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Abstract 

The utilization of longitudinal grooves has demonstrated effectiveness in reducing drag on axisymmetric boattail 
models. However, the intricate relationship between groove parameters and drag force defies simple physical 
equations, necessitating the discovery of an optimal parameter set. Conventional experimental and numerical 
simulation approaches prove impractical due to their resource-intensive nature. Instead, Artificial Neural Networks 
(ANNs) offer a promising alternative. In this study, a three-layer ANN is trained using 192 examples generated by 
Ansys Fluent with the Reynolds-Averaged Navier-Stokes (RANS) method and the k-ω SST model. Subsequently, 
48 examples are employed for network validation. Comparison between ANN-predicted values and CFD-
determined drag coefficients reveals an average difference of less than 0.76%, validating the network's reliability. 
The ANN successfully identifies optimal groove parameters across various boattail angles, and numerical 
simulations conducted on models featuring these optimal grooves further validate the ANN's accuracy in predicting 
drag coefficients, with a negligible deviation of only 0.98%. Additionally, analysis of flow characteristics and 
aerodynamics aids in understanding factors contributing to drag reduction. 
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1. Introduction 

In daily life, blunt-base bodies are ubiquitous, such as trains, airplanes, UAVs, or road tankers. As a 
result, these bodies exhibit a significant separation region at the afterbody, contributing to substantial 
aerodynamic drag. Consequently, numerous studies have been conducted to enhance the aerodynamic 
performance of such models. Among these, utilizing a boattail proves to be a simple yet highly effective 
method [1-4]. The boattail serves to reduce and decelerate flow separation, thus mitigating drag force. 
However, flow around these bodies remains complex during motion, with flow separation phenomena 
persisting even at small boattail angles, leading to substantial drag induced by the boattail shape. 
Several methods have been proposed to further reduce drag on boattail bodies, including the use of 
grooves, which have demonstrated effectiveness in previous studies [5, 6]. However, these grooves are 
characterized by various geometric parameters, and the relationship between drag force and these 
parameters is highly intricate, not accurately representable by simple physical equations. Moreover, 
existing studies have primarily focused on specific boattail angles, failing to elucidate the influence of 
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longitudinal and transverse groove parameters on flow characteristics and other aerodynamic properties, 
and lacking recommendations for groove selection. Therefore, comprehensive research on the overall 
impact of grooves and the identification of optimal parameter sets for grooves to reduce drag are 
imperative to advance our understanding and improve aerodynamic performance. 

There are many methods to determine the drag coefficient and aerodynamic characteristics of an object, 
such as experimental methods, CFD numerical simulation, discrete vortex method, etc. However, while 
experimental and numerical simulation methods yield highly accurate results, they require significant 
computational time and cost. Conversely, simpler methods with fast computational times like the discrete 
vortex method have lower accuracy. In practice, there are problems that require us to compute and 
recompute aerodynamic coefficients many times, especially in optimization problems. Therefore, 
experimental or numerical simulation methods are not efficient to use. 

In recent years, the remarkable advancement of Artificial Neural Networks (ANNs) has revolutionized 
various aspects of the aerospace industry. Particularly noteworthy is their application in predicting the 
aerodynamic coefficients of flying objects, a field garnering significant attention. ANNs, equipped with 
the capability to learn from vast and intricate datasets, have emerged as indispensable tools for this 
purpose. Leveraging data encompassing the geometric and physical attributes of flying objects, 
alongside insights from simulations and flight tests, ANN networks adeptly learn and forecast 
aerodynamic coefficient values with remarkable precision. The integration of ANNs in aerodynamic 
coefficient prediction not only streamlines the aircraft design process, reducing time and costs, but also 
yields profound insights into the determinants of flight performance. This empowers designers and 
engineers to refine aircraft designs, optimizing performance metrics such as fuel efficiency, while 
upholding stringent standards of safety and reliability during operation. 

