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Abstract

We present developments to increase the efficiency of CFD calculations with focus on unsteady calculations
using Saab’s in-house CFD solver M-Edge for unstructured grids. The approach is based on the implicit solu-
tion of a steady state problem in each time step where the numerical fluxes are linearized giving a large sparse
Jacobian matrix which is inverted iteratively. We demonstrate that with a proper linearization of all components
of the numerical fluxes combined with large time steps approaches quadratic rate of convergence. We also
show that approximative linearization, under-relaxation and smaller time steps may degrade the convergence
and efficiency substantially. We demonstrate the findings for unsteady flow cases of a pitching airfoil and vortex
shedding from a cylinder.
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1. Introduction

Aerodynamic predictions at Saab are to a large extent carried out by large scale parallel compu-
tations by numerically solving the Navier-Stokes equations. An in-house tool, M-Edge, is used for
the calculations that uses a finitte volume formulation of the governing equations on unstructured
computtional grids [1]. Traditionally, explicit time marching towards steady state is used together
with convergence acceleration techniques such as local timestepping, multigrid and line implicit time
marching to make the iterative process efficient [2], [3]. Recently, a fully implicit approach for the
time marching scheme has been developed in a colaboration between Saab and NSC [4]. This had
lead to a substantial speed-up for steady state calculations for large-scale applications. The implicit
approach is based on solving a preconditioned linear system approximately and iteratively using a
Krylov subspace method. The implicit technique is employed for a steady state problem as well as
for unsteady calculations in every global time step. A significant speed-up was obtained for these
problems but may still be improved to further reduce the computing time.

Discretizing a nonlinear time dependent problem by means of a time accurate stable implicit method,
leads to a large system of nonlinear algebraic equations that has to be solved in each global time
step. This can be done by applying the implicit scheme used to solve a steady state problem. The
scheme will approach a Newton method when the time step in the steady state solver is sufficiently
large. Hence, a quadratic rate of convergence should be obtained provided that the initial solution
is "close enough" to the final solution. This is the case for unsteady problems where the global time
step is small. Furthermore, a very well converged solution will result in a more time accurate solution
to the unsteady problem.

The paper is organized as follows: In the next section we present the finite volume scheme for un-
structured grids, including the discretization of the inviscid and viscous fluxes. Then follows a section
about steady state time integration. Then we outline the new implicit scheme using an exact repre-
sentation of the flux Jacobian. Next, a section of how to extend the steady state solution technique to
time accurate problems by dual time stepping follows. Furthermore, a Section describing the theory
and how to estimate dynamic derivatives from time accurate simulations is presented. After that we
present a short section on the M-Edge flow solver. Finally, we present a set of unsteady flow cases
demonstrating the improved efficiency of the new scheme, followed by some concluding remarks.
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2. Finite Volume Method
We consider the governing equations of the Navier-Stokes equations in integral form

/aa?dwrfmszo (1)
1% A%

with the conservative variables Q (density, momentum and total energy) and F the sum of the con-
vective and viscous terms of the underlying continuity, momentum and energy equations.

Consider the discrete counterpart of Equation with a control volume V; for an arbitrary discrete
node with subscript i. The spatial discretization of the Navier-Stokes equations in Equation (1) using
a finite volume formulation on an unstructured grid for this node may be written in semi-discrete form
as follows:

Vi

dQ; dQ;
< +Y FuSik+ Fi,.Sip. = Vi A +Ri(Q)=0 (2)

dt g dr

kei

where Q; contains the conservative variables for node i, F;Sj is the flux between two connected
nodes i and k (denoted k € i), F;,.S;,. is the boundary flux at node i. The boundary flux is only included
if the node is located on a boundary in order to close the control volume. If node i is an interior node
this term vannishes. The fluxes are summed up to the residual for node i, R;(Q). The formulation is
a so-called dual grid formulation where a dual grid forms the control volume to a primary grid. As
an example, Figure [1]illustrates the dual grid of a triangular grid. The dual grid is computed in a
preprocessing step which results in a single control surface for each edge, e.g. So; between nodes 0
and 1 in Figure A more thorough description of the approach above can be found in e.g. [5]. In
the following, we leave out sub index when we refer to an entire vector for all unknowns.

