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Abstract

This paper investigates the use of RANS-based unconstrained gradient-based optimization to reduce drag
in automotive applications. Three optimization algorithms are tested around the roof spoiler and front fascia
regions of the DrivAer Estateback to evaluate the efficacy of the different algorithms in regions with differing
flow physics. Two variants of the Estateback were used, defined previously by the authors. These were
the base Estateback and an improved variant, which had been previously modified by the authors to have
less aerodynamic drag using qualitative gradient-based methods. Drag optimization of the Estateback was
most successful around the roof spoiler, achieving up to 7%. Optimization around the front fascia showed no
measurable improvement, due to the complex wake features around the front tires not being fully resolved by
the RANS solver. DDES post-optimality CFD was used to confirm the results predicted by the optimization
algorithms, which showed the RANS optimizers were most accurate when applied to the improved Estateback
variant.
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Nomenclature

αK Scaling value of the search direction to compute the new design vector

εa Absolute objective function convergence tolerance

εg Gradient convergence tolerance

εr Relative objective function convergence tolerance

pK Search direction for a given outer iteration

xK Design variable vector at major iteration K

x∗ Design vector at which the objective function is minimized

∇J Gradient of function f

D Aerodynamic drag [N]

H(x) Hessian matrix

J Adjoint objective function
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l Car wheelbase [mm]

U∞ Freestream velocity [m/s]

VK Approximate inverse hessian matrix

x Streamwise location [mm]

y Spanwise location [mm]

z Vertical location [mm]

K Number of optimization loops

k Equivalent total number of CFD solutions

Dimensionless Groups

CD Drag Coefficient, D
0.5ρ∞U2

∞A

Acronyms

CFD Computational Fluid Dynamics

MRF Moving Reference Frame

RANS Reynolds Averaged Navier Stokes

SA Spalart Allmaras

SIMPLE Semi-Implicit Method for Pressure Linked Equations

1. Introduction
With the looming climate crisis, many sectors of engineering have worked towards improving effi-
ciency, reducing emissions, and creating more effective design to limit global carbon dioxide emis-
sions. This has included the use of electrification, new sustainable fuels, and a greater focus on
aerodynamic drag in the aerospace and automotive industries. With passenger vehicles making up
41% of emissions in the transportation sector [[1]], electrification has become more common, with
the attempt to divest from fossil fuels.

With electric vehicles benefiting from greater efficiencies in their drivetrains, aerodynamic drag has
become even more of a concern. When Porsche developed their Taycan electric model, they found
that aerodynamic drag comprised 29% of the car’s total losses, compared to roughly 8% for their in-
ternal combustion vehicles [2]. As such, minimizing aerodynamic drag can be four times as important
for electric vehicles compared to internal combustion vehicles. This gives rise for a need in effective
optimization methods, which can be used in key stages of a car’s design cycle to improve its drag.

The automotive industry differs from aerospace, in that the exterior design of a car is largely form
driven, rather than function driven. Manufacturers will conceptualize a design language to be ex-
pressed with the vehicle, with aerodynamic targets not necessarily driving that language. Therefore,
it is not uncommon for aerodynamic sacrifices to be made, in order to achieve a desired aesthetic.
Therefore, traditional multi-disciplinary optimization that incorporates the exterior styling can be an
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inefficient use of engineering efforts, as it is likely that it would not meet the styling requirements of
the vehicle. Therefore, optimization methods may not be feasible until the end of the design cycle, for
final improvements. This use of gradient-based optimizers should therefore be efficient, and be able
to be applied to certain areas of the car with either low styling concern, or noticeable design freedom.

Aerodynamic shape optimization has been investigated in the automotive industry, comprising of
gradient-based and gradient-free optimizers to improve certain regions of a car[3, 4, 5, 6, 7, 8]. The
majority of recent work has employed gradient-based optimization. This has been driven by the con-
tinuous adjoint method for the calculation of the sensitivities, which is an efficient sensitivity analysis
method in the presence of many design variables. The key contributor to this work in the open-
source community is the National Technical University of Athens (NTUA) Parallel Computing and
Optimization Unit (PCOpt), who developed the continuous solver for OpenFOAM [[9]], adjointOpti-
misationFoam [10]. Numerous investigations have been performed, such as the optimization of a
Volkswagen iD3’s rear spoiler, which showed drag improvements around 5%, performed by Papout-
sis et al [7]. Further studies have also investigated the effects of multiple operating conditions on the
minimization of multi-objective optimization problems for a car subject to a cross-wind [6].

What these works do not quantify is the effect of different unconstrained gradient-based optimiza-
tion methods on the quality of the results. Since industrial automotive flows are particularly complex
due to interaction wakes, rotation wheels, and large regions of separation; there tends to be poorer
numerical convergence of the primal solutions [11]. In turn, this introduces inaccuracies and difficul-
ties in converging the adjoint equations. Therefore, certain optimization methods may perform more
effectively for automotive purposes, specifically those that yield smaller displacements at each opti-
mization iteration. Furthermore, much of the existing literature has focused on optimizing the shape
of the rear decklid of automotive geometries [12, 7, 3]. These do not consider regions with more
complex flow physics that will be more sensitive to the primal solution’s convergence, such as around
the front wheels. This area is of particular importance for drag reduction and as such, it is valuable
to quantify the effectiveness of different optimization methods in these areas of a car.

This paper acts as an extension of previous work by the authors using gradient-based methods to
improve the aerodynamic design of passenger cars [13]. This is meant to serve as the final step in a
typical automotive design routine, where improvements would be made to the vehicle through expert-
informed decisions, at which point optimization methods can be used to extract the last portion of
performance from the vehicle. This paper therefore serves as the final component in a more unified
automotive design process, making effective use of gradient-based methods to improve engineering
efficiency. In doing so, this paper seeks to determine how important expert-driven modifications are
in the drag reduction process of a car. It is unlikely that computer-driven optimization alone is suffi-
cient to achieve the full potential of a car, especially in the presence of styling constraints that cannot
be quantified within an optimization routine. All of this is attempted to be met within CFD software
typically used by the automotive industry.

Furthermore, this paper provides an examination of the role the optimization algorithm, and initial
design vector play for a highly-detailed automotive geometry. Previous work has investigated these
effects for automotive bodies, but these have featured simplified geometries, without complex wake
structures arising from the tires [12]. Part of the present work will be the use of higher fidelity post-
optimality CFD simulations to confirm the improvement prediction accuracy of the optimizers, which
has not been previously presented for automotive applications. This will provide quantification of pre-
viously undocumented optimizer performance across a range of initial design vectors pertinent to the
automotive industry.
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The use of unconstrained gradient-based optimization is applied to the DrivAer Estateback model,
to evaluate its efficacy in industrial applications valuable to the automotive industry. This optimiza-
tion will be performed on both the baseline Estateback model and the improved Estateback model
previously described by the authors [13]. The continuous adjoint formulation, optimization methods,
and optimization problem are presented in Section 2.. The application of gradient-based optimization
to the two Estateback variants using three different step update methods is presented in Section 3.
Additionally, this section will also present post-optimality computational fluid dynamics (CFD) simu-

lations to verify the improvement predicted by the optimization algorithms. The conclusions reached
and discussion of future work is presented in Section 4..