Several studies have employed Artificial Neural Networks (ANNs) to predict aerodynamic coefficients. In 
a study by Nguyen et al. [7], a 3-layer ANN network trained with the Levenberg-Marquardt method was 
utilized to investigate the energy-optimal wing kinematics of a hovering bionic hawkmoth model. The 
authors utilized the ANN network to forecast aerodynamic forces generated during the hovering process, 
providing valuable data for optimization problems solved using genetic algorithms. Jaffar [8] employed 
various deep learning models, including 4-layer and 5-layer ANN models, to predict the drag coefficient 
of vehicle convoys on roads. Training and testing data were generated using Computational Fluid 
Dynamics (CFD) methods, revealing that the 4-layer ANN model accurately predicted this aerodynamic 
parameter with minimal computational time. Thirumalainambi [9] investigated the influence of activation 
functions and input data quantity on the predictive capabilities of ANN networks for aerodynamic 
coefficients. The findings suggested that ANN networks, when supplied with sufficient data, could 
effectively predict complex aerodynamic coefficients such as CD, CL and CM. Furthermore, the sigmoid 
function employed in the hidden layer was identified as the most suitable for the 3-layer ANN network in 
predicting these aerodynamic coefficients. 

In addition, there are many other studies that utilize ANN networks and various machine learning models 
to predict aerodynamic characteristics [10-13]. However, these studies often lack in-depth exploration of 
neural network design and specific investigation into the impacts of hyperparameters on network 
performance in predicting aerodynamic coefficients. Effective design of the ANN network is crucial for 
achieving accurate results, as various parameters can significantly influence the outcome of the problem. 
To comprehensively understand the behavior of ANN networks, this study will focus on investigating the 
influence of select hyperparameters, including the number of neurons in the hidden layer and the choice 
of activation function. By constructing an optimized ANN network, we aim to predict the drag coefficient 
of the model while systematically varying these parameters to identify the optimal set for accurate 
predictions. 
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2. Research model and Methodology  
The aim of this study is to employ an Artificial Neural Network to optimize groove parameters that achieve 
maximum drag reduction for axisymmetric boattail models. The approach involves several steps, 
illustrated in Figure 1. Firstly, a dataset comprising 240 samples will be constructed using Computational 
Fluid Dynamics (CFD) simulations. This dataset will be divided into two subsets: 192 samples for training 
and validation, and 48 samples for independent testing. Throughout the network design process, various 
hyperparameters, including the number of neurons and activation functions, will be adjusted, and the 
ANN's performance will be assessed iteratively. The objective is to identify the most effective ANN 
configuration. Once the optimal design is determined, the ANN will be used to predict drag coefficients 
for axisymmetric boattail bodies. These predictions will inform the selection of the optimal groove 
parameters across different boattail angles (β). 

 

Figure 1 – Process flow diagram of ANN implementation 

2.1 Research model 

Figure 2 depicts the axisymmetric boattail bodies used in this study. Grooves are created along the 
trailing edge of the model. The model has a diameter D = 30 mm and a total length L = 251 mm. The 
nose of the model is elliptical to avoid flow separation on the surface. The boattail is conical with an angle 
β. The length of the boattail (Lb) is fixed at 0.7D. The model utilizes longitudinal grooves with parameters: 
groove diameter d; distance from the groove peak to the trailing edge (A); groove passing through the 
intersection of the boattail and the base. 

 

Figure 2 – Axisymmetric boattail models and definition of the groove cavities 
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The boattail angle β and groove parameters are systematically adjusted within the predefined limits 
outlined in Table 1. These specified ranges ensure the geometric integrity of the grooves, preventing 
issues such as groove intersections or the formation of holes in the model. 

Table 1 – Groove parameters limits 

Boattail Angle (β) 5-22° 

Groove diameter (d) 3 ÷ 9 mm 

Groove-peak Distance (A) 3 ÷ 9 mm 

Number of grooves (n) 6-12 

2.2 Computational method 
To generate the dataset used for training and testing the ANN network, we utilized a numerical simulation 
method, specifically the Reynolds-Averaged Navier-Stokes (RANS) method with a turbulence model (k-
ω SST). Figure 3 illustrates the computational domain used in this study. 

