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Abstract

The quantification of uncertainties in the mechanical response of composite structures can be a demanding
task from a computational point of view. This is due both to the number of uncertain parameters in a real
study case and the complexity of the model to be analyzed. In this paper, an efficient global/local approach to
estimate the uncertainties of the quantities of interest in specific regions of interest with limited computational
effort is proposed. This is achieved by refining only locally the model taking advantage of Refined Structural
Theories. At the same time, since the variance of the uncertain parameters is usually relatively small, the
stochastic analysis is dealt with a sensitivity study carried out both in the global and in the local model. In this
way, it is possible to assess the influence of global and local uncertain parameters in the same sub-modeling
analysis. The results of the applications shown focus on obtaining an accurate probabilistic distribution of the
stress field that can be later used in failure criteria to evaluate the subsequent distribution of the failure index.
A good correlation with the reference Monte Carlo simulations is shown. For a more detailed description of the
followed steps and results, the reader is encouraged to refer to [1].

Keywords: Global/Local Analysis, Stochastic Finite Element Method, Carrera Unified Formulation, Uncer-
tainty Quantification and Propagation

1. Introduction and theoretical background
The possibility of quantifying the uncertainty in engineering design is of fundamental importance for
the Aerospace industry. An uncertainty quantification study generally requires three different steps
[2]:

1. Identification of the sources of uncertainty present in the system

2. The definition of the computational model.

3. The propagation of the uncertainties through the model.

The focus of this paper is on the uncertainty propagation part, with the aim to upscale it to situations
of industrial interest. The main drawback of probabilistic studies consists in the fact that they tend to
be computationally expensive for any real case scenario. This is due on one hand to the number of
random variables involved, and on the other hand to the number of degrees of freedom.
In this study, this aspect is counteracted combining together three different frameworks: refined struc-
tural theories using the Unified Formulation [3] (Section 1.1), global/local approaches (Section 1.2)
and a Stochastic Finite Element Analysis based on a perturbation approach [2] (Section 1.3). In the
following section a brief theoretical background of these frameworks is given. Then, the main points
of the methodology used are outlined (Section 2.), followed by some applications (Section 3.).
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1.1 Refined Structural Theories
In Finite Element Analysis (FEA), achieving accurate stress fields for assessing damage initiation
and propagation typically requires fine solid discretization, which increases the computational cost.
By employing structural elements like plates and shells, their kinematic properties can be utilized to
develop specific structural theories. However, classical structural theories offer a relatively limited dis-
placement field representation. Neglected displacement components become significant, especially
when estimating the three-dimensional stress field is crucial, such as for local effect assessments
and precise damage and failure analysis. Therefore, refined theories with enhanced interpolation
capabilities have been developed.
Implementing these refined structural theories can be challenging due to the different interpolation
methods of the displacement field compared to standard solid models. To address this, a framework
based on the Carrera Unified Formulation (CUF) can be used. Although this work focuses on higher-
order plate theories, similar formulations exist for beams and shells [3]. Within the CUF framework,
the displacement field u for a plate is expressed as follows:

u(x,y,z) = Fτ(z)Ni(x,y)qτi (1)

where summation over repeated indices is implied. The shape functions Ni(x,y) are used for in-
plane discretization, while Fτ(z) is used for the through-thickness direction. The array qτi contains
the degrees of freedom. From the Principle of Virtual Displacements (PVD), it can be shown that the
internal elastic work Wint is written in this compact form:

δWint = δq⊤s jk
τsi jqτi (2)

where δ (•) denotes the virtual variation and kτsi j is a 3×3 matrix known as the Fundamental Nucleus
(FN), which is independent of the specific in-plane and out-of-plane expansions used. By knowing
kτsi j, elements of user-defined order can be constructed using simple nested loops, as illustrated in
Figure 1 [3].

Figure 1 – CUF assembly procedure [3].

