fidelity surrogate models. For an example, high-dimensional DVs 

will cause a sharp increase of the correlation matrix size of the classical Co-kriging model, so that 

the hyperparameter optimization process is longer and the convergence deteriorates in the modelling 

process. For another example, the number of candidate polynomial terms in MF-PCE models 

increases with the increasing polynomial order and the number of DVs, which leads to a longer 

training time, making it difficult to efficiently establish multi-fidelity surrogate models involving high-

dimensional DVs [11]. Aiming at alleviating the curse of dimensionality, one of the most potential 

solutions is to embed gradient information into the multi-fidelity surrogate model. This article first 

introduces the modelling process of the gradient-enhanced multi-fidelity polynomial chaos-Kriging 

surrogate (GEMF-PCK) model. Such method adaptively selects the optimal polynomial basis 

function, their gradient information as well as constructs the optimal multi-fidelity surrogate model by 

combining the global approximation characteristics of PCE and the local interpolation characteristics 

of Kriging. As a result, the global modeling efficiency and generalization ability of the GEMF-PCK 

surrogate model for high-dimensional DVs will be significantly improved with the cheap gradient 

information being utilized, especially in terms of the approximation accuracy for complex responses 

such as high-order/high-nonlinear problems, greatly expanding the application scope and 

adaptability of multi-fidelity surrogate models. To test the performance of the new method, this paper 

applies it to the robust aerodynamic/stealth design of tailless flying wing shape. Results demonstrate 

that the GEMF-PCK assisted robust aerodynamic/stealth design method significantly improves the 

optimization efficiency as well as effectively balancing the performance and robustness of the 

aerodynamic and stealth characteristics, meeting the needs of efficient aerodynamic/stealth design 
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for the future tailless flying wing. This method lays the foundation for the future development of robust 

multi-disciplinary design optimization of aircrafts for high-dimensional DVs as well as also provides 

new ideas for solving the problem of the poor adaptability of current multi-fidelity surrogate 

optimization algorithms. 

2. Gradient-enhanced multi-fidelity polynomial chaos-Kriging surrogate model 

The gradient-enhanced multi-fidelity polynomial chaos-Kriging (GEMF-PCK) surrogate model is 

derived from the previously proposed adaptive multi-fidelity polynomial chaos-Kriging (AMF-PCK) 

model[13] by incorporating the gradient information. The GEMF-PCK model will provide better 

generation ability for a function with high-dimensional inputs. 

2.1 Gradient-enhanced polynomial chaos-Kriging model for low-fidelity approximation 

For a polynomial chaos-Kriging surrogate model, the low-fidelity response y𝑙(𝐗) at a given point 𝐗 

can be considered as a realization of Gaussian process namely 
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By utilizing the selected polynomial set as the trend functions, the universal Kriging regression is 

performed, which includes the calibration of hyper-parameters {𝛉𝑙 , 𝑞𝑙}  by maximum likelihood 

estimation (MLE) [22] (or LOOCV [23]) and PCK fitting with calibrated parameters {𝛉𝑙, 𝑞𝑙 , 𝜎𝑧𝑙
2 , 𝛃̇𝑟} is 

performed. The optimal hyper-parameters are estimated by minimizing the condensed likelihood 

expression 
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where 𝐑̇𝑙 is a augmented correlation matrix defined in Eq. (3). The process variance 𝜎𝑧𝑙
2  is estimated 
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and 𝛙𝑟(𝐗) are computed by substituting the low-fidelity samples sites 𝐒𝑙 into the selected polynomial 

basis set {𝜓𝑟𝑖
(𝐗)}𝑖=1

𝑀 . With hyper-parameters {𝛉𝑙 , 𝑞𝑙}  determined, the coefficient vector 𝛃̇𝑟  is 

calculated by the generalized least squares (GLSE), namely 𝛃̇𝑟 = (𝚿̇𝑟
T𝐑̇𝑙

−1𝚿̇𝑟)
−1
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−1𝐘̇𝑙 =

[𝛽𝑟1
, ⋯ , 𝛽𝑟𝑀

, 𝛽𝑟1,1
, ⋯ , 𝛽𝑟𝑀,𝑛

]. Then, according to the universal Kriging fitting process [24], the PCK 

predictor corresponding to the LF function at any untried point 𝐗 is obtained by 
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wherein, the augmented correlation vector 𝐫̇𝑙 ∈ ℝ𝑁𝑙×(1+n)  represents the correlation between the 

untried point and the observed sample sites 𝐒𝑙, namely 
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2.2 GEMF-PCK with gradient information 