 

Figure 3 – Computational domain and boundaries 

The computational domain has dimensions of 125D × 34D × 34D corresponding to length, width, and 
height. An inlet velocity of U∞ = 22 m/s is applied to the upstream plane, at a distance of 17D ahead of 
the model nose. This velocity choice matches previous experiments in studies [2, 14] for the purpose of 
comparison and validating the accuracy of the results. The Reynolds number based on the diameter of 
the model is Re = 4.34×104. The boundaries of the computational domain use Symmetry conditions. In 
this study, we utilized the licensed commercial software ANSYS Fluent for simulation. The Coupled 
algorithm was selected with convergence criteria set to a residual tolerance of 10-6. 

The computational volume is discretized using an unstructured mesh, with the surface mesh of the 
research model depicted in Figure 4. To adhere to the requirements of the k-ω SST turbulence model, 
the first cell height from the model surface is set to 8.5×10-5 m, with a growth ratio of 1.18 for subsequent 
layers. This configuration ensures that the resulting value of y+ on the model surface, illustrated in Figure 
4d, remains below 5.5. The total number of grid cells utilized for the simulation amounts to 3.7 million. 
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Figure 4 – Unstructured mesh and y+ around the model 

The numerical simulation results undergo validation through comparison with the findings of Tran et al. 
[1], as depicted in Figure 5. Notably, close alignment is evident between the outcomes of the two 
computational models, exhibiting an average discrepancy of ≤ 2.3%. These findings affirm the 
appropriateness and high accuracy of the computational model employed in this study, thus establishing 
its suitability for training the ANN network. 

 
Figure 5. Comparison of the drag coefficient results of the model  

between numerical simulation and Tran's study [10]. 

2.3 Artificial Neural Networking 
Artificial neural networks fundamentally comprise interconnected nodes, mimicking the functionality of 
neurons. They are employed to tackle intricate problems by leveraging learning acquired during the 
training phase, rather than solely relying on the analysis of physical properties [7]. In this study, we aim 
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to construct an artificial neural network tasked with predicting the drag coefficient, utilizing predefined 
geometric parameters as input variables. 

 

Figure 6 – Diagram of the Artificial Neural Network 

The artificial neural network architecture is illustrated in Figure 6, comprising three layers: The input 
layer, which includes parameters such as the trailing edge angle (β), groove-peak distance (A), groove 
diameter (d), and the number of grooves (n). These parameters delineate the geometric characteristics 
of the longitudinal grooves. The hidden layer, denoted by neurons Z, is employed in this study as a single 
hidden layer, which has been shown in prior research [3, 4, 5] to be effective in predicting aerodynamic 
coefficients. The hidden layer accommodates a variable number of neurons, determined by the specific 
problem. In this study, we explore values ranging from 5 to 100 neurons to identify the optimal 
configuration. The output layer, which encompasses the drag coefficient as the sole parameter in this 
particular problem. 

The neural network utilizes continuous transformations from input data passing through hidden layers 
via linear transformations, represented by the formula below: 

1 1 2 2 3 3
1

...
n

n n i i
i

z w x w x w x w x b w x b


       
 

(1) 

Here, iw represents the weights of the input variables, ix denotes the input variables, n is the number of 

input variables, and b is the bias adjustment coefficient. The bias adjustment coefficient functions akin 
to additional neurons that are not directly connected to preceding layers. By utilizing bias adjustment 
coefficients, we can dynamically shift the activation function position at neurons to the right or left, 
enhancing the flexibility of the network's training process and potentially boosting its efficiency [7]. 

