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Abstract

The emphasis on innovative maintenance strategies is driving the industry towards the analyses of operational
and historical data from a new perspective. Condition-Based Maintenance (CBM) and Prognostic and Health
Management (PHM) strategies can benefit every stakeholder along assets life cycles in assessing systems
health status and limiting unexpected breakdowns, hence enabling optimized planning of maintenance ac-
tions, better availability and lower operative costs. This consideration holds particularly true for the aerospace
industry as aircraft maintenance costs can account for significant portions of Life Cycle Costs (LCC). Stored
in-service operational data, initially collected for other purposes such as Structural Health Monitoring (SHM),
could hold significant value when used as comprehensive datasets for the construction of PHM frameworks.
On the other hand, unique challenges arise when implementing PHM logics for legacy and operational plat-
forms due to data availability, quality, consistency and the complexity of integrating data from a multitude of
sources and formats into a single framework. This paper underscores once again the high-effort high-reward
scenario of developing PHM strategies on equipment in operation and highlights the challenges and trade-offs
required to deal with an In-Service dataset. A data-driven approach which relies on operational and historical
data for an Advanced Jet Trainer (AJT) is reported in this paper. The research project has been tailored to ad-
dress a specific subsystem: the Horizontal Tail (HT) flight control actuator, which has been thoroughly analyzed
starting from design documents and performance values to operational flight and maintenance/logistics data
acquired from an actual fleet of as many as 22 aircrafts, reaching more than 25000 flight hours. Following the
overview of the available data repository, the customized methodological workflow is shown. After conducting
analyses on data quality and sampling, a statistical approach based on cumulative features (CF) has been
adopted. The first four statistical moments have been employed as predictors to extract lumped data statistical
characteristics. This methodology has been selected to assess whether the available data exhibits predictive
significance in regards to the designated subsystem. Finally the main results and next steps of the research
project are reported.

Keywords: Prognostics and Health Management, Condition-Based Maintenance, Advanced Jet Trainer, Flight
Controls, Electro-Hydraulic Actuators

1. Introduction

Two decades have passed since the first studies on aircraft systems health monitoring [1] and a
concept that was once just a mere industry buzzword is now seamlessly integrated into manifold
engineering ventures. After their introduction, PHM strategies sparked interest across various disci-
plines focusing on methods for monitoring the health of components and subsystems, thus becoming
a significant area of study in its own right.

As a matter of fact, the emerging PHM thread capable of estimating a system health status, when
combined with higher level decisional framework, can provide decision makers with fleet situational
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awareness, fleet management opportunities as well as the potential development of disruptive tech-
nologies such as the so-called Digital Twins (DT). Back in the days, the PHM vision included En-
hanced Diagnostics, Health Management and Prognostics [1} 2, 3].

Time passed but the rationale behind PHM strategies has not changed significantly [4, 5]. What has
changed however is the fact that now PHM routines are no longer perceived as niche experimental
projects but rather as the backbone of logistic support strategies and maintenance programs in many
sectors.

Among the paradigms which flourished, laying their roots on the PHM concept, CBM and predictive
maintenance (PDM) strategies are steadily but surely changing the way assets are managed, thus
enabling the possibility of optimized and strategically allocated maintenance activities, with positive
outcomes on logistic support and overall platform availability. In particular, CBM systems assist
maintenance organizations in identifying and overseeing the health status of aircraft components.
These very systems enable timely intervention and necessary maintenance procedures as and when
required, based on observable indicators. One of the results of this cross-the-board interest in CBM
is that many industries are trying to adapt already operational platforms to bring them on-line and to
enhance their readiness leveraging data [6].

This is particularly relevant for the aerospace field, where availability, reliability and mission readiness
are key success factors in creating value and confidence [7].

1.1 PHM/CBM Framework Challenges

The development of such innovative strategies requires, among others, an in-depth understanding
of the selected system, a substantial amount of high-quality raw data, a well-structured data-flow,
customized PHM routines, platform specific CBM logics, just to name a few. The development of
PHM systems continues to present challenges due to their inherent interconnected nature [8]: in-
formation coming from design engineering, systems engineering, logistic engineering, quality, MRO
and customer support units must be integrated to develop a single but multifaceted and optimized
product.

The already challenging conditions related to the development of such frameworks from scratches
are much more apparent when they are designed for already operational platforms (legacy aircrafts)
[9,10]. In fact, in this latter case, PHM engineers have to face the challenges of an already built
and assembled system, not designed with PHM applications in mind (e.g., data quality, sub-optimal
number of sensors, limited built-in sensing capability, low sampling rates, siloed data-bases, non-
coherent data formats, missing data, extreme data heterogeneity, etc). On top of that, extreme care
must be taken when selecting the case study since the system must be prognosable [11}, [12] and the
business value of the PHM endeavor must be verified and justified.

In this paper, a data driven approach towards a comprehensive CBM framework for a specific air-
craft subsystem is presented. The selected case study is the Horizontal Tail (HT) Primary Actuation
System (PAS) of an Advanced Jet Trainer Aircraft (AJT) [13, [14], a twin-engine tandem-seat training
platform with fully digital flight controls and avionics.