In this work, the GEMF-PCK metamodel for approximating HF function 𝑦ℎ(𝐗) is built by using a 

combined correction form for the low-fidelity (LF) PCK model and incorporating gradient information, 

as given by 

 0
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ˆ( ) ( ) ( ) ( ) ,h l c h

C

y y y z= + +

X

X X X X
  (8) 

where 𝛼0 is the multiplicative correction factor to indicate the correlation between low-and high-

fidelity models and avoid the bumpy issue [25]. The symbol 𝑦̂𝑙(𝐗)  represents the low-fidelity 

polynomial chaos-Kriging predictor. 𝐶(𝐗) is the additive correction term, which uses an adaptive 

correction polynomial expansion- Gaussian process to accurately approximate the complex 

difference between scaling low-fidelity model (𝛼0𝑦̂𝑙(𝐗)) and high-fidelity model (𝑦ℎ(𝐗)).  

In this work, we first obtain sparse PC representations with the least angle regression (LAR) 

algorithm using LF computations, with a limited number of significant coefficients available in the 
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expansion that may correspond to the low- or high-order basis. We assume that the relative 

importance of PC terms and the relative strengths of corresponding polynomial coefficients are 

provided by the first LAR-PCK metamodeling using LF computations. Then a subset of the 

coefficients of these significant PC terms is corrected using the high-fidelity data to improve the 

approximation accuracy. Further, the correction expansion 𝑦𝑐(𝐗) from the sparse PCE with gradient 

information is expressed by  
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where 𝐴𝑐 and 𝛼𝑐<>
 are the index set of the correction polynomial expansion and the corresponding 

polynomial coefficients, respectively. The polynomial term in the correction expansion has to be a 

subset of the LF expansion. The cardinality of 𝐴𝑐 should be smaller than the cardinality of the set 𝐴, 

where 𝐴 = {𝑟1, 𝑟2, ⋯ , 𝑟𝑀} is the index set of selected PC terms in 𝑦̂𝑙(𝐗), namely 𝐴𝑐 ⊆ 𝐴. Substitute Eq. 

(9) into Eq. (8), we can get the general expression of the GEMF-PCK metamodel namely 
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where the multiplicative correction factor 𝛼0 and the correction expansion coefficients 𝛼𝑐𝑖
 should be 

explicitly tuned to make them well-suited for design and analysis of computer experiments (the 

procedure is detailed in Section 2.3).  

2.3 Fitting of gradient enhanced multi-fidelity polynomial chaos-Kriging 

The GEMF-PCK model is built by the assumption of minimizing the mean-squared error (MSE) and 

unbiased estimation, as is similar with the universal Kriging modeling. It is assumed that the HF 

function value at given point 𝐗 can be approximated by a linear combination of the observed HF data 

𝐘ℎ, namely 
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samples. The prediction error at any untried point 𝐗 is expressed as 
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where 𝑦̂𝑙(𝐗) is firstly fitted, and 𝑦𝑐(𝐗) is determined as presented in Section 1.1. The GEMF-PCK 

metamodel is desired to meet the following formulation: 

 ( )( )( )2
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subjected to the constraint of unbiased estimation: 

 ( )ˆ ( ) ( ) 0.h hE y y− =X X   (14) 

The constrained minimization problem, namely empirical best linear unbiased predictor (BLUP), can 

be solved by the Lagrange multiplier approach [26] to obtain the vector of weight coefficients 𝐰 =
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(𝑤1, 𝑤2, ⋯ , 𝑤𝑁ℎ
)T, as expressed in the matrix form: 
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and 𝐑ℎ denotes the correlation matrix of high-fidelity samples, 𝐫ℎ represents the correlation vector 

between the untried point 𝐗 and the observed high-fidelity points 𝐒ℎ, as given by 
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and  
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(19) 

where 𝛌 is the Lagrange multiplier vector, and 𝚲̇ is the trend vector. The reader is referred to [24, 27] 

about the standard universal Kriging regression process for further details.  