After traversing the hidden layer, the neural network proceeds to employ nonlinear transformations 
facilitated by activation functions. These functions play a pivotal role in both the training and operation 
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of artificial neural networks, defining their nonlinear characteristics and learning capabilities. Various 
activation functions exist, with the following being commonly employed for predicting aerodynamic 
coefficients [15]: 

- Sigmoid Function (Logsig): 

1
( )

1 z
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- Hyperbolic Tangent Sigmoid Function (tanh): 
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Loss Function optimization involves adjusting the parameters of the ANN to minimize its value. This 
optimization task is commonly accomplished using specialized algorithms. Various algorithms can be 
utilized for this purpose, including Levenberg-Marquardt (LM), Bayesian Regularization (BR), Gradient 
Descent with Momentum (GD), among others. In this study, we opt for the LM algorithm, as previous 
research has demonstrated its efficacy in predicting aerodynamic coefficients [7, 10, 12]. 

Before the artificial neural network can make predictions, it must undergo a training process. This 
involves iterative adjustments to the network's weights, biases, and hyperparameters, enabling it to 
effectively learn and represent input data while producing accurate output results. For training, we utilize 
predefined data known as training data, which in this study comprises 192 sets of groove parameters 
along with corresponding drag coefficient values computed by CFD. Of this data, 80% is allocated for 
training purposes, while the remaining 20% is reserved for validation. Additionally, a separate dataset 
consisting of 48 samples is designated for independent testing of the trained ANN. To assess the neural 
network's performance, we employ metrics such as Mean Squared Error (MSE), Coefficient of 
Determination (R), and Margin of Deviation (MoD) [xx], as defined by the formulas below: 
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Where: m the number of test samples, iy  the actual value of the i-th data sample and ANNiy is the 

predicted value by the ANN for the i-th data sample.  

3. Results  

3.1. Optimal artificial neural network  
The number of neurons in the hidden layer of the ANN serves as a crucial hyperparameter, exerting a 
substantial impact on the network's performance and generalization capabilities. It essentially mirrors 
the model's complexity. A large number of neurons can create a more complex model capable of learning 
more complex relationships in the data. Nevertheless, an excessive number of neurons may trigger 
overfitting. Conversely, too few neurons may result in underfitting, characterized by the model's inability 
to grasp the intricate patterns within the data. 
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Additionally, the choice of activation function is a crucial part of designing and training neural networks 
and can impact the network's performance. In reality, many problems cannot be solved using linear 
functions alone. For ANN, several nonlinear activation functions are used, such as Sigmoid, Tanh, or 
ReLU for hidden layers. For regression problems, the output layer typically uses the linear activation 
function, Pureline. Experimenting with and adjusting different activation functions is an important part of 
the model development process. In this study, we will sequentially use two activation functions: sigmoid 
and tanh. For each activation function, the number of neurons will vary from 5 to 100. The performance 
of the ANN will then be demonstrated in Tables 2 and 3. 

Table 2 – Influence of the number of neurons on ANN performance with Tanh activation function 