2. Methodology
This section presents the definition and formulation of the optimizers and their use within OpenFOAM,
as well as the test-case and numerical setup that will be used to apply the optimization routines.
Finally, the specific optimization problem will be defined.

2.1 Gradient-Based Optimizers
For all gradient-based optimizers, the derivative of the objective function is used to define a search
direction to either maximize or minimize the objective function, J. For CFD solutions, the most effi-
cient method with which the Jacobian and Hessian can be calculated is the adjoint method. Within
the OpenFOAM [[9]] framework used, the continuous adjoint method has been implemented within
its continuous adjoint solver, adjointOptimisationFoam, developed by the National Technical Univer-
sity of Athens [10]. The governing equations for the continuous adjoint method have been previously
described by the authors [[13]], and as such, will not be detailed here.

Unconstrained gradient-based optimizers in adjointOptimisationFoam are applied in the following
steps, with an initial major iteration, K = 0, and an initial design vector: xK :

1. Convergence is tested, by evaluating the objective function value at the current design vector,
xK , and comparing it to the previous major iteration’s objective function value (if available). If
convergence criteria are met, the solution is stopped.

2. A search direction, pK , is computed using gradient information from the objective function. A
number of search direction methods can be chosen to compute this vector.

3. Compute the step length to find a positive scalar, αK , such that the Armijo conditions are met
as implemented in adjointOptimisationFoam [14].

4. The design vector is updated such that, xK+1 = xK +αKpK .

K = K + 1, and steps 1 - 4 are repeated if K is less than the maximum number of desired
iterations.

As mentioned, adjointOptimisationFoam employs the Armijo condition for the line search, which is an
inexact line search method. It is formulated such that the line search converges when Condition 1 is
satisfied:

J (xK +αKpK)≤ µ1αK∇J (xK)
T pK (1)

In Condition 1, µ1 is a small scaling factor, which is 10-4 by default in adjointOptimisationFoam [14].
This ensured that some minimum improvement is required for the line search to have converged. It
should be noted that the line search in adjointOptimisationFoam can be limited to a certain number
of iterations, which could result in line search termination before an improvement is found. As such,
this implementation within adjointOptimisationFoam was not guaranteed to result in an improvement
in the objective function at each major optimization iteration. For all optimization simulations in this
work, the line search was allowed to run for up to five function evaluations before terminating, to
balance computational expense with finding an improved solution.
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Since the line search method implemented does not make use of any curvature conditions, each
subsequent iteration of the line search is computed through backtracking by the following method:

1. The initial step length ᾱ is set to one, and some reduction ratio, 0 < ρ < 1 is chosen

2. If the Armijo condition outlined in Equation 1 is met, αK = ᾱ, and the line search is terminated

3. If the condition is not met, set ᾱ = ρᾱ and repeat step two until convergence is met, or the
maximum number of line search iterations is reached

In this paper, three search direction methods are explored: Conjugate Gradient (CG), the Broyden-
Fletcher-Goldfarb-Shanno (BFGS), and the Damped-BFGS (DBFGS) algorithm.

2.1.1 Conjugate Gradient
The Conjugate Gradient method is a modification to a steepest descent method, whereby the gradient
search direction is pushed towards the solution more rapidly by using previous optimization iterations’
gradient information [15]. It can be formulated by assuming that the objective function space can be
represented by a quadratic function:

J(x) =
1
2

xT Qx− xT b,Q = QT (2)

Therefore, the gradient of the objective function becomes:

∇J = Qx−b (3)

Using this function and its gradient, when applying the typical steepest descent search direction,
which is the negative gradient, the search direction for a Conjugate Gradient problem can be formu-
lated as:

pK+1 =−∇J(xK+1)+βKpK (4)

The computation of βK requires it to be Q-conjugate at every optimization iteration, K. To negate
the need to compute Q, so the search direction is solely dependent on the gradient of the objective
function, the Fletcher-Reeves approximation is applied. This approximation is given by [16]:

βK =−∇J(xK+1)
T ∇J(xK+1)

∇J(xK)T ∇J(xK)
(5)

This allows for curvature information to be approximated, without the need for computing the Q matrix.

2.1.2 BFGS
The BFGS method is a quasi-Newton method, whereby the Hessian matrix is approximated, to try
and represent the curvature of the design space [16]. Since the inverse Hessian matrix is what will
actually be needed, instead of solving for HK(x), the inverse Hessian, VK(x) is directly solved for at
each major iteration, K. Assuming that a Taylor-series expansion of the gradient of a function can be
written as:

∇J(xK + sK) = ∇J(xK)+HKsK + ... (6)

In Equation 6, sK = αKpK , and yK = ∇J(xK + sK)−∇J(xK). The Hessian can then be given by:

HKsK = yK (7)

Which then places a requirement for the inverse Hessian to meet the following criterion:

VK+1yK = sK (8)
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Using this information, the inverse Hessian matrix is solved for by attempting to minimize the norm of
the difference between the inverse Hessian at iteration K +1 and the inverse Hessian at iteration K.
The inverse Hessian is then solved using the following equation:

VK+1 =

[
I − sKyK

T

sK
T yK

]
VK

[
I − yKsK

T

sK
T yK

]
+

sKsK
T

yK
T sK

(9)

Using this approximation for the inverse Hessian matrix, the search direction for a BFGS problem can
then be defined by:

pK =−VK∇J(xK) (10)

By using the approximated Hessian matrix, the BFGS algorithm leverages curvature information
about the design space, leading to larger steps across the objective function topology. This makes
the accuracy of BFGS dependent on how well-behaved the objective function’s topology is, as well
as how accurately the sensitivity derivatives can be computed, since it directly impacts the inverse
Hessian calculation.