Figure 1 — Primary (solid line) triangular grid and its dual grid (dashed line).

2.1 Spatial Discretization

The schemes for the flux F, in Equation (2) considered here are based on a central discretization
with dissipation terms for the inviscid part and a central discretization for the viscous part. The flux
F, can then be formulated as

F=Fi+Fy (3)

2.1.1 Central Scheme with Artificial Dissipation
The inviscid flux across the cell face between nodes i and k is computed as

I _ I Qi+ Ok _l.
r=r (252 L @)

where the function F’ is the physical central flux and d;; denotes the artificial dissipation. A blend
of second and fourth order differences are chosen as artificial dissipation with details according to
Langer [6, [7]

dy = d) +d). (5)

2
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Here, the second order dissipation is formulated according to

diY = M Qi — Q1) (6)
where the local spectral raidus A; is defined as
Ak = |uig - nig| + ci (7)

where uy = (u; +u)/2 and cyx = (ci + cx) /2 denote the cell face velocity and cell face speed of sound
respectively. The normal direction of the control surface to the edge between nodes i and & is denoted
by ni. The function vy is chosen to be active in the neighborhood of shocks and small in smooth
regions of the flow
2
e i) ]
w =min [ ——=1]. 8
Vi [ (pi+pi)? ®)

In Equation , the sensitivity of the sensor is controlled by the parameter £(?) and p; is the pressure.
The fourth order dissipation is formulated as

dy) = Aae® (1 — ) (V2Qi — V2Qy), (9)

here V2 denotes the undivided Laplacian operator and

V20 =Y (0i— 0) =NiQ; - Y O (10)
kei kei
N; is the number of neighbors of node i in Equation (10). Note that due to Equation (10), the dis-
cretization of Equation @) involves all neighbors to node i and node k. The factor € in Equation
(9) is a global dissipation parameter and the factor (1 — y;) ensures that the fourth order dissipation
is switched off in the vicinity of shocks. In the following numerical tests, the tunable constants are
chosen according to Langer, £ =8 and ™) = 1/64.

2.1.2 Viscous Discretization

The viscous flux FV is a function of the stress tensor 7, the velocity u and the temperature gradient
VT. The stress tensor is formualted as

T=U Vqu(Vu)T—%[,L(V-u)I (11)

where u is the dynamic viscosity, Vu the velocity gradient tensor, V - u the divergence of the velocity
and 7 the unit matrix.

For the viscous flux between nodes i and k, FiZ = EZ(f-nik,uik,VT-n,-k), where n;; is the unit normal
vector for the control surface between the nodes. A thin-layer approach is used to approximate the
part of the stress tensor containing normal derivatives [5], this can be expressed as

du 1 /du
(T ni)u = p [&ﬁk + 3 <anik‘nik> ”ik:| (12)
The normal derivative of an arbitrary quantity ¢ between two nodes is approximated in a compact
way as

aI¢ ¢i—

%ik - |Xl' —xk|

V(P N = (1 3)
where |x; — x| is the distance between the two nodes. This is applied to the normal velocity gradi-
ents in Equation as well as to the normal derivative of the temperature in the energy equation.
Remaining tangential derivatives of the stress tensor are obtained from nodal values of the velocity
derivatives by the Gauss-Green relation approximated by the finite-volume formulation.
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3. Implicit Time Integration

We are looking for a steady state solution in time to Equation (2). For steady fluid flow, time plays
the role of an iteration parameter to achieve an asymptotic steady state solution in the computation.
Therefore, the solution is advanced in time by an implicit backward Euler method.

The governing equations can then be expressed as:

(01 - @) +RE™) =0, (14)

Linearizing the residual leads to the following linear system of equations:

J(Q")AQ" = —R(Q") (15)
with y R
HQ) =1+ 5@ AQ"= ol — o, (16)

In practice, we employ an under-relaxation of the solution update:
0" =0"taAQ", a<l (17)

To our findings, a = 0.5 offers a robust and efficient scheme. However, for time-accurate simulations
it is desirable to employ no under-relaxation (o = 1.0) in order to speed up convergence.

