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Abstract 

Observers are proposed for predictive flight envelope monitoring. Gain design options are introduced and 

evaluated for a high-order observer-predictor structure. The aircraft is considered in longitudinal motion only. 

Modeling resorts to the nonlinear force equilibrium and kinematic equations. The prediction task is 

decomposed into a two-step process: (a) running observers provide predictions for longitudinal and vertical 

accelerations, pitch angle, and pitch rate; and (b) with these variable prediction histories available, the 

nonlinear model equation – then reduced to a linear time-varying equation – provides full state prediction 

through integration, thus enabling predictive monitoring of the aircraft in its flight envelope. 

Keywords: prediction, disturbance observers, flight envelope, monitoring. 

 

1. Introduction 

Among the several relevant concepts in aircraft operation, one of the most critical is that of flight 

envelope. Flight envelopes are defined in a space of appropriately chosen variables, in which limits 

are set that guarantee safe flight. Other criteria may also be involved, e.g. efficiency. Suitable 

variables can be airspeed, loads, and altitude [1]. So-called flight envelope protection, which aims at 

keeping the system operating within the desirable regions that make up the flight envelope, has been 

well investigated and used ([2]-[4]), and improved methods for flight envelope prediction, in the sense 

of its adequate determination, have received attention in recent research endeavors (e.g. [5]-[6]). 

To even better protect the aeronautical system during operations, this work is concerned with 

forecasting variables that enable predicting an aircraft’s position within its flight envelope at time 

instants of interest. With suitable mathematical models and the relevant variables available, 

observer-predictors are constructs that are used herein to implement such prediction. Predicting the 

evolution of an aircraft in its flight envelope will entail relevant gains because safety margins might 

be optimized and operational warnings and precautionary system rescheduling improved and 

anticipated.  

The contributions of this article are: (a) the discussion of prediction for flight envelope monitoring; 

and (b) the proposal of a solution to the prediction problem in flight scenarios with longitudinal motion. 

The proposed prediction scheme resorts to the force equilibrium and kinematic equations of aircraft 

motion, avoiding the use of detailed dynamic aircraft models. To solve the prediction task, a high-

order observer-predictor structure proposed in [7] is considered. Its original LMI-based gain design 

is compared to other design options based on structured H∞ control design.  
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This paper is structured as follows. In Section 2 the model for aircraft motion and the prediction 

intended for flight envelope monitoring are presented. Section 3 is dedicated to observer-predictors 

and specific aspects of their use in the flight envelope monitoring endeavor. The critical observer 

gain design problem is dealt with in Section 4. Section 5 details practical considerations, and 

presents simulation results for an illustrative application of the concepts proposed in the paper. 

Conclusions are found in the final section. 

2. Prediction Within a Flight Envelope 

Following mainstream definitions and conventions (e.g. see [8]) the following variables are used in 

this text: 

• p, q, and r are the projections of the angular rate vector of the aircraft along its body axes; 
• u, v, and w are inertial speed projections along the aircraft body axes; 
• θ is the pitch angle; 
• φ  is the roll angle; 

• ψ is the yaw angle; 

• ax, ay, and az are specific forces measured by typical accelerometers on the aircraft body axes. 

For the purposes of this paper, an aircraft's flight envelope is a compact region in the plane defined by the 

variables total velocity (V) and load factor (nz), given by 

 2 2 2( ) ( ) ( ) , ,w w w z

w
V u u v v w w n

g
= + + + + + =

ɺ
   (1) 

Where g is the gravitational acceleration, and uw, vw, and ww are wind vector components; these, however, 

will not be considered, i.e. uw = vw = ww = 0. 

The mathematical model of the aircraft in flight is given by the equations that describe the force equilibrium 

of aircraft motion along the body axes, and the equations that describe the kinematic of aircraft attitude 

related to the Earth's surface. These equations are widely used, for instance in flight path reconstruction 

problems, and here were taken from [9].  

The equations resulting from force equilibrium considerations are: 
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The kinematic equations for aircraft attitude are: 
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The model defined by equations (2) and (3) is not affected by relevant uncertainties. Available 

measurements and calculated values, however, may be affected by noise. 

As a simplified but realistic scenario, only the longitudinal equations are considered herein, which means 

that, by hypothesis, the aircraft has no relevant roll and yaw motions. The equations derived from (2) and 

(3) for this scenario are the first three of the set in (4); the fourth equation states that the angular rate q 

results from a specific moment m. 
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    (4) 

m, ax, and az are exogenous variables, and it is assumed that the values of u(t), w(t), θ(t), q(t), ax(t), and 
az(t) are available at current time t.  