1.2 State of the art

As better explained in section 3.2, the HT PAS is an Electro Hydraulic Actuator (EHA), as commonly
found in most commercial and military aircrafts. The literature analysis highlights a very scarce and
scattered panorama of the studies performed on operational data for the selected subsystem.

It has to be noted that there is a substantial body of literature available regarding individual actuator
components leveraging modelled or laboratory data. These studies provide a variety of solutions
relating to fault detection and isolation (FDI) at the component level, degradation models, and com-
prehensive PHM procedures but for individual parts: servo valves have been addressed by the au-
thors in [15] (16} [17, [18] while Shanbhag et al. [19] studied cylinders, the authors in [20, 21] provide
research approaches for leakages and piston pumps are studied by Chao et al. [22].

However, these solutions require detailed data from actuator signals, which are not logged in opera-
tive scenarios.

Some EHA level studies address only the diagnostic part, excluding the PHM steps as reported in
[23]. Significantly, these methodologies present a gap in addressing EHA level PHM, which, to the
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best of the authors’ knowledge, is only tackled by a limited range of strategies. EHA performance
degradation predictions are provided in [24], exploiting EIman neural network observer, support vector
regression (SVR) and Gaussian Mixture Model (GMM). The studies conducted by Soudbakhsh and
Annaswamy [25] as well as in Lu et al. [26] demonstrate advancements in fault detection methodology
and health monitoring strategies. The authors in [27] introduced the Minimum Hellinger Distance
technique in conjunction with a Particle Filtering (PF) application. This PF-based solution has been
integrated into another Prognostics and Health Management (PHM) framework alongside high-fidelity
models developed by Autin et al. in [28] and by De Martin et al. [29].

In the study conducted by the authors in [30], a modular hybrid fault prognosis method was developed,
utilizing distributed neural networks in conjunction with a recursive Bayesian algorithm. Similarly, the
authors in [31] presented a hybrid approach in which the Nonlinear Wiener Process (NWP) algorithm
was applied for the physics-based component, while a data-driven Echo-State-Network (ESN) was
utilized for the data-driven part.

While these studies provide valuable insights, their applicability to existing legacy systems in opera-
tion can be limited due to the lack of detailed monitoring of low-level subsystem data and the absence
of logged control signals within the Flight Control Computer (FCC) control loop.

As a result, there is a scarcity of approaches that utilize operational data from real-world scenarios,
with only a few studies offering limited insights [32] [33]. In particular, the authors in [32] propose
a CBM framework for selected subsystems of the C-130J aircraft (propeller and the wheel brake
assembly) using neural network approaches and operational data from a fleet of aircrafts. The results
highlight the importance of collecting additional data in order to make informed and actionable CBM
decisions.

On the other hand, the authors in [33] presented a technique to extract insights regarding the usage
of the hydraulic actuators based on data collected during the flight. In this case, more high frequency
signals were available from the flight data and an hinge moment model has been developed. No
further updates on the research project can be found in literature.

This research gap, along with the industry’s growing interest in advanced maintenance strategies,
highlights the importance of further research in this specialized field.

2. Adopted Workflow

As highlighted by Jardine et al. [34], CBM requires three steps: Data Acquisition, Data Processing
and Maintenance Decision Making. These concise and abstract phases can be further expanded in
operational guidelines.

In order to envision a coherent workflow and methodology, an evaluation of key PHM standards within
the aerospace industry, as well as others, has been conducted [8]. As a result, there are numerous
standards and guidelines available for the development of PHM systems [35] [36], with some of which
specifically tailored to the aerospace industry [37, 38]. These documents, along with the research
group experience in managing similar projects, ahs provided the authors with the required workflow
which, however, had to be further adapted to the industrial reality, environment and platform. The final
diagram, reported in Figure [1] shows the most important steps. It has to be noted that the feedback
loops shown in the lower section of the figure can improve the quality and robustness of the approach
and can provide additional value through multiple iterations, if the necessity arises. Each phase is
now analyzed more in detail in the next sections.

3. Domain Understanding

The Domain Understanding phase has provided insightful information concerning case study, the
system and problem understanding, an overview of the system and platform architecture as well as
the available data sources. Each bullet point is now further discussed.

3.1 Aircraft & Case Study Identification

As stated before, the selected case study is the AJT HT PAS, chosen to improve its operational
performance and to fill a consistent research gap in literature. This selection has been guided by
criticality analyses among various aircraft components and it is deemed to bring improvements to the
platform availability and maintenance processes.
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Figure 1 — Research project workflow.

3.2 System & Problem Understanding

Flight controls are essential components of aircraft subsystems and play a crucial role in ensuring
safety as they allow for the movement of aerodynamic surfaces [39)]. Primary flight controls, such as
ailerons, rudder, and elevators, typically use EHA to convert hydraulic power into movement, which is
controlled by electronic signals from the Flight Control Computer (FCC). In terms of longitudinal con-
trol, the selected platform employs an all-moving HT. This design combines the stabilizer and elevator
into a single moving surface, known as a stabilator [40]. This configuration offers improved control
effectiveness and reduced drag. Each stabilator is operated by an independent EHA (in this case
a tandem Direct-Drive-Valve (DDV) controlled actuator) integrated with the aircraft main hydraulic
system through a control module which ensures system redundancy. In this phase, some in depth
studies and analyses have been performed on engineering documents and technical publications,
available on the industry engineering portal, providing data to better understand the problem being
analysed.