The linear system of Equation is solved by an iterative Krylov subspace method. In the present
study, we employ the GMRES algorithm [8], preconditioned by an incomplete LU-factorization, namely
ILU(0). For parallel processing, the ILU preconditioner is embedded in an additive Schwarz method.
The implementation of the Krylov method is based on the PETSc software library [9] developed at
Argonne National Laboratory.

3.1 Unsteady Time Integration

The steady state time integration schemes above can be extended to unsteady time accurate calcu-
lations by a so-called dual time stepping approach introducing a fictitious time derivative in dual time.
We demonstrate this for the 2"¢ order backward difference scheme (BDF2) [10] that is employed in
this paper. We stress that this approach can also be used other implicit schemes such as diagonally
implicit multi-stage Runge-Kutta schemes [11] as well as fully implicit Runge-Kutta schemes [12].
The requirement is that the implicit scheme is both A- and L-stable.

We discretize Equation (2)) with the BDF2 scheme, assuming that the geometry is fixed in time with a
constant volume V,

3Qn+1_4Qn_|_Qn—1 ply
1% T +R(Q") =0. (18)

We introduce a new time derivative in fictitious time 7 and denote the unknown Q"*+! with Q*

d* 30% — 40" n—1 d*
PO OO0 o0

dt 2At R =0 (19)

R(Q") =V

where R(Q*) = R(Q*) + V(30" — 20"+ 10" 1) /Ar and Q* — Q"*! as dQ*/dt — 0. For each physical
time step Ar, we can apply the steady state time integrator described above to Equation to
be iterated towards steady state in dual time 7. It should be noted that for the implicit approaches
described above, an additional contribution %I is added to the Jacobian.

The criterion for when the solution is sufficiently converged for each physical time step is based on

the maximum norm of the density residual and is formulated as
|IR(p™)||ee < tol (20)

where the iterations are interrupted when the maximum density residual (or dual time derivative of
density) is below a given tolerance rol in the entire computational domain. For all unsteady CFD
simulations carried out here, the convergence in dual time can be driven down toward the computer
machine precision for all equations.
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3.2 Jacobian Evaluation

The exact linearization of the spatial discretization can be complex. Amongst others, it requires the
full linearization of the artificial dissipation operator (Equation (5)) which can be quite complicated to
derive. Furthermore, the exact discretization of the fourth order operator in Equation (9) requires a
wider stencil compared to a compact nearest neighbor stencil, thus increasing the memory require-
ment extensively. The expanded stencil will also increase data transfer across partitions in parallell
simulation, since more neighbors have to be provided at partition edges. However, this is done in or-
der to enhance the convergence for parallel computations as an exact representation of the Jacobian
can provide an extreme decay of the residual and a converged solution within few iterations.

The linearization of the inviscid fluxes, the normal derivatives of the viscous fluxes, and the boundary
fluxes are done exactly, i.e. no approximation is made. For the linearization of the artificial dissipation
of the convective flux term, the dissipation operator is described in the following. Taking the partial
derivative of the dissipation operator in Equation (5) with respect to Q; gives

ody  ody adyY
00, dQ; 9Q;
Here, j is a node that is part of the discretization of the dissipative flux between nodes i and k, e.g.

J € i,k,neigh;, neigh;, where neigh;,neigh, are neighbor nodes to nodes i and k. An expanded form of
the second order part (Equation (6)) can be written as

(2)
- T LS00~ 00+ Ran G2 2)
All terms on the right hand side of Equation are non-zero if j € i,k and the resulting stencil of the
Jacobian due to the second order dissipation is compact. The derivatives ggﬁ, g"Q"j_‘ in Equation 1)
can be evaluated by straight forward differentiation. A convenient way is to compute the derivative
with respect to primitive variables (W;) and then multiply with the transformation matrix from primitive

variables to conservative variables:
8/1,-k . 8lik 8W, 81[!,'k . 81,1/,k 8W,~

(21)

d(Qi — O)