Order 
No. of 

Neurons 
Training Validation Testing 

MSE R MSE R MSE MoD 

1 5 9.2808e-06 0.99229  1.3460e-05 0.98782 1.7133e-05 1.092 

2 6 5.6915e-06 0.99507 1.9956e-05 0.98385 1.1636e-05 0.954 

3 7 1.1027e-05 0.99095 1.0295e-05 0.99045 1.4295e-05 1.155 

4 8 5.6152e-06 0.99505 5.9724e-06 0.99547 1.5533e-05 1.166 

5 9 1.1378e-05 0.98735 4.4361e-06 0.98200 3.1602e-05 1.180 

6 10 1.7955e-05 0.98605 1.1258e-05 0.99211 1.6512e-05 0.973 

7 11 1.8326e-05 0.98391  1.4138e-05 0.99058 1.5228e-05 1.200 

8 12 2.1615e-06 0.99813 6.7632e-06 0.99470 1.7727e-05 1.098 

9 13 8.1653e-06 0.99310 1.0981e-05 0.99368 1.5533e-05 1.229 

10 14 6.0715e-06 0.99443 1.2907e-05 0.99167 1.4557e-05 1.177 

11 15 7.3821e-06 0.99369 5.2352e-06 0.99613 1.2759e-05 0.962 

12 16 3.4808e-06 0.99691 1.5090e-05 0.98921 2.2613e-05 1.426 

13 17 8.0513e-06 0.99351 1.1927e-05 0.98691 2.0375e-05 1.299 

14 18 4.0279e-06 0.9965 8.7860e-06 0.99288 1.6950e-05 1.019 

15 19 1.5970e-06 0.99871 1.1736e-05 0.98696 2.4079e-05 1.330 

16 20 1.5993e-05 0.98749 2.0274e-05 0.9902 1.6542e-05 1.300 

17 30 2.8670e-07 0.99976 6.8802e-05 0.93926 2.9105e-05 1.752 

18 40 1.9168e-06 0.99852 3.5979e-05 0.96925 4.5016e-05 2.050 

19 50 7.0026e-08 0.99994 6.0782e-05 0.93971 4.0529e-05 1.837 

20 100 1.3289e-07 0.9999 2.9098e-04 0.72237 2.8107e-04 5.742 

Table 3 – Influence of the number of neurons on ANN performance with Sigmoid activation function 

TT 
No. of 

Neurons 
Training Validation Testing 

MSE R MSE R MSE MoD 

1        

 5 5.4627e-06 0.99506 6.3034e-06 0.99546 1.0908e-05 0.769 

2 6 4.5144e-06 0.9961 4.8708e-05 0.96049 1.1367e-05 1.042 

3 7 1.9375e-05 0.98365 1.6771e-05 0.98465 1.1896e-05 1.031 
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4 8 7.4802e-06 0.99357 1.6150e-05 0.98653 1.9390e-05 1.087 

5 9 3.1841e-06 0.99762 7.1926e-06 0.99511 9.8332e-06 0.830 

6 10 1.9369e-06 0.9983 3.3445e-06 0.99755 1.1155e-05 0.760 

7 11 3.2232e-06 0.9971 6.8419e-06 0.99535 1.1484e-05 0.938 

8 12 2.6002e-06 0.99788 6.5503e-06 0.99468 9.7357e-06 0.877 

9 13 4.6928e-06 0.99644 1.0625e-05 0.98491 1.3049e-05 0.895 

10 14 9.0857e-06 0.99282 1.4778e-05 0.98477 1.6831e-05 1.053 

11 15 3.3892e-06 0.99711 1.6504e-05 0.98666 1.6913e-05 1.216 

12 16 1.3023e-06 0.99887 2.9732e-05 0.9765 1.3746e-05 0.944 

13 17 2.5585e-06 0.99791 1.0414e-05 0.98974 1.6276e-05 1.216 

14 18 1.0879e-05 0.99105 2.3677e-05 0.97683 2.0296e-05 1.424 

15 19 5.7890e-07 0.99921 2.4832e-05 0.99202 1.9540e-05 1.280 

16 20 5.1955e-06 0.99528 2.0221e-05 0.98579 2.4963e-05 1.423 

17 30 6.4186e-07 0.99945 1.4319e-05 0.9892 3.1739e-05 1.704 

18 40 9.8363e-07 0.99915 1.9072e-05 0.98628 3.0750e-05 1.621 

19 50 3.6777e-07 0.98649 3.6191e-05 0.9468 4.4685e-05 1.989 

20 100 9.1092e-07 0.99923 9.0503e-05 0.93304 1.3383e-04 3.466 

Analysis of the two tables reveals a striking similarity in the effectiveness of neural networks employing 
sigmoid and tanh activation functions. Optimal performance is observed within the 5-20 neuron range 
for both functions. However, beyond 20 neurons, while the networks exhibit excellent performance during 
training, their validation and testing results deteriorate, indicative of overfitting. Closer scrutiny of the data 
unveils a marginally superior performance of the network utilizing the sigmoid function compared to tanh. 
Notably, peak performance for both networks is attained with 10 neurons in the hidden layer, denoted in 
red. Thus, the combination of sigmoid function and 10 neurons emerges as the most favourable 
hyperparameters for predicting drag coefficients of axisymmetric boattail models. 