For layered composite plates, two distinct approaches can be identified: Equivalent Single Layer
(ESL) and Layer-Wise (LW) models.
In the ESL approach, the displacement field is defined across the entire thickness, regardless of the
number of layers. Various methods can be used, but here a Taylor-like expansion is considered:

ux(x,y,z) = qx0(x,y)+ zqx1(x,y)+ z2qx2(x,y)+ · · ·
uy(x,y,z) = qy0(x,y)+ zqy1(x,y)+ z2qy2(x,y)+ · · ·
uz(x,y,z) = qz0(x,y)+ zqz1(x,y)+ z2qz2(x,y)+ · · ·

(3)

Thus, the set of expansion functions used in this case is: Fτ = {1,z,z2, · · ·}. Since this expansion
spans the entire thickness, the number of element degrees of freedom remains independent of the
number of layers because each ply contributes to the same Fundamental Nucleus (FN).

2



On an Efficient Global/Local Stochastic Methodology for Failure Prediction of Aircraft Composite Structures

LW theories, on the other hand, assign degrees of freedom to each individual layer. Consequently,
these models are generally more computationally intensive than ESL models because adding layers
increases the size of the structural matrices. In this paper, a Lagrange expansion is used for LW
discretization. This approach is beneficial for modeling because it only involves displacement degrees
of freedom, making it straightforward to impose essential boundary conditions.

1.2 Global/Local Methods
Global/local techniques are used to refine a model locally, as fine discretization over a large domain
is generally impractical. In this study, a sub-modelling approach is employed: the displacements
from the global solution are imposed on the boundary of a local region. Hence, the global and
local models are treated as separate entities, allowing flexible refinement of the global solution in
regions of interest after its initial completion. This study focuses on failure initiation, assuming no
significant stiffness change between global and local solutions. Therefore, a straightforward one-way
global/local approach is considered sufficiently accurate. Otherwise, corrections to the global results
would be necessary, as discussed in [4]. In this context, the global models will utilize Equivalent Single
Layer (ESL) and First Order Shear Deformation (FSDT) theories, while the local discretizations will
employ Layer-Wise (LW) models with Lagrange shape functions. Since there is generally no direct
correspondence of degrees of freedom on the boundary between the models, the displacement field
of the global model must be interpolated at the locations of the local degrees of freedom. This
interpolation is necessary for both in-plane and out-of-plane directions. For instance, in the case of
FSDT plate elements (with displacement field defined as in [5]), using linear in-plane interpolation
(4-node elements), the displacements to enforce on the local boundary are computed as shown in
Figure 2. 

u = u∗+ zφ ∗
x

v = v∗+ zφ ∗
y

w = w∗
(4)

with [u∗,v∗,w∗,φ ∗
x ,φ

∗
y ]

⊤ linearly interpolated between [u1,v1,w1,φx1,φy1]
⊤ and [u2,v2,w2,φx2,φy2]

⊤. Note
that appropriate rotations should be carried out depending on the reference systems used for the
global and local models.

Figure 2 – Interpolation of degrees of freedom in submodelling approach.

1.3 Uncertainty Quantification with Perturbation Method
The response of a system for uncertainty quantification analysis can be derived from its Taylor ex-
pansion around the mean values of the random variables. This concept underpins the Perturbation
Method, which has been explored by various authors and is sometimes referred to as Probabilistic
FEM (PFEM) [6] or Stochastic FEM (SFEM) [7, 8]. The primary advantage of this method is its sim-
plicity compared to other techniques, relying on first and second-order derivatives with respect to the
random variables. These sensitivities can be efficiently computed using standard approaches, as will
be detailed later.
However, the main limitation of this method is that it typically can only handle random variables with
relatively small coefficients of variation (around 10-15%). For higher variances, the results may be-
come inaccurate. Despite this limitation, the Perturbation Method is considered a robust methodology
in many engineering applications where the variances are generally small.
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Figure 3 – Global model uncertainties θτ and local model uncertainties αi.