Vi (Qi — Ok) + A

= , = _ 23
dQ; OJW;9Q;" dQ; IW; dQ; (23)
The derivative of the fourth order dissipation term (Equation (9)) can be written as
2dy 9y ov; A(V2Q; — V20y)
ik — 2O (] ) (V20 — V2OL) — A= (V20; — V201) + Aw (1 — v l k 24
30, an( vi) (V-0 Or) kan( 0 Or) + A (1 — wig) 390, (24)

The two first terms on the right hand side of Equation (24) are non-zero if j € i,k. The last term is
non-zero for all neighbors of nodes i and k and needs further attention. By evaluating the derivative
of the undivided laplacian (Equation (10)), we get

Ni+1 if jei
V2 '—V2
AVL VO _ —(Ne+1) ifjek (25)
20;
+1 else

Here, N; and N, are the number of neighbors of node i and k, respectively, and we have used the right
hand side of Equation to evaluate the derivatives. As can be seen from Equation (25), a wider
stencil including neighbor to neighbors will be present in the Jacobian matrix.

The full linearization of the dissipative flux will be compared to a simpler approximation of the Ja-
cobian, assuming only second order dissipation, no dependence on the shock sensor and constant
local spectral radius. The resulting Jacobian with respect to artificial dissipation can then be written
as

8d,~k - (Z)A 8(Q,-—Qk) _ { S(Z)Aik |f]€l (26)

~ & i .
90; ©o0; —e@y ifjck
Equation (26) is the derivative of Equation @ using a constant £ instead of the shock sensor

and no contribution from the fourth order dissipation. Using € = 1 corresponds to a first order
upwind scheme.
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4. Dynamic Derivatives

Flight mechanical simulation models require dynamic derivatives such as Cy 4 = ‘29% where Cy is
the normal force coefficient, a is the angle of attack and « its velocity. Dynamic derivatives can be
obtained from unsteady flow computations, the theory and computations of these are presented in
this section.

4.1 Theory
The general description of a time dependent flow in Equation (2) can be extended to
iT? +R(Q,0,&t) =0 (27)
where
at) = ag+Aa(t), A(t) = Oumpsin(@r), AQ = Cgpp®cos(wr) (28)

and o is the reference angle of attack, o, is the amplitude of the pitching movement and w =2z f
is the pitching frequency. The conservative variable Q is split in a steady and a time dependent part,

0(1) = 0+AQ(1),

_ - JdR JdR dR, . OJR JdR JdR .
R(Q,a,0) ~R(Q,q,0) + @AQ + ﬁAa + onc = EAQ + ﬁAa + EAOC (29)
where the last equality follows from the fact that R (Q, o,0) = 0. All derivatives in Equation (29) are
evaluated at (Q, a,0). From Equations and we obtain the linear equation

dAQ IR . OR. IR
—=+ @AQ = ——— A0 — —AQ (30)

a aa
Ao in Equation together with the ansatz
AQ(1) = Q° cos (o) + Q° sin(wr) = Q°Aa+Q°Aat (31)
are inserted into Equation (30) which gives

~ ~ OR / ~ ~ OR JOR
J— 2 S 0 —_— C 0 3 = —— _ )
00 Ao+ QAo+ 90 (Q Aa+Q Aa) 8aAa 8(an (32)

Identifying Aoc and A terms on the left and right side in Equation (32) we obtain

[wz_l_aj% AC__ajaj+a£

2090  dQda  du

JR dR\ ~ JdR OR JoR

2 D s T 277
<"° +agag) 2000 94 (33)

The time dependent pressure coefficient C, and the force and moment coefficients Cx can be ex-
pressed in terms of Q¢ and Q* according to

_ _. dc — dC, ~ dC, ~
Cy(0)=C, (0+AQ) ~C, (Q) + d—Q"AQ =C, (0)+ d—Q”Q‘Aa + d—Q”QCAa =
Cx =Cx (OC()) + CX7O¢AOC + CxﬂA(X (34)

From Equation (33) we observe that 0° and Q* are functions of @® which means that Cx o and Cx ¢ are
also depending w=. This implies that we can apply Richardson extrapolation to compute an accurate
estimation of Cx 4 when w—0 with an asymptotic expansion of Cx 4 in terms of w as

Cx’a((l)> = CX’Q(O) + i CX’@C(Zk) o’k (35)
k=1

where Cx 4(2k),k=0,1,...,N are unknown coefficients.