After finalizing the selection of features and hyperparameters, the neural network undergoes training and 
validation using the available dataset, as outlined previously. Figure 7 showcases key outcomes of this 
training process. Notably, at epoch 16, training halts as the validation MSE achieves its optimal value of 
3.3445e-06, while the training MSE stands at 1.9369e-06 (refer to Figure 7a). This intervention is crucial 
to forestall overfitting, wherein validation MSE escalates while training MSE continues to decline. At this 
point, errors generated by the ANN for both training and validation datasets are minimal, largely 
concentrated within the range of -0.00213 to 0.002545 (depicted in Figure 7b). Furthermore, in Figure 
7c, we observe that the Coefficient of Determination values for both the training and validation processes 
are approaching 1, with values of 0.9983 and 0.9976, respectively. These near-perfect scores attest to 
the high efficacy and accuracy of the trained ANN outputs. 

After training, the ANN is independently tested with 48 samples. The results of the testing process are 
shown in Figure 8. It can be observed that the predicted values by the ANN closely match the accurate 
values (determined by the CFD method). The majority of errors are below 1%, with the largest error 
recorded at 4.7%, and an average error of only 0.76%. This once again confirms the accuracy of the 
outputs generated by the ANN. Consequently, it ensures the reliability of using the ANN results for 
determining the optimal parameters of the longitudinal grooves to reduce drag for axisymmetric boattail 
models. 
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(a) Mean Square Error (MSE) (b) Error 

  

(c) Coefficient of Determination (R) 

Figure 7 – Performance of ANN 

 
Figure 8 – Comparison of results generated by ANN and CFD 

3.2 Optimal groove parameters 

After the training and testing process, the ANN was employed to predict the drag coefficient for 
axisymmetric boattail models with varying groove parameters as specified in Table 1. Here, β ranges 
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from 5-22º with a step of 1º; A and d vary from 3-9 mm with a step of 1 mm; n changes from 6-12 grooves 
with a step of 2 grooves to ensure axial symmetry. Therefore, we have a total of 3528 cases for the ANN 
to predict. Among these outputs, for each β angle, we selected a set of groove parameters where the 
CD coefficient produced was minimized. Consequently, we compiled Table 4 consisting of the optimal 
groove parameters for each β angle. 

After completing the training and testing phases, the ANN was utilized to forecast the drag coefficient for 
axisymmetric boattail models, considering varied groove parameters outlined in Table 1. Specifically, β 
ranges from 5-22º with a step of 1º; A and d vary from 3-9 mm with a step of 1 mm; n ranges from 6-12 
grooves with a step of 2 grooves to ensure axial symmetry. Thus, a total of 3528 cases were generated 
for the ANN to predict. From these outputs, a set of groove parameters minimizing the CD coefficient was 
selected for each β angle. Consequently, Table 4 was compiled, presenting the optimal groove 
parameters corresponding to each β angle. 

Looking at this set of optimal parameters, we observe that at β = 5º, the drag coefficient is minimized 
when the groove parameters are at their smallest values. The groove parameters then gradually increase 
as β increases, reaching their maximum values when β > 19º. The minimum value of CD is achieved at 
the 16th parameter set, corresponding to β = 20º, A = 9 mm, d = 9 mm, and n = 12 grooves. However, 
the difference between it and the CD values at neighboring parameter sets is not significantly large. 