According to [9], consider a generic linear system Kq = f ext , which depends on random variables
αi with zero mean. The model can be approximated using a second-order expansion around these
random variables:

K = K0 +∑
i

∂K
∂αi

αi +
1
2 ∑

i j

∂ 2K
∂αi∂α j

αiα j +o(∥α∥2)

q = q0 +∑
i

∂q
∂αi

αi +
1
2 ∑

i j

∂ 2q
∂αi∂α j

αiα j +o(∥α∥2)

f ext = f 0
ext +∑

i

∂ f ext

∂αi
αi +

1
2 ∑

i j

∂ 2 f ext

∂αi∂α j
αiα j +o(∥α∥2)

(5)

where (•)0 represents the mean value (that is, for αi = 0) and the derivatives are evaluated at αi = 0.
Now, substituting these expansions in Kq = f ext and equating terms of the same order it is possible
to obtain:

q0 = (K0)−1 f 0
ext

∂q
∂αi

= (K0)−1
(

∂ f ext

∂αi
− ∂K

∂αi
q0
)

∂ 2q
∂αi∂α j

= (K0)−1
(

∂ 2 f ext

∂αi∂α j
− ∂K

∂αi

∂q
∂α j

− ∂K
∂α j

∂q
∂αi

− ∂ 2K
∂αi∂α j

q0
) (6)

And the displacement field can now be expressed as a second order function of the random variables
from Eq.(5b).

2. Methodology for Stochastic Global/Local Analysis
In this section, the workflow of the proposed stochastic global-local analysis is detailed. Since this is a
first-order method based on a perturbation approach, only the sensitivities with respect to the random
variables are needed. Section 2.1 describes how these sensitivities can be efficiently calculated for
the global model. Subsequently, Section 2.2 presents the solution for the local model, taking into
account the uncertainties in both the global and local models.
As illustrated in Figure 3, a generic structural system representing the global model is influenced by
uncertainties θτ . The local model, which enforces displacements qk(θτ) on its boundaries from the
global simulation, is characterized by uncertainties αi. It is important to note that the uncertainties θτ

and αi can be either of the same type or different types. This allows for differentiation of uncertainties
between the global and local models, enabling to differentiate uncertainties for features modeled
locally but not globally, such as holes and details of connections.
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2.1 Global sensitivity study
Restricting the Perturbation Method explained in Section 1.3 to a linear expansion, only the sensi-
tivities of the displacement field w.r.t. the random variables are necessary. Therefore, it is possible
to employ standard methods to efficiently obtain the sensitivities without relying on finite differences,
which generally lead to more expensive computations and to problems related to the step size to be
used. The so-called Direct Differentiation Method (DDM) [8] is an efficient framework to employ and
couple with the present stochastic analysis. The focus here will be limited to linear and non-linear
elastic systems and the procedure employed to compute the sensitivities follows the explanation given
in [8]. Considering the global model, we aim to compute its sensitivities w.r.t. the random variables
to be later used for the local analysis. Employing a Newton-Raphson scheme, the residual at the ith

iteration of pseudo-time t +∆t is:

t+∆tRi(
t+∆tqi) =

t+∆t f ext − f int(
t+∆tqi) (7)

assuming that the external forces f ext do not depend on the degrees of freedom q, while the internal
forces f int do. The displacement field is updated as:

t+∆tK(T )
i ∆qi+1 =

t+∆tRi (8)

with t+∆tK(T )
i the tangent matrix given by:

t+∆tK(T )
i =−∂ t+∆tRi

∂q
=

∂ t+∆t f int(
t+∆tqi)

∂q
(9)

At convergence of the Newton-Raphson scheme the residual is approximately null. Differentiating
w.r.t. θτ , since t+∆tR depends both implicitly and explicitly on θτ , it is possible to obtain

t+∆tK(T ) ∂ t+∆tq
∂θτ

=
∂ t+∆t f ext

∂θτ

− ∂ t+∆t f int

∂θτ

∣∣∣∣
q̸=q(θτ )

(10)

where the notation (•)|q̸=q(θτ ) means that the partial differential of the internal forces has to be com-
puted considering q as independent from θτ .

2.2 Local sensitivity study
Extending the ideas introduced in Section 1.3, we consider the application of the Perturbation Method
for the local study. The FE discretized linear system for the local model is:[

Kkk Kku
Kuk Kuu

][
qk
qu

]
=

[
f extk
f extu

]
(11)

with (•)k the known degrees of freedom (all assumed to be on the boundary and enforced from
the global solution) and (•)u the unknown degrees of freedom. The dependence upon the random
variables is modelled as in Eq.(12) with αi, θτ zero-mean random variables and all the derivatives are
assumed to be evaluated at αi, θτ = 0.