6
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4.2 Estimations from Unsteady Computations
The dynamic derivatives in the previous section can be computed by employing a pitching movement
in a rotating coordinate frame of reference by computing a local grid velocity according to

—

Voria (7, 1) = Q(t) x (F—To). (36)

Here, Q(r) = 7iAd(z) is the angular velocity, Ac(t) is given in Equation (28), 7i is the axis of rotation, 7 is
the local grid coordinate and 7 is the reference coordinate point for the rotation. The response in Cx
given by the prescribed motion is computed by the ansatz in Equation (34). The ansatz assumes that
given a small enough amplitude o, in Equation will yield a linear response in Cx with respect to
the frequency w. The derivatives are computed from the time series of Cx by fitting a Fourier Series
expansion of the Cx coefficient according to

Cx =Ap+ i (Ancos(nwt) + B, sin(nwt)) . (37)

n=1

A least-squares fit is used to compute the coefficient in Equation with N =4. The terms containing
the multiples of frequencies (n > 1) are included in order to verify that they are indeed sufficiently close
to zero.

5. The Flow Solver M-Edge

The CFD code employed for the present simulations and used internally at Saab is the M-Edge
flow solver, which originates from the Edge flow solver [13]. The discretization in space is a finite
volume formulation for unstructured grids as described above where a median dual grid forms the
control volumes with the unknowns allocated in the grid nodes. Throughout this paper, a central
discretization is used for both the convection and the viscous terms as described in Section[2.l There
are numerous boundary conditions available in M-Edge for walls, external boundaries and periodic
boundaries. All of these boundary conditions are specified weakly, which means, that the unknowns
on nodes located on a boundary are unknowns like any other unknown in the interior [2], [14]. The
boundary conditions are specified through the boundary flux in Equation (2).

A preprocessor creates the dual grid, wall distances and other quantities required by the flow solver.
Last but not least, it splits the computational grid by domain decomposition for parallell computations.

6. Numerical Results

Numerical results are presented for laminar flow over a cylinder and Euler flow over a RAE2822
airfoil. All simulations are unsteady calculations using dual time stepping with the BDF2 method. The
calculations of the cylinder case employ no-slip adiabatic wall conditions and slip wall for the airfoil
case, and characteristic far field boundary conditions.

All numerical results are obtained using the central scheme with artificial dissipation as outlined in
Section [2.]1 the tunable constants are chosen to €?) =8 and € = 1/64. It is noted that the same
values of the coefficients are used in the full linearization of the artificial dissipation. Comparisons are
made between the computations obtained with the implicit scheme employing the exact linearization
of the flux Jacobian using a wider stencil, and with an approximative Jacobian using a compact stencil.
The numerical constant for the approximative Jacobian scheme is set to ) = 1, which corresponds
to a first order upwind scheme.

Unsteady calculations are given an initial flow solution and use CFL = 10° when computing the local
time step. The under-relaxation factor is set to one, i.e. no under relaxation is used unless otherwise
stated. The convergence of the density residual is displayed for both cases, the density residual
is defined such that it corresponds to the dual time derivative of the density. The logarithm of the
L..-norm of the residual is displayed.

6.1 Unsteady Laminar Flow over a Cylinder

The first test case involves laminar flow over a cylinder at Re = 185 and M., = 0.2. Three successively
refined hexahedral grids of 13 x 103, 50 x 103 and 160 x 10 are employed. The outer boundary is

7



Enhancing Efficiency For Unsteady CFD Computations in Aeronautics

Figure 2 — Laminar flow over a cylinder at M = 0.2, Re = 185. Coarsest grid (left), Mach number
contours (right).