Table 4 – Optimal groove parameters according to the β angle 

Order β A d n CD 

1 10 3 4 8 0.2356 

2 11 3 5 8 0.2290 

3 12 4 8 12 0.2241 

4 13 5 8 12 0.2207 

5 14 5 8 12 0.2187 

6 15 6 8 12 0.2174 

7 16 8 8 12 0.2165 

3.3 Analysis the effect of optimal grooves on aerodynamic characteristics of boattail models 

To confirm the accuracy of the optimized values predicted by the ANN, in this section, numerical 
simulations are conducted. Figure 9 presents a comparison chart of the computed values using the CFD 
method and predicted by the ANN for the model containing the optimized grooves. Additionally, the drag 
coefficient values for the case without grooves are included to illustrate the difference between the 
ungrooved case and the optimized groove case. It is observed that the values predicted by the ANN and 
computed by CFD are very close, with the largest deviation being 1.87% and the average deviation being 
0.98%. Furthermore, comparing with the ungrooved case, we find that the drag coefficient remains 
relatively unchanged for β ≤ 14º; however, it decreases significantly when β > 14º, dropping by over 27% 
at a boattail angle of 22º. 
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Figure 9 – The drag coefficient for the optimized groove parameter sets 

We continue analyzing the flow characteristics and aerodynamics for the model equipped with the 
optimized grooves at a 20º boattail angle, thereby understanding the reasons behind the significant 
reduction in drag. Figure 10 illustrates the streamlines on the boattail surface for two cases: without the 
grooves and with the optimized grooves. It is evident that with the optimized grooves, the flow on the 
boattail surface becomes smooth and attached, which contrasts sharply with the fully separated flow 
observed when there is no groove. This observation aligns with the findings of the study [5] by Howard 
et al. Additionally, we can also observe that the length of the recirculation zone behind the tail significantly 
decreases with the optimized grooves compared to when there is no groove. 

  

Figure 10 – Streamlines around the boattails without the grooves (left) and with the optimized grooves 
(right) 

The phenomenon of flow separation or attached flow can also be inferred through the analysis of the 
distribution of the skin friction coefficient on the boattail surface, as indicated in Figure 11. In the case 
without the groove, corresponding to the baseline model, we observe that the skin friction coefficient Cfx 
mostly has negative values, indicating that the flow is completely separated. Conversely, when the 
optimized groove is present, the Cfx values are positive over the entire boattail, indicating that the flow is 
totally attached. 
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Figure 11 – Skin-friction coefficient distribution on boattail surface 

The pressure distribution on the surface plays an important role in comprehending the mechanisms 
behind drag reduction. Figure 12 depicts the pressure coefficient distribution on the boattail surface with 
optimized grooves and without grooves. We observe that the pressure coefficient forms a bottom at the 
boattail shoulder location and gradually increases along the surface. With the optimized grooves, 
induced geometric changes shift this Cp bottom forward by a distance equal to A. Furthermore, the 
minimum Cp value with the optimized grooves is lower than that in baseline case, potentially due to 
localized flow separation at the groove shoulder. Beyond this region, the pressure coefficient rises 
rapidly, surpassing the baseline case. This alteration contributes significantly to the decrease in the 
model's drag. 

 
Figure 12 – Pressure Coefficient distribution on boattail surface 

4. Conclusion 

The paper has presented the process of designing an artificial neural network to predict the drag 
coefficient for axisymmetric boattail models with longitudinal grooves on the boattail surface. The 
hyperparameters of the neural network were specifically investigated to find the most suitable design for 
the problem. After training, the neural network was tested with independent data. The results showed 
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that the error between the accurate values and the predicted values of the network was less than 4.7% 
on average about 0.76%. This confirms the reliability of the artificial neural network used in this study. 
Using the obtained ANN to predict the drag coefficient of the axisymmetric boattail models helped 
determine the optimal parameters for the longitudinal grooves in reducing drag. The predicted drag 
coefficient when using the optimized grooves, as simulated numerically, once again confirmed the 
accuracy of the ANN predictions, with an average error of only 0.98% and a maximum error not 
exceeding 2%. Notably, the minimum drag coefficient was attained at a boattail angle (β) of 20º, with 
groove parameters (A, d, n) of 9 mm, 9 mm, and 12 grooves, respectively. Comparison with ungrooved 
models revealed a significant reduction in drag for β > 14º, decrease by over 27% at a boattail angle of 
22º. Analysis of flow and aerodynamic features also revealed that the main reason for the reduction in 
drag was due to the use of grooves, which made the flow smoother, eliminated separation, and increased 
pressure on the tail surface. 
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