The predictive flight envelope monitoring effort will consist of the use of observer-predictors, presented in 
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the sequel, to predict values of nz and V in future time instants, using the available model and variable 

values (past and present).  

The unavailability of future values of the exogenous variables is the main challenge for any prediction 

effort. Simply neglecting these values typically results in significant errors in the computed predictions. 

Better approaches use approximants, such as those in [7], [10], and their references. In [7] it is shown that 

if the driving signals are continuously differentiable at least one time, then useful approximations can be 

obtained via conventional high-order linear time invariant observers. Such approximations are 

implemented in [7] via state-predictors yielding better accuracy than earlier solutions in [10] and [11]. 

3. Observer Predictors 

Observer-predictors considered herein have the structure proposed in [7] and apply to situations with 

underlying dynamics described by: 

 
( ) ( ) ( ),

( ) ( ) ( ),

ω

x ω

x t Ax t B ω t

y t C x t D ω t

= +

= +

ɺ

   (5) 

where x ∊ ℝn is a state vector, y ∊  ℝ� is an output vector, and ω ∊ ℝ q is a disturbance vector 

differentiable at least r times. This is not the structure found in (4) because of the nonlinear terms in 

its first two expressions. It is, however, applied here to a system described by (4) to create separate 

(parallel running) observers for the prediction of ax, az, and [θ, q] using the double integrator structure 

(for θ and q), seen in last two expressions in (4). Such predictions can then be propagated through the 

integration of the linear time-varying (LTV) system in (6) to get predicted u, w, and ẇ histories. From 

such histories flight envelope information is then determined straightforwardly. 
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For the prediction of [θ, q] histories, the observer-predictor structure adopted herein observes the 

extended state vector 

 ( )( ) ( ) ( ) ( ) ( )
TT T T T r Tη t x t ω t ω t ω t =  

ɺ ⋯    (7a) 
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and K(T) is chosen such that ξ(t) approximates x(t+T) via a truncated Taylor-series using 
( )( ), ( ), ( ),..., and ( )rx t ω t ω t ω tɺ , all of them present in the extended state vector η. The expression for 

K(T) is given in [7] as 
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Thus 

( ) ( ) Ο ( )rx t T ξ t t+ = + , 

where Οr(t) is a bounded error term that depends on the prediction horizon T and the bound assumed 
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for ω(r+1), the “next higher” derivative not included in the extended state vector η. 

A Luenberger-type observer is then proposed as follows: 

ˆ ˆ( ) ( ) ( ) ( ),

ˆ ˆ( ) ( ) ( ),

ˆˆ( ) ( ),

η t A LC η t Ly t

ξ t K T η t

x t T ξ t
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=

+ =
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resulting in observation errors given by 

( 1)

ˆ,

( ) ,  and

ˆ ˆ( )( ) ( ) .
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= − = − =

ɺ  

L shall be chosen to guarantee observer stability and attain desired performance. Options for adequate 

choices are discussed in the next section. 

When predicting ax and az, however, there is no underlying system dynamics. Nevertheless an extended 

state vector similar to that in (7a) can be used, but without x components in it. In such a setting actually 

x(t) = ω(t), and the value of x at (t+T) in terms of a Taylor expansion at time t is: 

1
( 1)( ) ( ) ( ) ( ), (t) [ , ].

1! ( 1)!

r
rT T

x t T ω t ω t ω ζ ζ t t T
r

+

+
+ = + + + ∈ +

+
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Thus, with derivatives up to ω(r) included in η, a prediction neglecting higher-order terms can be 

formulated as 
2
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and matrices used in (7) “collapse” to 

0 0
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For ax and az prediction, tracking differentiators could also be used, such as the one proposed in [10]. 

4. Observer Gain Calculation 

4.1 Method 1 

This method stems from [7], where L is chosen by picking a solution P to the following system of 

Linear Matrix Inequalities (LMIs): 

2
0

T T
ω

T
ω q

A P PA YC C Y δP PB

B P I

 + − − +
≤ 

−  
, 

( ) ( ) 0TP αK T K T− ≥ , 

( ) ( ) 0T TN P M PA YC M PA YC⊗ + ⊗ − + ⊗ − < , 

and choosing L = P-1Y. This guarantees eη decay with a rate of δ to a ball with radius εr(2αδ)-1/2, 

where εr is a bound on the first derivative of the disturbance not available in the expanded state 

vector, i.e. ||ω(r+1)(t)|| ≤ εr. Furthermore, due to the third LMI above, the eigenvalues of (A̅ - LC̅) belong 

to {z∈ℂ | N + zM + z*MT < 0} with real matrices M and N=NT. See [12] for details on such eigenvalue 

location enforcement. 