2.1.3 DBFGS
The Damped BFGS algorithm was developed to act as a more stable version of the BFGS algorithm
[17]. It is similar to the presented BFGS algorithm, except it is derived from a BFGS algorithm
that computes the Hessian directly and takes its inverse, rather than solving for the inverse Hessian
problem that BFGS does. This makes the DBFGS algorithm more akin to the Davidon-Fletcher-
Powell (DFP) algorithm, which also directly computes the Hessian, then inverts it to compute the
new search direction. The damping of the Hessian is performed to maintain the positive-definiteness
of the matrix, and occurs by examining the net curvature at the current design vector. For some
user-defined scalar γ, if the following inequality is met, the solution will proceed in its damped form:

sKyK
T < γsK

T HKsK (11)

Whether the solution is in its damped form or not, the solution of the Hessian matrix takes the same
form as the DFP algorithm, being:

HK+1 = HK − HKsKsK
T HK

sK
T HKsK

+
rKrK

T

sK
T rK

(12)

The rK in Equation 12 is a damped version version of the change in the gradient, yK . This damped
term is computed by the following equation:

rK = θyK +(1−θ)sKHK (13)

When the inequality shown in Equation 11 is not met, θ is equal to unity, returning a typical DFP
solution. When the inequality is met, θ is given by the following:

θ =
(1− γ)sK

T HKsK

sK
T HKsK −yK

T sK
(14)

Through this process, the DBFGS algorithm helps maintain positive-definiteness of the Hessian ma-
trix, but it still requires the Hessian to be inverted. This can become numerically ill-conditioned,
resulting in inaccurate or poorly conditioned search directions. When applied to adjointOptimisa-
tionFoam, this could lead to extremely large deformations of the geometry, resulting in mesh quality
violations. For the DBFGS method, the search direction is calculated as:

pK =−H−1
K ∇J(xK) (15)
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2.2 Freeform-Deformation Boxes
For shape optimization problems, freeform deformation boxes (FFD) are an efficient means of defin-
ing the design variables for an optimization problem. For a three-dimensional problem, each control
point of an FFD has three design variables, for each of its three axes. Therefore, for an FFD with n
points, it will comprise 3n design variables in three-dimensional space. An example of how an FFD
can be used to displace a triangulated surface is shown in Figure 1. A similar approach is imple-
mented in OpenFOAM.

Figure 1 – Example surface displacement that can be achieved with an FFD, from [[18]]

Within OpenFOAM, the FFD method is derived from NURBS B-spline radial basis functions [14].
Rather than using a global coordinate system-aligned parameterization for an FFD, a local cartesian
coordinate system is created, aligned to be orthogonal to the rectangular box, such that a new co-
ordinate system with axes u, v, w is defined. The FFD is therefore comprised of Cartesian points
in x, y, z that can then be parameterized in u, v, w space, with radial basis functions U , V , W . For
OpenFOAM’s implementation of the FFD boxes, the box must be an orthogonal rectangular prism.

The degree of each radial basis function U , V , W can then be described as pu, pv, and pw. For an
FFD with a number of points in the u, v, w directions of: I +1, J +1, and K +1, the mth component of
a mesh point, x, can be calculated by Equation 16.

xm(u,v,w) =
I

∑
i=0

J

∑
j=0

K

∑
k=0

Ui,pu(u)Vi,pv(v)Wi,pw(w)bi jk
m (16)

Using the initial mesh, a mapping is found for each mesh point x(x, y, z) in u, v, w space. Using the
known knot vectors r = (xr, yr, zr), each internal and boundary point of the finite volume mesh that
lives within the FFD can be parameterized in u, v, w space by iteratively solving the following system
of linear equations:

R(u,v,w) =

x(u,v,w)− xr = 0
y(u,v,w)− yr = 0
z(u,v,w)− zr = 0

 (17)

This mapping is independent for each mesh point and as such, the B-spline implementation within
OpenFOAM solves for these parameterization using parallel computations for decomposed problems
[14]. At the end of each optimization iteration, displacements are computed for each point within the
FFD(s). Once the updated points bi jk

m are known, Equation 16 is used to update all of the mesh points
within the FFD. When using adjointOptimisationFoam in double-precision, these parameterizations
can be calculated to machine precision, allowing for accurate deformations of complex geometries.
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When FFD points are used as the design variables of an optimization problem, a search direction will
be computed at each point, in each of its three directions. Once a step length is then computed from
the line search, each control point is displaced. This displacement is then mapped back to the mesh
points within the FFD, which are displaced according to the NURBS radial basis functions.

2.3 Test Case - DrivAer Estateback Variants
The DrivAer geometry is a modular, generic automotive body that was introduced in 2011 [19]. This
body was meant to bridge the gap between existing generic bodies such as the Ahmed body [20] or
SAE bodies [21]. While these bodies had some more complex features, such as A-pillar flows and
rear deck flows, they lacked wheels, wheelwells, and the option for complex underbodies and engine
bays. The DrivAer model featured all of these components, allowing for more complex flow structures
to be modelled, without the need for more representative CAD models from a manufacturer. As such,
the authors have used the Estateback variant of the DrivAer platform to develop continuous adjoint
applications for automotive aerodynamic design [13].

For this research, the two variants of the Estateback studied are the base Estateback, and the im-
proved Estateback previously presented by the authors [13]. The improved variant was modified
using gradient information in the form of the Momentum Contribution Field (MCF) method, previously
defined by the authors [13]. This method is a qualitative application of gradient information to provide
the designer with information regarding how the local flow momentum increased or decreased the
drag of the car. Using this qualitative method, the front bumper, roof spoiler, underbody, and rear
fenders were modified to reduce the aerodynamic drag with respect to the base variant.

These two variants were chosen to highlight how gradient-based optimization can be applied to a
design routine. The base Estateback variant represents a car that is closer to the beginning of its
development, whereas the improved variant represents a car that is closer to the end of its develop-
ment. This will be used to quantify if the optimizer yields greater improvements to the car in its base
form, as well as what can be achieved when combining expert-driven design with computer-driven
optimization.

Two different regions of the car are chosen on which gradient-based optimization will be performed,
the front bumper cheeks and the rear spoiler. This decision was made given the difference in flow
fields and how accurately the CFD solver can resolve these features. The front bumper cheek flow di-
rectly interacts with the front tires, which is a large drag contributor to the car. Predicting these wakes
and the upstream flow interactions can be difficult for CFD solvers, so it is of interest to see how the
optimizer can perform in around this geometry. For the roof spoiler, while certain CFD methods may
under-predict the separation on the rear fascia, the upstream flow is largely attached, meaning the
CFD solver should be less error-prone. Furthermore, having a better structure to the wake can yield
large drag savings, which is of industrial benefit to investigate. Additionally, these areas can be of
lower design studio importance, tending to be less sensitive to styling input, meaning they are better
candidates on which optimization would be performed in an industrial setting.