——Approx LHS
—o—Full lin. LHS under-relaxed
—=—Full lin. LHS

logy HR(P)HOO

50 100 150 200
]Vinner

Figure 3 — Laminar flow over a cylinder at M = 0.2, Re = 185. Convergence of the density residual as
a function of inner iterations. Two typical global time steps shown for Ar = T'/20.

located far away from the cylinder at a distance of 250 diameters to reduce its influence on the flow
and the integrated forces. The coarsest grid and the instantanaeous flow field are shown in Figure[2]
The flow develops a periodic solution in time with vortex shedding. The Strouhal number approaches
St = fD/U. =~ 0.18 with a sufficient temporal resolution where D is the cylinder diameter, U.. is the
free stream velocity and f is the shedding frequency. The time dependent solutions are initialized
from an initial solution where the periodic unsteadiness has developed and progress periodically for
10 periods using the smallest time step considered and a very strict convergence criterion (9 orders
of residual decay in dual time). A comparison of the dual time convergence for two typical time steps
of the approximative Jacobian, the exact Jacobian using under-relaxation (a = 0.5 in Equation (17)),
and the exact Jacobian using no under-relaxation (& = 1) is shown in Figure [3] Altough each non-
linear iteration requires more linear iterations, the convergence rate is vastly different. For this case,
the exact Jacobian scheme converges within 7 iterations per time step, whereas the under-relaxed
exact Jacobian scheme requires 34 iteration and the approximative Jacobian scheme requires 90
iterations for the same convergence criterion.

Different convergence criteria are then applied to the initial solution and integrated in time for 2 peri-
ods. Various sizes of the time steps Ar =T /n are used where n = [20,40, 80, 160,320, 640] correspond-
ing to the number of time steps Ar per period 7. The solutions are compared to an "exact" solution
using n = 640, starting from the same initial solution, integrated with the strictest convergence criterion
(9 orders residual decay) in each stage. The investigation focuses on comparisons with integrated
drag.Time evolution of drag for the different residual criteria can be seen in Figure [4 Improvement
from the refinement of the time steps as well as the convergence criterion can be clearly seen. There
is a good agreement with the reference solution at time steps Ar < 7'/80.

To quantify the level of convergence the error of the integrated drag is used. The error of the drag is
computed as the L2-norm of the difference between the current and reference solution at each time
step over the 1.5 periods of computing. Since a convergence criterion of the density residual is set,
the average number of inner iterations are computed. The error of the integrated drag as a function

8
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Figure 4 — Time evolution of drag over 1.5T of integrated drag with different convergence criterion.

Comparisons to "excact" solution. From left to right: n = 20,40, 80, 160. Results shown for coarsest
grid (top), medium grid (bottom).

of inner iterations in dual time per non-linear solution are is displayed in Figure 5l We see that the
errors converge as the number of non-linear iterations increase, most errors convergence within 3-4
inner iterations, depending on time step and grid refinement. It is noted that results were not acquired
for time steps Ar = T'/20,T /40 on the finest grid, this is due to the non-linear solver converged poorly
and is believed to depend on the finer time step being required to resolve the physics on the local
grid resolution.

6.2 Unsteady Euler flow of RAE 2822 Airfoil

The second test case is the two-dimensional euler flow over the RAE 2822 airfoil, [15]. The derivatives
Cr.«,CL ¢ are computed for o = 3.0°, for free stream Mach numbers M.. =0.5, M., =0.75 and M., = 1.2.
Three successively refined unstructured grids consiting of triangle cells with 16 x 10° (G1), 63 x 10°
(G2) and 252 x 10° (G3) nodes are employed. Figure @ shows a detail of the grid and the Mach
number contours of the converged solution for the steady simulations.

The unsteady simulations are computed in a rotating coordinate frame of reference by employing
Equations and (36). The pitching amplitude is set to oy, = 0.1° and the pitching frequencies
f=I1,1/2,1/4,1/8,1/16,1/32] Hz are considered. The pitching period T = 1/ f is resolved with a time
step Ar = T/100 for all cases.

The convergence of the density residual for a typical global time steps and the lift coefficient as func-
tion of computational time are depicted in Figure [/} The convergence criterion for the simulations is
set to 9 orders of residual reduction for the inner iterations. The simulation using the exact lineariza-
tion of the Jacobian converges in around 7-8 inner iterations for M., = 0.5, 14-15 inner iterations for
M., = 0.75 and 12-13 inner iterations for M., = 1.2. The convergence for the approximative Jacobian

9
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Figure 5 — L2-error of integrated drag over 1.5 periods with varying time steps. Error as a function of
number of mean interations, Niu..r, Per non-linear solution. Results for coarsest grid (left), medium
grid (middle), finest grid (right).