4.2 Method 2 

An alternative calculation of L can be envisioned based on an H∞ approach derived from the Kalman-

Yakubovich-Popov (KYP) lemma by observing that a sensible signal-based design goal for the 

observer-predictor is to ensure that the impact (evaluated with the H∞ norm of the transfer matrix) 

from ω(r+1) on eξ is made small. The KYP lemma states that, if G(s) = C̃(sI – Ã)-1B̃ + D̃ is the transfer 
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matrix from u to y of the minimal state description 

,

,

x Ax Bu

y Cx Du

= +

= +

ɶ ɶɺ
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then the following are equivalent: 

• Ã is Hurwitz and ||G(s)||∞ < γ ; 
• 0P∃ >  such that  

2
0.
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Now one may associate x ← eη, u ← ω(r+1), y ← eξ. Then Ã  ← (A̅ - LC̅), B̃ ← B̅ω, C̃ ← K(T), D̃ ← 0, 

and a predictor can be obtained by designing P and Y for small γ such that 

2

( ) ( )
0, 0.

T T T
ω

T
ω

A P PA YC C Y K T K T PB
P

B P γ I

 + − − +
< > 

− 
 

L = P-1Y will yield a predictor that guarantees an H∞ norm of the transfer matrix from ω(r+1) to eξ 

smaller than γ. 

The approach above can be improved by adding frequency-dependent weights on the disturbance 

ω and the (possible) additive noise n, i.e. when the second equation in (5) is more realistically y(t) = 

Cxx(t) + Dωω(t) + n(t). In such case, a design solution is sought with structured H∞ synthesis [13] 

maintaining the design constraint u = Lv; thus the states to be fed back remain the same. 

The extended plant, i.e. the plant with added weights, to be considered in structured H∞ synthesis 

then is the one in Fig. 1. Structured H∞ synthesis will yield u = Lv such that the H∞ norm of the 

transfer matrix from [ω(r+1)  n]T to eξ is small under the given structural feedback constraint (i.e., u = 

Lv). Typical weight choices in H∞ approaches are W1 and W2 diagonal matrices of first-order low-

pass transfer functions and of first-order high-pass transfer functions respectively [14]. 

 

Figure 1 – Generalized plant for gain design with Method 2 

4.3 Method 3 

The underlying idea for a further gain design option can be derived from Method 2, also taking into 

consideration noise, but focusing on the error in the predicted value x(t+T) rather than on eξ(t), the 

driver in Method 2. 

Considering the noise n(t), the linear dynamics, instead of (5), are now given by 

( ) ( ) ( ),

( ) ( ) ( ) ( ).

ω

x ω

x t Ax t B ω t

y t C x t D ω t n t

= +

= + +
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Adopting a similar observer structure as in Methods 1 and 2, one uses the extended state vector η 

defined in (7). Thus 
( 1)

( 1)

( ) ( ) [ ( ) ( )] ,

( ) ( ) [ ( ) ( )] ,

r T

r T

η t Aη t B ω t n t
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+

+
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ɺ

 

with A̅ as before, C̅ = [Cx  Dω  0  0], H̅ = [0  I], and 
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The prediction at time t of the value of x at (t+T) can be written as a Taylor expansion. For instance, 

writing up to the term of order 3 one has: 

2
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In a setting in which the derivatives up to ω(r) are included in η, such expression can be recast as 

( ) ( ) ( ) ( ) ( ),x t T K T η t J T ω t+ = +  

where K(T) is as given in (8) and furthermore 
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With these considerations, the equations describing the augmented system are 
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Now, considering the observer  

ˆ ˆ ˆ ˆˆ ˆ ˆ( ), , ( ) ( ) ( )ηη Aη L y y y C η x t T K T η t= + − = + =ɺ
 

and using the KYP lemma as for Method 2, but with a focus on the norm of the transfer matrix norm 

from the exogenous input ω  to the prediction error ex(t) = x(t+T) - x̂(t+T), one gets the following 

observer gain design conditions: 

T T T

T T

A P PA YC C Y K T K T Q

Q γ I J T J T

 + − − +
< 

− + 
2

( ) ( )
0

( ) ( )
 

1( ) ( ),T
ω ωQ PB YD K T J T L P Y−

= − + =  

However, as in the case of Method 2, this approach can be improved by adding weights on the 

disturbance and the noise, resulting in a structured H∞ synthesis formulation. The extended plant, 

i.e. the original plant with added weights, to be considered in this case is the one in Fig. 2. 