The front bumper cheek and rear spoiler geometries for the baseline and improved Estateback vari-
ants are shown below in Figures 2 and 3. This highlights the key differences in the two geometries
in the regions of interest for the optimization. The front bumper cheek in the improved variant has an
outward flick to outwash air flow around the front wheels, reducing the pressure buildup on the front
of the tires, along with a more bluff splitter and front underbody, which was previously described [13].
The rear spoiler on the improved variant has its trailing edge pulled down and rearwards, helping to
accelerate the flow on the roof, which has been previously shown to be effective at reducing drag
[13]. The geometries are shown for a half-car model, as the vehicle is symmetric, which will be used
to reduce the computational cost of simulations.
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(a) Base Variant

(b) Improved Variant

Figure 2 – Roof spoiler geometry

(a) Base Variant

(b) Improved Variant

Figure 3 – Front bumper cheek geometry
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2.4 Numerical Setup
The vehicle is placed in a 153.6 m long, 25.6 m wide, and 25.6 m high computational domain, to
create the half-car model about the Y = 0 plane. This domain results in a blockage ratio of 0.16%.
A half-car simulation reduces the cell count of the mesh by roughly half, resulting in the desired de-
crease in computational cost. This is deemed acceptable, as the relative efficacy of the various step
update methods was desired, rather than their absolute performance on a full car geometry. It is
expected that the efficacy of the different algorithms would scale to a full-car simulation. Meshing
methods have been previously described by the authors, with the same approach used as with pre-
vious research [13].

When performing an automated optimization loop in adjointOptimisationFoam, a RANS primal solu-
tion is performed to compute the primal velocity, pressure, and turbulence fields. For bluff bodies with
significant areas of areas of separation, RANS models tend to underpredict the amount of separation
along the body, but tend to give reliable changes in results between different designs. Both the primal
and adjoint RANS equations are solved using the SIMPLE [22] algorithm, with the RANS equations
closed using the Spalart-Allmaras (SA) turbulence model. Averaging of the primal fields and objective
function occurs over the final 1000 iterations of each objective function evaluation.

Since adjointOptimisationFoam stores the previous optimization iteration’s fields to initialize the cur-
rent optimization iteration (other than the initial function evaluation), fewer SIMPLE iterations are
needed to find a suitable solution for the flow field. As such, the initial function evaluation solves
for 2500 iterations, with each subsequent function evaluation solving for 1500 iterations. This allows
for a computational speed-up with each objective function evaluation, reducing the total cost of the
simulation. The adjoint equations are solved for 1000 iterations every time the continuous adjoint
fields are computed.

RANS models can be insufficient for the prediction of automotive aerodynamics. As such, Delayed
Detached Eddy Simulations (DDES) are used on select geometries from the various optimization
runs to perform post-optimality CFD simulations. The deformed mesh from the optimization runs are
used for these simulations, reducing the grid-dependence on the DDES simulations. This is meant
to serve as a confirmation of the changes predicted by the optimization solver, and to see if there are
any scenarios where the optimizer predicts an increase in drag after the inexact line search, but the
DDES simulation predicts a decrease in drag.

The DDES equations are solved using OpenFOAM’s pimpleFoam solver, which is a combination of
the PISO [23] and SIMPLE algorithms, for time-stepping solutions. The combined PISO-SIMPLE
algorithm is abbreviated as the PIMPLE algorithm[24]. The benefit of the PIMPLE algorithm over the
standard PISO algorithm is it does not require the maximum Courant number to not exceed one, as it
uses SIMPLE-based inner pressure correction iterations to allow for higher Courant numbers at each
time step. Second-order spatial and temporal schemes are employed with the PIMPLE algorithm
to ensure simulation accuracy. The simulation is allowed to run for five seconds, with averaging
of the flow fields and forces occuring over the last two and a half seconds, with time steps of one
millisecond. The k−ω SST DDES turbulence model is used to close the unsteady equations.

2.5 Optimization Problem
For a given FFD around a portion of the geometry, the optimization problem will be formulated as:

minimize CD

w.r.t. x = (x11,x12,x13, ...,xn3)
T (18)

In Equation 18, xi1 represents the x-component of the ith active design variable, xi2 represents the
y-component of the ith active design variable, and xi3 represents the z-component of the ith active
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design variable. When defining a deformation box within OpenFOAM, the user has the ability to de-
activate certain design variables within the box. It is typically required to constrain all of the design
variables at the boundary of an FFD, which prevents the deformed mesh from moving around points
not parameterized by the FFD. Since a symmetry plane is applied to the DrivAer geometry, any FFD
boxes that pass through the symmetry plane are only constrained in the parameterized V direction for
the points not on the rectangular bounds of the box. This allows for motion along the symmetry plane,
while constraining plane-normal displacements, representative of a symmetry deformation constraint.

For this problem, two different FFD boxes were evaluated, one around the front bumper cheeks, and
one around the rear spoiler. The positions of which are highlighted in Figures 4 - 5. The FFD’s are
coloured by their activation of the X and Z degrees of freedom (red for active, blue for inactive). This
highlights that on the symmetry plane of the vehicle, the spoiler’s FFD has a proper symmetry condi-
tion, as previously described. The front bumper cheek FFD was made to be relatively wider than the
surface geometry to allow for sufficient deformation of the surface, without artificially constraining the
results. These boxes were evaluated for each of the two Estateback variants, for each of the three
step update methods described in Section 2.2.1.

Figure 4 – Freeform deformation box placed around the rear spoiler. The car is shown in its
symmetric state to highlight the symmetry plane

Figure 5 – Freeform deformation box placed around the left front bumper cheek

The number of points in the U, V, W directions as well as the degree of the NURBS radial basis func-
tion for each FFD is shown below in Table 1. All directions were defined with a third degree NURBS
radial basis function. This ensures that there can be curvature continuity within the deformed surface,
while preventing artificial damping of the deformations due to a high-degree radial basis function.
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Table 1 – Number of points and degree of the NURBS radial basis function in the U, V, W directions
for each FFD

FFD U Points V Points W Points Degree U Degree V Degree W
Rear Spoiler 6 9 7 3 3 3

Front Bumper Cheek 6 7 10 3 3 3

Convergence of the optimization problem is monitored for both the L2-norm of the gradient, as well as
the change in objective function value for successive iterations. These criteria are defined as follows:

||∇J(xK)|| ≤ εg (19)

|J(xK+1)− J(xK)| ≤ εa + εr|J(xK)| (20)

The convergence criterion in Equation 20 must be met for two successive before it is considered as
having been met. The solver reaching either of these two convergence metrics is sufficient for the
optimization loop to be concluded. For all models, εg was set to 0.001, εa was set to 0.0005, and
εr was set to 0.0005. Since a half model is employed, this means the relative change in objective
function should be CDA = 0.001 + 0.1% of the previous iteration’s value. This limit was placed as
drag improvements of less than 0.001 CD are typically considered to be within the error of the CFD
simulation, for automotive purposes.