K = K0 +∑
i

∂K
∂αi

αi +
1
2 ∑

i j

∂ 2K
∂αidα j

αiα j

}
function of αi

qk = q0
k +∑

τ

∂qk

∂θτ

θτ +
1
2 ∑

τs

∂ 2qk

∂θτ∂θs
θτθs

}
function of θτ

f extu = f 0
extu +∑

i

∂ f extu
∂αi

αi +
1
2 ∑

i j

∂ 2 f extu
∂αi∂α j

αiα j

}
function of αi

(12)
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The unknown degrees of freedom are a function of the global and local uncertainties as:

qu = q0
u +

linear dependencies on random variables︷ ︸︸ ︷
∑

i

∂qu

∂αi
αi +∑

τ

∂qu

∂θτ

θτ +

+
1
2 ∑

i j

∂ 2qu

∂αi∂α j
αiα j +

1
2 ∑

τs

∂ 2qu

∂θτ∂θs
θτθs +

1
2 ∑

iτ

∂ 2qu

∂αi∂θτ

αiθτ︸ ︷︷ ︸
quadratic dependencies on random variables

(13)

The unknowns of the problem are q0
u, dqu/dθτ , dqu/dαi, d2qu/dθτdθs, d2qu/dαidα j, d2qu/dαidθτ , i.e.,

the deterministic solution, the sensitivities w.r.t. the random variables, and the second-order deriva-
tives. Similarly as before, substituting into the equilibrium equations:

Kukqk +Kuuqu = f extu (14)

it is possible to equate terms with the same order.
Once all the unknowns are computed, the full displacement field can be directly related to the random
variables using Eq.(13). It is important to note that no assumptions were made regarding the form of
αi and θτ , allowing for the simulation of any type of distribution. Since the degrees of freedom are
now known as a quadratic function of the random variables, the output distribution can theoretically
be computed in closed form using standard approaches if the input distributions are known [10].
However, because we are usually interested in the distributions of the stress field or other quantities
of interest, it is more practical to perform a Monte Carlo Simulation (MCS) with the expression for
displacement given in Eq.(13). While this slightly increases the computational effort during post-
processing, the cost is typically negligible since Eq.(13) is a simple polynomial.
The methodology presented so far would be second-order accurate, requiring the second-order
derivatives of the displacement field of the global solution (to determine ∂ 2qk/∂θτ∂θs). Generally,
these quantities are not readily available and can be computationally expensive to obtain, especially
when dealing with multiple random variables. Moreover, in many engineering systems, variability is
quite limited, making a first-order expansion sufficient and allowing the direct use of results from the
global sensitivity study.
This workflow is evaluated by comparing the resulting probability density function (PDF) of the quan-
tities of interest with those obtained from MCS, either with or without submodelling, depending on
the computational cost. In the first scenario, the full refined model is simulated multiple times with
randomly sampled uncertain parameters. In the second scenario, both the global and local models
are simulated each time, with the local model driven by the global results. It is crucial that the same
sampled value for the uncertain material parameter is used in both models, if it is common to both.

3. Application
In this section, the framework presented before is applied to a simple plate with an opening, be-
ing both the global and local models linear elastic. The focus will be in obtaining the probabilistic
distributions of the stresses and the corresponding failure indices for the chosen failure criterion.

Table 1 – IM7-8552 elastic, strength and interface properties [11], [12].

E1, GPa E2, E3 GPa G12, GPa G23, GPa ν12 ν23
171.42 9.08 5.29 3.92 0.32 0.487

XT , MPa XC, MPa YT , MPa YC, MPa SL, MPa ST , MPa
2323.5 1017.5 62.3 253.7 89.6 62.3

YBC, MPa YBT , MPa GIc, kJ/m2 GIIc, kJ/m2 η (BK)
600.0 38.7 0.28 0.79 1.45

The properties of IM7-8552 (Table 1) were used.
The plate with a circular opening is studied as detailed in Figure 4 where the boundary conditions
used are specified. On the upper edge a uniform displacement along the y-axis ūy is imposed. A
uniform pressure p is also applied on the whole plate domain. The methodology described in the
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Figure 4 – Panel with opening under tension and out-of-plane pressure. The
element of interest in the local model is highlighted in red.