Once the weight coefficients 𝐰 are obtained by solving Eq. (15), the GEMF-PCK predictor at any 

untried point 𝐗 is given by 
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where 𝑦̂𝑙(𝐗) is the predictor of LF PCK model, and 𝑀𝑐 (𝑀𝑐 ≤ 𝑀) denotes the number of polynomial 

terms in the correction expansion. The coefficients vector 𝛂̇ = (𝛼0, 𝛼𝑐1
, 𝛼𝑐2

, 𝛼𝑐𝑀𝑐
, 𝛼𝑐1,1

, ⋯ , 𝛼𝑐1,n
, ⋯ ,

𝛼𝑐𝑀𝑐,n
)T can be estimated by GLSE method namely 

 ( )
-1

T 1 T 1 ,h h h

− −=α F R F F R Y   (21) 

where the first column and other columns of 𝐅 (Eq. (16)) are calculated by substituting the observed 

point set 𝐒ℎ into 𝑦̂𝑙(𝐗) and 𝜓𝑐𝑖
(𝐗) (𝑖 = 1,2, ⋯ , 𝑀𝑐), respectively. The unknown hyper-parameters 𝛉ℎ 

and 𝑞ℎ of the correlation function 𝐑̇ℎ are tuned by minimizing the condensed likelihood expression 

(MLE) 

   ( )1/
2

,

, arg min 0, 0
h

h i

h h

N

h h z h h hML
q

q q =  
θ

θ R ， ，  (22) 

where the stationary process variance 𝜎𝑧ℎ
2  can be estimated by 𝜎̂𝑧ℎ

2 = (𝐘̇ℎ − 𝐅̇𝛂̇)
T

𝐑̇ℎ
−1 (𝐘̇ℎ − 𝐅̇𝛂̇) 𝑁ℎ⁄ . 

Then, the correlation matrix 𝐑̇ℎ  and correlation vector 𝐫̇ℎ  are calculated by substituting the 

corresponding high-fidelity samples sites 𝐒ℎ and optimized hyper-parameters 𝛉ℎ and 𝑞ℎ, as defined 

in Eq. (19). Further, we can get the MSE of the GEMF-PCK predictor at the untried point 𝐗 as 

 ( ) ( )( )-1
2 2 T 1 T 1 T1.0 ,

h hy z h h h hs  − −= − +X r R r Γ F R F Γ   (23) 

where 𝚪̇ = 𝐫̇ℎ
T𝐑̇ℎ

−1𝐅̇ − 𝚲̇T. The GEMF-PCK approach calculates the correlation matrix 𝐑ℎ and 𝐑𝑙 with 

less complexity and smaller sizes compared to traditional co-Kriging method [10, 24, 28].  

3. Multidisciplinary robust design frame 

To effectively solve the robust aerodynamic/stealth design optimization problem, an efficient 

optimization framework is elaborated, as shown in Fig. 1. In this framework, once the GEMF-PCK 

metamodel 𝑦̂ℎ(𝐗𝚵) is built, as presented in the next section, the designers can apply 𝑦̂ℎ(𝐗𝚵) to 

estimate the statistical characteristics of each candidate design in UBDO routine. Let {𝚵(𝑖)}𝑖=1
𝑁𝑚  denote 

the sample of RVs generated by a DOE according to PDFs of RVs. The first two moments of HF 

function response at each design 𝐗 considering the effect of uncertainty are given by 

 
( ) ( ) 2

1 1

1 1
ˆ ˆ( ) ( , ), ( ) ( ( , ) ( )) ,

1

m mN N
i i

y h y h y

i im m

y y
N N

  
= =

= = −
−

 X X Ξ X X Ξ X   (24) 

where 𝑁𝑚 is the number of sampling the MF PC-Kriging predictor 𝑦̂ℎ(𝐗, 𝚵) and it should be sufficient 

to meet the desirable accuracy of moment propagation and probability analysis. In addition, the 

probability of violating the constraint function gℎ can also be estimated by 

 

( )

( ) ( ) ( )

( )
1

ˆ1 ( , ) 01
, ( , ) , 1,2, , ,

ˆ0 ( , ) 0

m
iN

hi i i

g mi
im h
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P I I I i N

N if g=

 
= = = =




X Ξ
X Ξ

X Ξ
  (25) 

wherein ĝℎ(𝐗, 𝚵) denotes the MF PC-Kriging predictor of HF function gℎ(𝐗, 𝚵) with gℎ ≥ 0 required 

for feasible designs. For general applications, the moment matching formulation [29] can rapidly 

estimate the feasible robustness by using the estimated mean 𝜇𝑔 and standard deviation 𝜎𝑔 of the 

constraint. Such formulation is also widely used, e.g., the popular six sigma method haves less than 