In some cases, poor numerical conditioning of the gradient at some control points of the FFD results
in extremely large deformations of the mesh, violating the mesh quality criteria. This can stem from
a number of reasons. Some of the control points can live within the geometry, therefore not being a
part of the active flow region. Mapping the external flow solution to these points can then result in
large gradients, due to large flow gradients that are present around the mesh points that influence
the control point(s). Furthermore, scaling of the design variables only occurs at the first optimiza-
tion iteration. For complex industrial problems, not scaling the design variables more frequently can
yield large displacements, for which the local search direction is an inaccurate approximation over
such a large step. Additionally, the poor conditioning of the Jacobian can be caused by the afore-
mentioned numerical convergence issues of both the primal and adjoint solvers. In previous work by
the authors, inaccuracies in the gradients were not necessarily identified, since the adjoint informa-
tion was used qualitatively, and with engineering judgement in their interpretation. The optimization
algorithms used due not have this same judgement and are susceptible to these convergence issues.

These mesh quality violations cause the following optimization iteration to fail, as the simulation can-
not compute a proper solution. In these cases, an "improved" solution can be isolated, prior to the
mesh quality violation occurring. While this is not strictly an optimized geometry, it can still be valu-
able from an industrial standpoint. The main purpose of applying shape optimization to automotive
applications is to search for further improvements on the design. If an improvement is realized, this
can still be useful for a car’s development, despite it not being a rigorously optimized geometry.

3. Results and Discussion
This section examines the results of the optimization studies and post-optimality CFD for each of the
two variants and their FFDs, for the three different step update algorithms tested. The optimization
results for each step update will be first compared for the Estateback variant they were tested on,
then compared for the two Estateback variants. This will highlight what the relative improvement for
each geometry was, as well as the total improvement expected for the updated Estateback variant in
comparison to the baseline Estateback.
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3.1 Roof Spoiler Optimization
The results of the roof spoiler optimization will be presented by first investigation the evolution of
the objective function (drag) as a function of optimization iteration, K, for the base and improved
variants of the Estateback. These results of each variant will then be compared to each other, and
the resultant geometry deformations will be compared.

3.1.1 Base Variant Results
The evolution of aerodynamic drag normalized to the initial function evaluation as a function of opti-
mization iteration is presented in Figure 6 for the three optimization algorithms. It is noteworthy that
the DBFGS did not make it past the first optimization iteration. This means that the first iteration for
which the inverse Hessian matrix was calculated, resulting in a poorly-conditioned search direction,
yielding non-physical mesh deformations, violating the mesh quality. This poor conditioning was due
to the inversion of the Hessian matrix, which was discussed in Section 2..2.1.2.1.3. Since the DBFGS
algorithm yielded mesh quality violations after the first optimization iteration, all three optimization al-
gorithms would have had the same Jacobian vector calculated, because they all perform a steepest
descent evaluation for the first optimization iteration. Since neither the CG, nor the BFGS algorithm
yielded mesh quality issues, and OpenFOAM did not report the damping term being activated for
the DBFGS solver, the problem in the search direction had to stem from the inversion of the Hessian
matrix performed by the DBFGS algorithm. This indicates that the problem was poorly-conditioned in
nature, and was non-convex/multimodal.

Figure 6 – Optimization results for the three optimization algorithms. The objective function is
normalized to the drag of the base variant at the initial optimization iteration

The BFGS trace is of interest, as it results in an increase in the objective function at the second op-
timization iteration, as well as at the fourth and fifth optimization iterations. This increase is feasible,
due to the maximum number of iterations that are specified for the line search. It is also interesting to
note that the solution converged, despite it being to a value greater than the initial objective function
value. This suggests that there was some degree of multi-modality in the objective function’s topol-
ogy, with this being a local minimum. This multi-modality will be further discussed in the results of the
improved variant’s optimization results.

13



LOCALIZED AERODYNAMIC SHAPE OPTIMIZATION FOR AUTOMOTIVE APPLICATIONS

The Conjugate Gradient trace shows that there was constant improvement in the objective function,
and a converged solution could be found. A maximum improvement in the objective function of 7.0%
was predicted from the optimization algorithm, relative to the initial design vector. Since the Conjugate
Gradient method largely relies on gradient information, with slight "steering" of the search direction
from the β term, it is less sensitive to numerical error in the sensitivity derivatives, and will be a more
robust method. The Conjugate Gradient method takes longer to yield an improvement since it will
suggest smaller displacements at each optimization iteration, but this is favourable in the presence of
a more complex objective topology, as is clearly exhibited.

3.1.2 Improved Variant Results
The evolution of aerodynamic drag normalized to the initial function evaluation, as a function of op-
timization iteration is presented in Figure 7, for the improved Estateback variant. As with the base
variant, the DBFGS optimizer failed after the first optimization iteration, which would be due to a
poorly conditioned search direction. It is evident that for industrial cases, the inversion step of the
DBFGS algorithm yields numerical instabilities in the sensitivities.

Figure 7 – Optimization results for each of the three optimization algorithms

The BFGS trace differed from the base variant, since its converged solution reduced the car’s drag.
However, in the process the objective function was increased and subsequent iterations oscillated
around this value, before converging to a solution with its drag reduced. This once again highlights
that for industrial automotive applications, the BFGS algorithm is less robust, due to insufficient con-
vergence of the primal equations, as well to the possibility of large displacements at each iteration,
degrading the accuracy of the local Jacobian and inverse Hessian approximations. The fact that
it converged for the improved variant and not the base variant is not indicative of the user-defined
modifications resulting in a more favourably conditions objective function topology, but to rather to the
change in the initial design vector that was sufficient to place the car in a more favourable region of
the objective function’s topology, such that it could be guided towards a local minimum.

The Conjugate Gradient trace shows that a converged, improved objective function value could be
reached. It is also valuable to note that this converged objective function value predicts greater im-
provement than the BFGS’ converged solution. As with the base variant, the Conjugate Gradient
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method was not only more robust, but it was also more effective at reducing the drag of the car. It is
also valuable to note that the Conjugate Gradient optimization of the improved variant only resulted
in a 4.7% improvement in drag, compared to 7.0% for the base variant. This is due to the user-driven
modifications, that would have moved the initial design vector closer to the converged minimum. As
such, a smaller total step was needed to reach that minimum, leading to a more accurate Jacobian
prediction due to staying within the region of space in which the adjoint approximation is valid (con-
vex).

The results of the spoiler optimization for the improved variant hint at more global multi-modality in
the design space. Both the Conjugate Gradient and BFGS solutions yielded a converged solution,
however the predicted drag reduction was different for both points. This suggests that the design
space was not truly convex, which would extend to the base Estateback variant. These local minima
were verified by performing an additional optimization run on the converged geometries. The repeat
of the Conjugate Gradient model converged immediately due to insufficient change in the objective
function. This showed that the Conjugate Gradient method found a local minimum, with less than
0.5% change in the drag when the optimizer was restarted using the new initial design vector. In
the case of the BFGS repeat, it converged to a new solution after five major iterations, predicted an
additional 2.5% reduction in drag. Since the BFGS mapping was capable of finding a new, stronger
minimum than previously found, this further highlights the multi-modality of the design space, and
suggests that the Conjugate Gradient algorithm is better suited to finding stronger minima in automo-
tive applications.