Figure 5 – Deformed shapes for global and local models for the study case of
the plate with opening.

previous section is applied for this linear elastic study case to obtain stochastic information of the
stress field near the opening.
Taking advantage from the global/local framework described earlier, the analysis is refined in a spe-
cific region of interest around the opening. This refinement is achieved in two ways. First, the compu-
tational model of the local domain is made finer and has higher interpolation capabilities compared
to the global model. For the global model, an Equivalent Single Layer (ESL) plate model with a linear
expansion for each displacement component (6 degrees of freedom per node) is used. In contrast,
the local model employs a Layer-Wise (LW) plate model with a cubic Lagrange expansion for each
ply. Second, the local model is refined in terms of the random variables considered. In the global
domain, only the applied boundary conditions (p and ūy) are treated as stochastic. In the local do-
main, however, some elastic properties (E1, E2, G12) are also considered random variables. This
simplification reduces the computational effort required for the global stochastic analysis. Note that
the applied pressure affects both the local and global domains, so this random variable is consistent
across both regions. A summary of the model specifications is provided in Table 2, and details about
the random variables used are specified in Table 3.

Table 2 – Model specifications for the study case of the plate with opening.

Global model Local model
Layup [0/45/−45/90]s

Ply thickness 0.125 mm
Model ESL (6 DOF per node) LW (cubic Lagrange per ply)

Random variables p, ūy qk, p, E1, E2, G12

7
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Table 3 – Random variables for the study case of the plate with opening.

Random variable Mean Coefficient of Variation Distribution
p 510−5 MPa 0.1 Normal
ūy 1 mm 0.1 Normal
E1 171.42 GPa 0.1 Normal
E2 9.08 GPa 0.1 Normal
G12 5.29 GPa 0.1 Normal

Figure 6 – Deterministic through-thickness stress distribution for the element of interest.

The results of the deterministic analysis are reported in Figure 5, where the deformations are shown,
and in Figure 6 where the stress distribution at the centroid of the element of interest (Figure 4)
is presented. Note that, since the pressure is applied only on the upper surface of the plate, from
equilibrium σz should be null on the lower surface. However, due to the fact that the model is not
refined enough, this effect cannot be captured.
It is worth to mention that the way the displacements are enforced on the local domain boundary can
be similarly followed also for the sensitivities, hence building the terms ∂qk/∂θτ . For the current study
case, the displacement field of the global model is expressed as a function of the random variables
as:

q = q0 +
∂q
∂ p

p+
∂q
∂ ūy

ūy (15)

At the same time, the first order ESL plate model allows to write:

ux(x,y,z) = qx0(x,y)+ zqx1(x,y)

uy(x,y,z) = qy0(x,y)+ zqy1(x,y)

uz(x,y,z) = qz0(x,y)+ zqz1(x,y)

(16)

where, for example:

qx0 = q0
x0 +

∂qx0

∂ p
p+

∂qx0

∂ ūy
ūy (17)

So the displacement is expressed as (taking only ux as illustrative example):

ux =

(
q0

x0 +
∂qx0

∂ p
p+

∂qx0

∂ ūy
ūy

)
+ z

(
q0

x1 +
∂qx1

∂ p
p+

∂qx1

∂ ūy
ūy

)
= (q0

x0 + zq0
x1)︸ ︷︷ ︸

q0
x

+

(
∂qx0

∂ p
+ z

∂qx1

∂ p

)
︸ ︷︷ ︸

∂qx/∂ p

p+
(

∂qx0

∂ ūy
+ z

∂qx1

∂ ūy

)
︸ ︷︷ ︸

∂qx/∂ ūy

ūy
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Figure 7 – Probabilistic distribution of σx for the element of interest highlighted in Figure 4.
Reference results are highlighted with red colors.