Figure 6 — RAE 2822 airfoil. Coarsest grid G1 (top left), Mach number contours, M = 0.5 (top right),
M=0.75 (bottom left), M=1.2 (bottom right).

is far worse and requires more than 400 inner iterations for all Mach numbers considered. The re-
sponse in C;, shows a sinusoidal behaviour for all three Mach numbers, veryfing that the ansatz given
by Equation (34) is valid.

The estimated coefficients are presented in Figures [8 and [ It can be seen that as the pitching
frequency is decreased, the estimated values of C; , and C; ¢ are tending to a constant value. As
expected, the estimated value of the C; o coefficient is almost two orders larger than the C; 4 coeffi-
cient. It is also verified that the terms containing higher frequencies (n > 1 in Equation (37)) are 3-4
orders smaller than the C; 4 coefficient.

The computed dynamic coefficients for the three Mach numbers on the finest grid G3 are displayed
in Table [Tl The values for the lowest frequencey (f = 0.03125) are displayed together with values at
o =0 (f = 0) obtained by Richardson extrapolation. We conclude that the extrapolated values give
an accurate estimate and are close to the values obtained at the lowest frequency.

10
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Figure 7 — RAE2822 convergence of density residual as function of inner iterations, one typical
global time step shown (left). Evolution of lift coefficient as function of elapsed time (right). Results
acquired on finest grid (G3) for f = 1/32 Hz.
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Figure 8 — Convergence of estimated C; , coefficient as a function frequency (Hz) and grid
resolution. Results shown for M = 0.5 (left), M = 0.75 (middle) and M = 1.2 (right).

7. Summary and Conclusions

We present work on an implicit discretization of the governing Navier-Stokes equations. The implicit
approach is here employed for time dependent problems where we solve a state problem in dual time
for each physical time step.

The implicit approach relies on the discretization of the non-linear governing equations using an Eu-
ler backward method. The residual is linearized leading to a linear sparse system of equations that
are inverted iteratively with an ILU preconditioned GMRES method. We show that when all terms
of the non-linear residual are linearized and combined with a large time step we can get extremely
fast steady state convergence approaching quadratic convergence of a Newton method. Approxi-
mations in the linearization or under-relaxation of updates often lead to a drastic deterioration of the
convergence and lower efficiency as we also demonstrate.

Unsteady calculations are presented for a piching airfoil and vortex shedding behind a cylinder. We
compute the dynamic derivate of lift for the piching airfoil and give some theory on how dynamic
derivates are computed in general. We also show how these derivatives can be computed based on
a steady state solution only which will be explored in the future. The derivates are computed with
varying pitching frequencies and extrapolated to zero frequency based on Richardson extrapolation.

M. | CLa(f=003125) | CLal(f =0)
0.5 -0.102660 -0.102675
0.75 -0.189283 -0.189305
12 -0.013457 -0.013463

Table 1 — Dynamic derivatives of the lift coefficient at M., =0.5,0.75,1.2 on the finest grid. Values for
the lowest frequencey (Cr «(f = 0.03125)) and Richardson extrapolated values Cp (f = 0)
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Figure 9 — Convergence of estimated C; 4 coefficient as a function frequency (Hz) and grid
resolution. Results shown for M = 0.5 (left), M = 0.75 (middle) and M = 1.2 (right).

The pitching is done at a subsonic, transonic and supersonic Mach number for which excellent con-
vergence rates are obtained in dual time regardless the Mach number. The vortex shedding over
a cylinder is carried out for a low Mach number and various grid sizes. As for the pitching airfoil
superior convergence is obtained with a proper linearization of all terms of the non-linear residual.
An investigation of required number of iterations in dual time reveals that only about three iterations
in dual time per time step is required to reach a time dependent solution, provided the time step is
sufficiently fine to resolve the unsteadiness.
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