This multi-modality is partly an artifact of the lack of wake resolution within the RANS solver, but is
also due to the wake interactions between the roof flow and the underbody/rear fender flow. Minimiz-
ing with respect to CD

2 could help improve the convexity of the design space and improve solution
quality. This objective function was not readily available and its derivation was out of the scope of this
research.

3.1.3 Comparing Optimization Results
This section details how the optimization of both variants compared to each other, normalized by the
initial objective function value for the base variant, denoted by J0,Base. The objective function evolu-
tion traces for each algorithm and variant are presented in Figure 8. As expected, the value of the
objective function at optimization iteration one is the same for all algorithms for a given variant, since
all three algorithms employed a steepest descent initial step, and were therefore limited to the same
maximum initial displacement.

Comparing the Conjugate Gradient traces for both Estateback variants highlights that there was a
noticeably larger net improvement in the base variant’s drag, but the optimized improved variant is
still predicted to have less drag than the optimized base variant. At the initial optimization iteration,
the improved variant was predicted to have 4.8% less drag than the base variant, but the converged
design vector was only predicted to have an improvement of 2.2%. This therefore shows the impor-
tance of using expert-driven design to reduce the net drag of a car. While the optimizer was capable
of improving the base variant more than the improved variant, the optimized improved variant was
still better than the optimized base variant. Since the MCF method that was used to drive the modi-
fications of the improved variant, it is more favourable to use this method during the early phases of
a design cycle to respect styling constraints, with optimization being reserved for later stages, when
further improvements would be desired.

15



LOCALIZED AERODYNAMIC SHAPE OPTIMIZATION FOR AUTOMOTIVE APPLICATIONS

Figure 8 – Optimization results for each of the three optimization algorithms, for both Estateback
variants. Both variants’ drag is normalized by the drag of the base variant at the initial optimization

iteration (J0,Base). Design vectors for post-optimality CFD are marked

Table 2 highlights the performance of all of the optimizers for the two variants. The minimized ob-
jective function value relative to the initial objective function value for a variant (J∗/J0), as well as the
minimized objective function value relative to the base variant’s initial drag (J∗/J0,Base) are presented
to highlight the relative and net improvements found from each algorithm. JK/J0 is the normalized
value of the aerodynamic drag for the final optimization iteration, K. If J∗/J0 and JK/J0 differ, this is
not an indication of a converged solution not being found, but that the converged solution was not the
minimal solution found during the optimization process. For the equivalent number of flow solutions,
k, this value is in relation to the number of iterations the initial primal solution took. All subsequent
primal evaluations cost 0.6 equivalent flow solutions, and all adjoint solutions cost 0.4 equivalent flow
solutions.

Table 2 – Summary of optimization progress for each algorithm and variant studied, for the spoiler
FFD

Algorithm Variant K k J∗/J0 J∗/J0,Base JK/J0 Converged

CG
Base 9 13.4 0.930 0.930 0.930 Yes

Improved 9 10.4 0.953 0.908 0.953 Yes

BFGS
Base 6 16.2 0.988 0.988 1.038 Yes

Improved 12 27.2 0.979 0.932 0.979 Yes

DBFGS
Base 1 2.4 0.993 0.993 0.993 No

Improved 1 2.4 0.997 0.949 0.997 No

From Table 2, the most improved optimization iteration results for the base and improved variants
were predicted to be from the Conjugate Gradient optimization. Furthermore, the Conjugate Gradi-
ent evaluations were able to perform reduce drag in fewer equivalent function evaluations than the
BFGS algorithm did. This was because the BFGS optimization loops required many line search it-
erations before either the iteration limit, or an improved design was found. The Conjugate Gradient
models tended to require only one function evaluation per line search execution, which further sup-
ports the Conjugate Gradient’s search direction being more robust, but also more efficient than the
other tested methods.
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To understand the modifications to the base and improved variants, the deformed geometry for the
base variant at optimization Iteration 9 and the deformed geometry of the improved variant at opti-
mization Iteration 9 are presented in Figure 9, for the Conjugate Gradient models. When examining
the displacement, a positive displacement means the surface was deformed inwards, along the sur-
face normal, and a negative displacement is outwards, against the surface normal. The BFGS and
DBFGS models will not be presented as they did not produce a comparable reduction in drag.

For both the base and improved variant, the outboard end of the spoiler was flared downwards more
than the inboard end, creating more downward curvature on the outboard end of the roofline, leading
to more outboard flow acceleration. Additionally, having the trailing edge lower on the outboard end
of the roof can help contract the overall size of the wake. This would require validation with higher
fidelity methods, as RANS tends to underpredict the amount of separation on the rear fascia. Thus,
it would perform relatively accurately up until separation occurred on the roofline.

(a) Base Variant, Conjugate Gradient Iteration 9

(b) Improved Variant, Conjugate Gradient Iteration 9

Figure 9 – Deformed surfaces, subject to the spoiler FFD

On the base variant, upstream of the spoiler, a bump was added to the roof, allowing for more flow
acceleration upstream of the spoiler. This bump was not present on the improved variant, due to
previous modifications that were guided by the MCF [13]. Since the MCF yielded information that
increasing flow acceleration at the trailing edge of the roof would help decrease drag, the roof was
already given additional downwards curvature. As such, a bump was not needed to be generated
to achieve this effect. It is also interesting to note that this bump was present on the base variant,
since this was information that was directly distilled from the MCF guidance. However, the bump
being developed was a result of the optimizer exploiting the geometry of the spoiler FFD, rather
than being a physical solution. It can be seen that the bump present in the base variant was not
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tangent to the rest of the roofline. This suggested that the roofline should have been raised higher
to accommodate for the additional curvature generated downstream of the bump. Having the bump
present would create a local pressure buildup and potential thickening of the boundary layer, that
would not be desired. Nonetheless, this highlights that the MCF and optimization should be used in
tandem, whereby the MCF information guides early work in a car’s design cycle to target key areas
where drag can be minimized, with optimization extracting the final performance from the design.

3.2 Roof Spoiler Post-Optimality CFD
The designs that were chosen to perform post-optimality CFD on were Conjugate Gradient optimiza-
tion iteration 9 and BFGS iterations 4 and 6 for the base variant, as well as Conjugate Gradient
iteration 9 and BFGS iteration 12 for the improved variant, as marked in Figure 8. The BFGS it-
erations were chosen to determine the accuracy of the RANS solver employed in the optimization
process when large deformations were generated between optimization iterations, which is one of
the hallmarks of the BFGS method. Additionally, BFGS iterations 3 and 6 for the base variant were
chosen to see if iteration 3 actually resulted in an improvement in drag, and if iteration 6 resulted in
an increase in drag. The remaining options are chosen to verify if the predicted improvement is able
to be replicated within a DDES model. The DBFGS iterations were not chosen for either variant, as
only one optimization iteration was completed in both cases.