Figure 8 – Probabilistic distribution of failure index along the thickness for the element of interest.
Reference results are highlighted with red colors.

where q0
x , ∂qx/∂ p, ∂qx/∂ ūy are the components of the degrees of freedom qk which have to be en-

forced on the boundary of the local domain.
The proposed global/local stochastic methodology was applied in this study case, assigning each
random variable a Coefficient Of Variation (COV) of 0.1. The results of the stochastic analysis are
depicted in Figure 7, showing for the sake of brevity only the distributions of the in-plane stress σx at
the centroid of the element highlighted in Figure 4 across the thickness. In Figure 7, the distributions
from the stochastic analysis are represented in black, while the results from a reference Monte Carlo
Simulation (MCS) are shown in red for comparison. To ensure clarity, the probability density functions
are normalized to unity. Additionally, for a more quantitative comparison, the means and standard

9



On an Efficient Global/Local Stochastic Methodology for Failure Prediction of Aircraft Composite Structures

deviations are also presented in the same graph.
Based on these results, the following observations can be made:

• Even for a relatively high COV the results agree fairly well with the reference MCS. Simulations
(not reported here for the sake of brevity) have been carried out also for lower variances ob-
taining similar results. From these results, it is observed that, for an accurate stochastic stress
analysis, a linear expansion around the random variables is enough.

• The MCS have been performed with a fully LW model, so without employing the sub-modelling
step.

For design purposes, it is often more practical to assess a failure index (FI) derived from a specific
failure criterion rather than examining individual components of the stress tensor. The distribution of
this FI can be obtained similarly to that of the stress tensor, by simulating the displacement field using
Monte Carlo methods based on random variables. As an example, the three-dimensional invariant-
based failure criterion proposed in [12] was employed here, utilizing the strength properties detailed
in Table 1. According to this criterion:

FI = ε1/ε
T
1 (18)

with εT
1 the allowable strain in the fibre direction. The failure condition for matrix failure and fibre

failure in compression can be expressed as a function of some invariants as follows:

FI = α1I1 +α2I2 +α3I3 +α32I2
3 (19)

where the coefficients α1, α2, α3, α32 depend on the strength material properties, and the invariants I1,
I2, I3 can be computed from the three-dimensional stress tensor. More details about their derivations
and their explicit expressions can be found in [12]. It is noteworthy that considering randomness in
the material strength properties adds no complexity, as the distribution of the FI is directly computed
from the expansion of the displacement field around the random variables. However, in this example,
the material strengths are assumed deterministic. The distribution of the FI for the element of interest
is illustrated in Figure 8. Notably, the tails of the distribution for certain plies exceed FI = 1, indicating
that for the level of randomness assumed in the elastic properties, the design is susceptible to failure.
A more rigorous reliability analysis can be conducted by integrating the Probability Density Function
(PDF) of this distribution to compute the corresponding probability of failure.

4. Conclusions
This work proposes a methodology to propagate uncertainties in multiscale structural analysis, ac-
counting for both global and local random variables. The standard submodelling technique for re-
fining a Finite Element analysis locally is combined with a perturbation-based uncertainty quantifi-
cation study. The model is linearly expanded around the uncertain parameters, which implies that
large variances cannot be considered. However, in many engineering scenarios, this is not a signifi-
cant limitation due to the relatively small variations typically encountered. Additionally, the proposed
methodology allows for the use of standard sensitivity analysis techniques, making the overall ap-
proach computationally efficient.
Using the Direct Differentiation Method (DDM), sensitivities are directly computed from the tangent
stiffness matrix at the last load step. Particularly for cases focused on uncertainty in material pa-
rameters, it is possible to exactly differentiate the structural matrices, avoiding issues related to finite
differences and step size.
In this framework, a study was conducted on accurate stress analysis for failure prediction of lam-
inated composites. The local discretization approach, based on Layer-Wise (LW) plate models, al-
lowed for the retrieval of the full stress tensor and the associated probabilistic distributions. The
results can hence be applied to a three-dimensional failure criterion, obtaining the distribution of
failure indices for subsequent reliability analysis.
Although the methodology was evaluated using simple use cases, it is considered suitable for real-
world problems encountered by stress engineers. The main limitations of the current framework are

10



On an Efficient Global/Local Stochastic Methodology for Failure Prediction of Aircraft Composite Structures

that it was applied to relatively simple analyses. Further development is needed for history-dependent
problems, where sensitivities must be incrementally updated. The submodelling technique used
means that the local model does not communicate with the global one. Improvements could include
feeding back the reaction forces and related sensitivities to the global model, thus developing a fully
coupled global/local stochastic model, as demonstrated in [13].
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