4.4 On the Choice of Weights 

In Methods 2 and 3, structured H∞ synthesis is used to accommodate the use of frequency-

dependent weights. As in aeronautical instrumentation systems 25 (Hz) is a typical sampling 

frequency, the weights W1, W1a, and W1b were chosen as 1/(0.0127s + 1). This choice was used for 

all three predictors, i.e. those for ax, az, and [θ, q].  

For the ax and az predictors, the respective acceleration measurements are available. For the [θ, q] 

predictor, the current values of both quantities, θ and q, are available. Concerning noise, a same 

frequency-dependent weight was used in all channels, supposing for simplicity that the noise figures 
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are similar. For W2(s) the high-pass transfer matrix κsIp/(s + 30), was chosen, with p = 1 for the ax 

and az predictors, and p = 2 for the [θ, q] predictor. κ > 0 was chosen at design time (see Subsection 

5.3).  

 

Figure 2 – Generalized plant for gain design with Method 3 

5. Implementations for Illustration, Results 

5.1 Implementations 

The design alternatives described in Section 4 were implemented and verified in Matlab using LMI-

related tools, and hinfstruct for structured H∞ synthesis.  

In a practical implementation of this proposal, observer-predictors for ax, az, and [θ, q] will be 

continuously running, such that at all times the updated extended state vectors of these observers 

are available. At those times in which predictions of u, w, and ẇ are demanded to evaluate the 

aircraft’s evolution in the flight envelope plane via predicted V and nz values, predicted histories for 

ax, az, and [θ, q] in the interval [0, T] (T being the prediction horizon) are determined and then used 

in the integration of the LTV equation (6). Predicted histories for ax, az and [θ, q] in the interval [0, T] 

are obtained through the sub-optimal use of the output equations of the respective observers of the 

form 

 ˆˆ( ) ( ) ( ) ( ), [0, ]x t τ ξ τ K τ η t τ T+ = = ∈ .   (9) 

Such calculations are suboptimal, because in Methods 1 and 2, the designer is concerned with eξ(t) 
and in Method 3 with ex(t), i.e. vector values at one time instant, whereas (9) is used to compute 

predictions in an interval. 

5.2 Scenario for Illustration 

The scenario used herein for illustration was defined by using dynamical equation (4), g = 10 (m/s2), 

initial conditions u0=500/6 (m/s) (i.e. 300 (km/h)), w0 = 0 (initially leveled flight), θ0 = 5π/180 (rd) (i.e. 

5 (o)), q0 = 0, and the following time-histories for ax, az, and m: 

0

0

2

( ) 5sin( / 5) sin( ), [0,30 (s)],

( ) 5sin( / 5) sin( ), [0,30 (s)],

( ) (2.5 / 180)( / 25)cos( / 5), [0,30 (s)].

x

z

a t πt g θ t

a t πt g θ t

m t π π πt t

= + ∈

= − − ∈

= − ∈

 

Remarks:  

• az(t) as above does not “contain” g, and is actually Δaz(t).  
• m(t) is such that it takes θ to 0 and back to 5 (o).  
• Noises in simulations were generated as 10 (ms) spaced sequences with variances of 10-4 

(for ax and az) and 10-5 (for θ and q). Such choice of variance values was based on arguments 

in [15].  

5.3 Design Parameter Choices and Results 

Observer-predictors were used to determine predicted histories for ax, az, and [θ, q] using the 

observers discussed in Sections 3 and 4. These predicted histories were fed into the integration of 

the LTV equation (6) for [0, T]-ahead-intervals, T = 2 (s) being the prediction horizon. Integration of 
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(6) was done with Matlab’s ode45. This resulted in predictions for u, w, and nz = ẇ/g throughout the 

[0, T]-ahead-intervals which, in turn, enabled the prediction of the location in the flight envelope plane 

throughout the intervals.  

Initially, observer-predictors for ax, az, and [θ, q] were designed and implemented according to 

Methods 1 to 3. For ax and az prediction a tracking differentiator according to [10] was also 

implemented for comparison purposes. A bandwidth of ω0 = 10 (rd/s) was used for that tracking 

differentiator.  