Figure 10 presents the percent difference between the post-optimality and optimizer’s prediction of
J/J0 for the spoiler optimization. For the base variant, the change direction predicted by the optimizer
was different than the direction calculated by the DDES model. In all three cases, if the optimizer
predicted a change that increased drag, post-optimality CFD suggested it decreased drag, and vice
versa. This trend was not present in the improved variant’s optimization, with both analyzed designs
predicting a reduction in drag with the post-optimality CFD also predicting a drag reduction. It is also
valuable to see that in both cases of the improved variant’s post-optimality analysis, they predicted
roughly 1.4% more drag reduction in the post-optimality CFD, compared to the optimization value. It
was not expected that the post-optimality CFD would provide the actual drag savings from an opti-
mization design vector, but rather a more accurate sense of the improvement predicted. However,
drag reduction predicted by post-optimality CFD was trusted, given the consistency across different
designs shown when validating the DDES models. Experimental validation of the designs would be
required to understand the true drag savings achieved.

Figure 10 – Percent difference in J/J0 from post-optimality CFD to optimizer predictions, for the
spoiler design vectors chosen
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In summary, the post-optimality CFD had better agreement with the optimizer for the improved vari-
ant simulations. This was due to the modifications that defined the improved variant, which sought
to reduce the size of the rear wake and make it more uniform. As a result, the optimizer’s underlying
RANS solver was better able to deform the geometry in a manner that would yield a drag reduc-
tion. This highlights the importance of expert-driven design modifications prior to the application of
optimizers for automotive purposes.

3.3 Front Bumper Cheek Optimization
The results of the front bumper cheek optimization will be presented in the same manner as the
spoiler optimization.

3.3.1 Base Variant Results
The evolution of aerodynamic drag normalized to the initial function evaluation as a function of opti-
mization iteration is presented in Figure 11 for the front bumper cheek of the base variant. In contrast
to the base variant’s spoiler optimization, none of the algorithms showed a clear path of improvement
by deforming the front bumper cheek. There was a considerable amount of zig-zagging by the various
algorithms, with a clear improvement being elusive. This was due to the more complex flow physics
which occurred around the front bumper cheek, compared to the spoiler region. The flow that comes
off the front bumper cheeks was largely dominated by the interactions it had with the front tires and
their wake. Since the optimizer makes use of a SA RANS model, the ability to predict these wakes
was susceptible to significant modelling errors due to the lack of resolved turbulent kinetic energy. As
such, the sensitivities in this area may not only be incorrect, but the resultant primal evaluations may
not have given a reasonable evaluation of the flow field.

Figure 11 – Optimization results for each of the three optimization algorithms. The objective function
is normalized to the drag of the base variant at the initial optimization iteration

In the case of the BFGS optimization, large deformations were generated for the front bumper cheek,
which would not be acceptable from a styling perspective. However, the BFGS algorithm was capable
of yielding more improvement than the Conjugate Gradient approach, as it converged early due to
small surface displacements. This is in contrast to the spoiler optimization where the BFGS algorithm
was not as effective as Conjugate Gradient.
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3.3.2 Improved Variant Results
The evolution of aerodynamic drag normalized to the initial function evaluation as a function of opti-
mization iteration is presented in Figure 12 for the improved Estateback variant.

Figure 12 – Optimization results for each of the three optimization algorithms

It is noteworthy that the BFGS and DBFGS traces differed so significantly. This can be be attributed
to the inversion of Hessian matrix, occurring in the DBFGS algorithm causing variations in the search
direction. These will not occur for the BFGS algorithm, as the OpenFOAM implementation directly
solves for the inverse Hessian matrix. As with the base variant, the BFGS algorithm predicted greater
improvement in drag than the Conjugate Gradient algorithm, largely driven by larger surface displace-
ments. As with the base variant, little improvement was found by modifying the front bumper cheek
region, due to the complex flow physics that are difficult to model using a RANS solver. This further
highlights that optimization was best suited to areas in which the RANS solver could yield reasonable
predictions: in areas that are not dominated by unsteady flow phenomena.

3.3.3 Comparing Optimization Results
This section details how the optimization of both variants compared to each other, normalized by the
initial objective function value for the base variant, denoted by J0,Base. The objective function evolution
traces for each algorithm and variant are presented in Figure 13. As with the optimization of the
spoiler, the improved variant displayed less relative drag reduction when deforming the front bumper
cheeks. This should be expected, since the purpose of the improved variant was to push the DrivAer
Estateback closer to a minimal drag design, meaning it should result in less reduction in drag from
the optimization routine than the base variant. However, significantly less improvement was predicted
by deforming the front bumper cheeks, since the maximum relative improvement was less than 0.5%
compared to up to 7% relative improvement by deforming the spoiler. This is once again due to the
more complex flow physics in this region, which can be difficult for a RANS-based optimizer to yield
a reduction in drag.
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Figure 13 – Optimization results for each of the three optimization algorithms, for both Estateback
variants. Both variants’ drag is normalized by the drag of the base variant at the initial optimization

iteration (J0,Base). Design vectors for post-optimality CFD are marked

Table 3 highlights the performance of all the optimizers for the two variants for the front bumper cheek
optimization, similar to the spoiler optimization. Unlike the spoiler optimization, the BFGS algorithm
resulted in the most improvement in drag for both the base and improved variants. However, it did not
find a converged solution, meaning these designs can only be considered improvements, rather than
optima. Part of the reason the Conjugate Gradient method did not yield a noticeable improvement, is
because the first few iterations result in little total displacement of the surface with the maximum dis-
placement being around three millimeters. Since this region was dominated by complex flow physics,
these small displacements were difficult to resolve with a RANS solver. Even though drag reduction
was predicted from deformations of similar magnitude in previous research [[13]], these designs were
evaluated using DDES models which were better suited to resolving the front tire wakes. As such, the
Conjugate Gradient evaluations converged early due to the convergence criteria used. Therefore, it
could be more valuable to perform a BFGS optimization sweep first, on which the best iteration could
then have a Conjugate Gradient optimization sweep performed.

Table 3 – Summary of optimization progress for each algorithm and variant studied, for the front
bumper cheek FFD box

Algorithm Variant K k J∗/J0 J∗/J0,Base JK/J0 Converged

CG
Base 2 3.4 0.998 0.998 0.998 Yes

Improved 2 5.8 1.000 0.952 1.000 Yes

BFGS
Base 5 11.8 0.996 0.996 0.998 No

Improved 3 9.2 0.997 0.949 0.997 No

DBFGS
Base 2 5.8 0.998 0.998 1.005 No

Improved 3 9.2 1.000 1.000 1.005 No
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One aspect of the results that was consistent between the spoiler and front bumper cheek results
was that the BFGS algorithm takes consistently more function evaluations when performing an opti-
mization routine. As with the spoiler optimization, the BFGS algorithm resulted in a search direction
where an improvement in the objective function required more than one line search iteration. This
can be attributed to the additional curvature information that the BFGS algorithm provided the solver,
compared to the Conjugate Gradient case. This allows for a larger traversal of the objective function
topology, but it may then require additional line search iterations to meet the Armijo conditions.