3.4 failures per million possibilities and three-sigma method with a success rate of 93%.  
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Fig. 1 the flowchart of robust aerodynamic/stealth design optimization framework 

4. Robust aerodynamic/stealth design of tailless flying wing shape 

The aerodynamic design optimization of a tailless flying wing configuration is a significant challenge 

to these traditional aerodynamic shape design optimization methods. This is because thus shape 

requires maintaining a balance of longitudinal moments of this configuration while it simultaneously 

seeks to satisfy the requirements for full-frequency omnidirectional stealth and good aerodynamic 

characteristics under a wide range of Mach numbers as well as high load capacity. Through 

computational analyses of this type of tailless flying wing configuration, it is found that these complex 

design requirements and constraints can usually be accomplished by the collaborative design of the 

inner and outer wing segments. The inner flying wing segment of the flying wing mainly fulfills the 

design requirements for balancing the node down pitching moment, maintaining high stealth and 

good load characteristics. The outer flying wing segment mainly meets the drag-reduction 

requirements for transonic cruise to improve the cruise efficiency. Therefore, good subsonic 

aerodynamic/stealth characteristics require the cooperation of the inner and outer wing segments, 

which impose different design requirements and constraints on the airfoils of the inner and outer wing 

segments, respectively. Therefore, the design of the flying wing airfoils for the double swept flying 

wing shape is a typical multidisciplinary and multi-objective design problem that integrates 

aerodynamic, stealth, and flight control characteristics. In this paper, this initial model, that is similar 

to X-47B in size and configuration, is assembled the NACA 65,3-014 series airfoils in the inner, 

middle, and outer wing sections, respectively. The initial model and three-dimensional FFD 

parameterization frame are shown in Fig. 2. The multidisciplinary robust design optimization model 

considering Mach number and lift coefficient uncertainty is given as  
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wherein, the first object of this model is the weighted mean sum of drag coefficient (𝐶𝑑), pitching 

moment coefficient (𝐶𝑚), the average horizontal RCS (HH) in the frontal sector. The second objective 

is the weighted stand deviation sum of drag coefficient, pitching moment coefficient, the average 

horizontal RCS (HH) in the frontal sector, subject to the thickness of these three wing sections. 

 

Fig. 2 Surface grid and free form deformation frame for the initial model 

This example uses the SST turbulence model for aerodynamic evaluation, which gets an initial drag 

coefficient of 133.55 counts. The classical MOEA/D algorithm is used for multi-objective optimization. 

A compromise based on the self-organizing map is made to obtain the best shape of robust design.  

The comparison between the initial wing sections and the optimized wing sections is shown in Fig. 

3. Fig. 4-Fig. 7 compare the drag divergence curves and moment coefficient curves at lift coefficients 

from 0.1 to 0.25. The results show that the robust design wing achieves lower drag coefficients over 

a range of Mach number and a higher drag-divergence Mach number compared to the initial shape. 

Meantime, the pitching moment coefficients (𝐶𝑚) of the robust design wing are approach to zero 

while the initial wing with larger values of 𝐶𝑚 , that means the robust design wing achieves a 

significant improvement in aerodynamic characteristics while maintaining good longitudinal moment 

self-balancing capabilities. When the Mach number is greater than 0.8, compared to the initial wing, 

the robust design wing achieves average drag coefficients reduction of more than 20 counts and an 

increased drag-divergence Mach number of more than 0.03. Fig. 8 compare the probability density 

function (PDF) curves of drag coefficients and pitching moment coefficients between the initial wing 

and the robust design wing, which indicates that the robust design wing achieves considerably lower 

mean and standard deviation of drag coefficient, as well as smaller mean of pitching moment 

coefficient, close to 0. Therefore, the aerodynamic characteristics of the robust design wing are 

significantly improved compared to the initial wing. The robustness of the drag coefficient and 

pitching moment coefficient of the robust design wing is significantly improved compared to the initial 

wing. Further, the robust design wing achieves a larger range of low drag coefficients and a higher 

feasible robustness of the pitching moment coefficient.  