For ax and az predictors according to Methods 1 to 3, r = 4 was used. For the [θ, q] predictors r = 3 

was used. These choices resulted from design and simulation experiments with 1 ≤ r ≤ 5. Smaller r 
entail less prediction precision; higher r result in larger noise susceptibility. 

In Method 1 the following were used: α = 2, δ = 0.1 for the ax and az predictors; α = 1, δ = 0.1 for the 

[θ, q] predictor. In all designs with Method 1, N and M were chosen such that the spectral radius of 

(A̅ - LC̅) is less or equal to 80 (see [12] for these and other possible choices). 

In Methods 2 and 3, designs were obtained for the extended plants in Figs. 1 and 2, respectively, 

using structured H∞ synthesis as implemented in Matlab’s hinfstruct. The weights given in 

Subsection 4.4 were used with κ = 0.001 for the ax and az predictors and κ = 0.01 for the [θ, q] 

predictor. 

Fig. 3 shows results for the az prediction. Results for the ax prediction are similar and were thus 

omitted. In this and all further figures, initial observer transients were suppressed. The predictors 

designed with Methods 2 and 3 show better responses than the tracking differentiator and the 

predictor designed with Method 1, the main advantage being the smaller noise susceptibility. This is 

explained by the fact that noise and disturbance were conveniently weighted in the designs with 

Methods 2 and 3. From the point of view of gain size, Methods 1 to 3 can be considered similar 

because the norms of the respective gain vectors L were of the same order of magnitude. Thus the 

results illustrate the added value of the structured H∞ synthesis in this application. 

The results for [θ, q] prediction are shown in Figs. 4 and 5, with basically the same qualitative 

outcome. The noise susceptibility of the predictor designed with Method 1 is, however, significantly 

higher in this case. 

 

Figure 3 – Real and predicted az 
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Figure 4 – Real and predicted q 

 

Results of the prediction for flight monitoring in the V × nz plane are shown in Figures 6 to 8 for 

Methods 1 to 3. Mixed realizations were not tested. The red curves show the (real) position evolution 

of the aircraft in the flight envelope plane. Dotted segments in blue color with [0, T]-ahead predictions 

are shown, starting with an ○ (at time 0) and ending with an × (at time T).  

In Figs. 6 to 8 the smoothing effect of the integration is noticed, especially in the case of Method 1 

(Fig. 6). The designs with Methods 2 and 3 show (slightly) better performance in predicting the 

situation in the flight envelope plane, evidenced by the smaller detachment of the blue dashed 

segments from the red curve. 

6. Conclusions 

A rationale and concepts for the predictive flight monitoring of an aircraft within its flight envelope 

were provided. An illustration of their use in a scenario of longitudinal aircraft motion was presented. 

The implementation requires the running in parallel of ax, az, and [θ, q] and the integration of a second 

order LTV differential equation. Three methods for observer-predictor gain design were presented. 

Furthermore, the performance of az predictors was also compared to the performance of the tracking 

differentiator described in [10]. 

Several points for additional investigation can be envisioned, e.g. the application to scenarios with 

longitudinal and lateral motion. Also of interest is a possible quantitative prediction quality 

assessment. A rationale for this could be as follows. The procedure to predict u, w, and nz from 

predicted ax, az, and [θ, q], considered as certain inputs in the integration of equation (6), is equivalent 

to a prediction through Kalman filter propagation without new values for variables u and w. The 

propagation of the associated covariance in a Kalman filter, not needed for predicted value 

calculation in such circumstances, would, however, be valuable in assessing the prediction’s 

reliability. Thus such propagation shall be the object of future research. It includes the quest for 

covariance information of the driving signals in (6), i.e. the ax, az, and [θ, q] predictions, as well as how 

to cope with the fact that the state matrix in (6) is “de facto” a matrix affected by the uncertainty in 

the predicted q history. 
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Figure 6 - Prediction in the V × nz plane with Method 1: real evolution red; [0, T]-ahead predictions 

dotted blue ○—x 

 

 

 

 

 
Figure 7- Prediction in the V × nz plane with Method 2: real evolution red; [0, T]-ahead predictions 

dotted blue ○—x 
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Figure 8 - Prediction in the V × nz plane with Method 3: real evolution red; [0, T]-ahead predictions 

dotted blue ○--x 
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