From Table 3, the most improved optimization iteration results for the base and improved variants
were predicted to be from the BFGS algorithm. The deformed geometry for the base variant at op-
timization Iteration 3 and the deformed geometry of the improved variant at optimization Iteration 3
are presented in Figure 14.

(a) Base Variant

(b) Improved Variant

Figure 14 – Deformed surfaces, subject to the front bumper cheek FFD

The base variant showed roughly three times as much deformation than the improved variant did in
their most improved forms. The deformation realized for the base variant would not be practical how-
ever, from neither a manufacturing nor an aesthetics perspective. However, it is interesting to note
that on the lower portion of the front bumper cheek, the optimizer sought to grow a tire air deflector,
to push air outwards around the lower portion of the tire. The optimizer also tried to push the bumper
cheek outwards, which would generate some local thrust due to the additional curvature, but would
also help align the flow to be more parallel to the face of the front tires. This was present on the
improved variant as well, to a lesser extent.
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The inwards deformation on the upper half of the front bumper cheek for the base variant is an
effect of the RANS solver being unable to resolve the flow physics due to the front bumper cheek’s
interactions with the tires. While some inward curvature would help generate suction and local thrust,
the bumper cheek was pushed in too much, causing some of the front tires to be exposed. There
was some inwards deformation of the improved variant, however it was far more subtle, seeming
to reduce the height of the flick. When this flick was initially generated, only the flick length along
the front bumper cheek was changed, with all tested variants being 5 mm tall [13]. Based on these
deformations, it is evident that a RANS-driven gradient-based optimizer will perform more poorly in
areas where the flow is not well behaved and features large areas of separation.

3.4 Front Bumper Cheek Post-Optimality CFD
The front bumper cheek designs on which post-optimality CFD was performed were: were Conju-
gate Gradient optimization Iteration 2 and BFGS Iterations 3 and 5 for the base variant, as well as
Conjugate Gradient Iteration 2, BFGS Iteration 3, and DBFGS Iteration 3 for the improved variant.
The DBFGS result for the improved variant was analyzed since the search direction for BFGS and
DBFGS should have been similar, but there was a noticeable difference in their objective function
values.

Figure 15 highlights how the chosen optimization iterations performed in the post-optimality DDES
model for the front bumper cheek deformations. For both variants, there was no real trend in the
post-optimality results, largely due to the complex flow physics around the front bumper cheek, which
were less prevalent around the roof spoiler. Since the drag in this region was largely dominated by the
front wheel drag, these are features that the RANS-based optimizer could not resolve with sufficient
fidelity to yield effective change. However, as with the spoiler, the improved variant saw better drag
correlation between the post-optimality CFD and the optimzation results.

Figure 15 – Percent difference in J/J0 from post-optimality CFD to optimizer predictions, for the front
bumper cheek design vectors chosen

In summary, since the front bumper cheek region was dominated by complex flow structures, the opti-
mizer did not reduce drag measurably, and did not agree with the post-optimality CFD. This highlights
the importance of the solver fidelity in the optimization routine. In areas where the flow physics are
complex, it would be more effective to use a gradient-free optimizer, which could use DDES models
for its drag evaluation, instead of a gradient-based RANS optimizer. This negates inaccuracies in a
RANS model around adverse pressure gradients, and remove the need for post-optimality CFD.
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4. Conclusions and Future Work
This paper presented an analysis on the efficacy of different RANS-based unconstrained gradient-
based optimizers for reducing drag of a canonical automotive geometry. This involved performing
optimization using freeform deformation boxes around the spoiler and front bumper cheeks for two
variants of the DrivAer Estateback, which determined how the different algorithms performed in the
presence of different flow features.

For the spoiler region optimization, a relative drag reduction of up to 7% was predicted for the base
variant, and up to 4.7% for the improved variant. The baseline variant predicted greater drag reduc-
tion, since the modifications previously devised by the authors of the improved variant placed it closer
to a local minimum. However, the improved variant predicted a greater net improvement in drag when
combining the Momentum Contribution Field and optimization methods than just MCF or optimization
modifications made to the base variant. For both variants of the Estateback, the Conjugate Gradient
algorithm was found to be the fastest and most robust for reducing drag.

Optimization of the front bumper cheek highlighted the inaccuracies of the RANS solver and subse-
quent sensitivities in areas dominated by separation. Negligible relative improvement was predicted
for either Estateback variant, due to the complex flow physics around and downstream of the front
tires. For both regions, it was noted that the BFGS algorithm tended to yield more displacement
earlier in the optimization routine, which tended to cause oscillatory changes in drag because of the
inexact line search method used. Additionally, the BFGS and DBFGS algorithms tended to yield
poorly conditioned sensitivities, due to the curvature information contained in their Hessian approx-
imations, which caused the optimization routine to fail due to mesh quality violations. RANS-based
gradient optimizers are insufficient for realistic automotive geometries in regions dominated by ad-
verse pressure gradients and separation as such.

Post-optimality CFD of key designs for the roof spoiler and front bumper cheek optimization routines
highlighted areas in which the RANS-based optimizer suffered in accuracy. For the roof spoiler opti-
mization, the base variant’s predicted change did not show a consistent trend with the post-optimality
CFD, influenced by adverse pressure gradients not effectively resolved by the RANS solver. The
improved variant’s post-optimality CFD showed the same direction of change with a consistent 1.4%
additional drag reduction predicted, compared to the RANS optimization. Post-optimality CFD for
the front bumper cheek optimization further emphasized the inability of effective drag minimization
from a RANS-based solver. Greater disagreement was found in both the drag change direction and
magnitude between the post-optimality and optimization CFD.

A number of improvements to the tested optimizer were noted: the first would be the ability to place
restrictions on the total displacement of the freeform deformation box in each direction. Limiting the
total displacement could still yield an optimzation iteration where the objective function increases due
to the inexact line search, but it could damp control point displacement guiding the solution back
towards a local minimum. Furthermore, being able to rescale the design variables at each iteration
would be valuable. This could work with total displacement limitations to damp certain control points
that lead to excessive deformations, improving optimizer robustness. Additionally, gradient-free meth-
ods such as response surface methods, may be more effective for optimizing regions dominated by
complex flow physics, such as the front bumper cheeks. The underlying solver would benefit from
more accurate function evaluations, such as DDES models, and the solution would not be susceptible
to inaccurate gradient information from an adjoint computation.
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