Fig. 9-Fig. 10 compare the pressure distributions clouds on the upper surface between the initial 

wing and robust design wing at four different flight conditions. Results indicate that the robust design 

wing has flatter pressure distribution and weaker shock waves on the upper surface of the inner wing 
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section, resulting in significant reductions in wave drag and pressure drag. Figure 11 shows the 

comparison of the RCS curves between the initial wing and the robust design wing at L, S, C, and X 

bands. They demonstrate that the robust design wing significantly reduces the horizontal RCS 

(HH)and vertical RCS (VV) compared to the initial wing, with the concerned RCS of the front threat 

sector, that is 𝜙 = −90𝑜 − 90𝑜, reduced by more than one order of magnitude, and the average RCS 

reduced by more than 90%. The results reveal that the robust design wing achieves a significant 

improvement in all-frequency omnidirectional RCS and is capable of meeting the future requirements 

for designing a high-stealth flying wing shape. The robust design optimization results verify the 

reliability and effectiveness of the proposed multidisciplinary robust design optimization method 

compared to traditional deterministic design methods, laying the foundation for the development of 

advanced aerodynamic configuration design method for engineering usage. 

 

(a) Wing root airfoils 

 

(b) Wing Kink airfoils 

 

(c) Wing tip airfoils 

Fig. 3 Airfoils comparisons at different sections of initial shape and robust design shape. 

 
 

Fig. 4 Comparisons of drag-divergence Mach number and pitching moment coefficients between 
initial shape and robust design shape at 𝐶𝐿 = 0.10 
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Fig. 5 Comparisons of drag-divergence Mach number and pitching moment coefficients between 
initial shape and robust design shape at 𝐶𝐿 = 0.15. 

 
 

Fig. 6 Comparisons of drag-divergence Mach number and pitching moment coefficients between 
initial shape and robust design shape at 𝐶𝐿 = 0.20 

  

Fig. 7 Comparisons of drag-divergence Mach number and pitching moment coefficients between 
initial shape and robust design shape at 𝐶𝐿 = 0.25 
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Fig. 8 PDF comparisons of drag coefficients (left) and pitching moment coefficients calculated from 
initial shape and robust design shape. 

 

Fig. 9 Comparison of pressure coefficients 
distributions between initial shape and robust 
design shape (𝑀𝑎∞ = 0.78, 𝐶𝐿 = 0.20) 

 

Fig. 10 Comparison of pressure coefficients 
distributions between initial shape and robust 
design shape (𝑀𝑎∞ = 0.80, 𝐶𝐿 = 0.10) 

 

f=1Ghz HH polarization 

 

f=3Ghz HH polarization 
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f=6Ghz HH polarization 

 

f=9Ghz HH polarization 

Figure 11 RCS Comparison of baseline model and design shape at f=1Ghz, 3Ghz, 6Ghz, 9Ghz HH 
polarization, respectively. 

5. Conclusion 

This article proposes an efficient single cycle robust aerodynamic/stealth design optimization method 

based on a novel gradient-enhanced multi-fidelity polynomial chaos-Kriging (GEMF-PCK) surrogate 

model to address the challenge of huge computational costs from current robust design methods. 

The new GEMF-PCK model has been fully validated, with significantly higher modeling efficiency 

and accuracy compared to popular surrogate models such as universal Kriging, PC-Kriging, and Co-

Kriging. In particular, it significantly improves the generalization ability and global learning ability for 

highly-nonlinear/high-order aerodynamic responses, resulting in a more stable and reliable modelling 

process. To validate the performance of the developed method, a complex aerodynamic/stealth 

multidisciplinary robust design of the tailless flying wing shape is conducted. Results show that the 

developed aerodynamic/stealth multi-objective robust design optimization method significantly 

improves the optimization efficiency, meeting the needs of efficient aerodynamic/stealth design for 

the future tailless flying wing. The optimized new shape reduces the average drag by more than 20 

counts over a wide Mach number range compared to the initial layout, increases the Mach number 

of drag divergence by 0.03, and significantly improves the robustness of drag coefficient. The 

longitudinal moment coefficient of the whole aircraft reaches self-leveling, and the reliability is also 

significantly higher. At the same time, stealth analysis shows that compared to the initial layout, the 

optimized layout reduces the average radar cross section (RCS) by more than 90% in the L, S, C, X 

bands, and reduces the forward RCS by more than one order of magnitude, resulting in 

comprehensive improvement in stealth characteristics, which can meet the needs of future high-

stealthy flying wing layout aircraft for all-directional and all-frequency stealthy use.  
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