The comprehensive compilation of data sheets and technical documentation has been categorized
and indexed. Face to face interactions, characterized by in-depth discussions and hands-on data
and information exchanges, have been conducted with maintenance technicians engaged in aircraft
operations and tasked with executing maintenance checks, thereby enriching the overall knowledge.
Furthermore, the list of the main assembly and sub-assemblies Part Number (PN) and Serial Number
(SN) constitutes the ground base for in depth analyses in the industry databases.

3.3 Literature Review

In this initial phase a literature review has been carried out in order to understand the state-of-the-art
of PHM for EHAs and the common strategies employed. The results have already been reported in
the Section 1.2.

3.4 Identification of Data Sources

On the one hand, technical publications, technical drawings, equipment data sheets as well as any
other document describing the system overall architecture are central for the comprehension of the
platform working principles and the subsystem operation in relation with other ones. On the other
hand, operational data, such as flight data as well maintenance reports and activities, represent the
main data set to develop algorithms and methods.

As advised by the aforementioned guidelines provided, a preliminary list of the data required to
successfully develop a CBM scheme for the actuator under analysis has been identified.

As a result, the study of all related engineering and operational documents provides the base for
the identification of potential data sources needed for the next steps: the design and data handling
phase.
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Figure 2 — Data organization overview.

4. Data Collection & Handling
4.1 Data Collection

The data collection & handling phase leveraged the findings obtained in the previous step and has
been central to precisely organize data sources and formats so that they could be integrated in a data
organization diagram. In this phase, data collection (data lineage, data organization and classifica-
tion) has been carried out providing extended value from a methodological point of view. Such data
have been obtained through an in-depth analysis of the case-study and have been organized in the
graphical scheme of Figure 2|

The diagram in Figure [2 depicts the main phases of the process (in blue boxes): the initial phase
involves the understanding of the system and problem, subsequently leading to the definition of the
CBM system and potential model creation. Following this, the validation phase is also addressed.
Complimentary data sources can be used to supplement the research project with additional infor-
mation.

Figure [2is now analyzed in details from top to bottom in the following paragraphs.

The PN and SN for the selected subsystem and aircrafts have been pivotal to delineate the system
architecture and to reference a wide range of data blocks. Safety and Reliability (S & R) analyses, as
well as (Failure Modes Effect and Criticality Analysis) FMEAs and (Fault Tree Analysis) FTAs, have
been useful to understand the main critical modes and the magnitude of the problem being investi-
gated. For the same reasons, the block "System architecture, technical drawings, data, etc" includes
an extensive range of engineering documents, central for the System and Problem Understanding.
Component replacement causes and data have been grouped up with operational equipment regis-
ters, Configuration Management (CM) and FH and OH data. This information has been linked with
Health Usage Monitoring System (HUMS) Load files, containing time-series flight data (see sub-
section 4.2.2 for additional details on HUMS data). The maintenance planning document provides
the scheduled tasks for the selected case study. Maintenance performed tasks, grouped with work
reports and maintenance staff feedback, useful photos and videos, troubleshooting and previous
analyses have been aggregated with vibrational data or preliminary analyses S| (Segnalazione In-
convenienti — Occurrence Reporting) & TQ (Technical Queries), FCC Non-Volatile Memory Logs &
HUMS Fault and Alert (F&A) files contributing to the CBM system definition. Sls and TQs are two of
the possible ways a customer can ask for additional support from the engineering division via formal
communication with the engineering units. HUMS (F&A) files include systems level faults and alerts
logged during flights. NVM logs, which record FCC fault codes, are downloaded from the aircraft only
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Figure 3 — Reduced database overview.

on special occasions and, when accessible, can provide additional information on occurred faults
along with the appropriate (F&A) files. Maintenance performance tests and iron bird test data have
been grouped together with certification test data.

If needed, some data can be used as model parameters for high fidelity or low fidelity physical models
(e.g. sensor placement, surface control laws and FCC algorithms, hydraulic fluid and system charac-
teristics, aerodynamic surface dimensions and structural data, FCS architecture, control architecture
diagram, flight surface and actuator stroke, flight envelope diagram etc). Availability data can be em-
ployed for the PHM/CBM system validation while among complementary data there are item costs
information, certification basis and standards.

Additional operational data sources, commonly utilized in the creation of PHM strategies for legacy
and operational equipment, may involve the Crash Survival Memory Unit (CSMU) or the Digital Video
and Data Recorder (DVDR). However, these sources were not included in the study due to inconsis-
tent data retrieval processes that are triggered only by specific events, rather than occurring consis-
tently.

The reported data organization scheme has been central to delineate data requests inside the indus-
try as well as visualizing the data interactions in such a complex system and operational environment.

4.2 Methodology and Used Data

Considering the nature of the subsystem under examination and the complex data organization,
thanks to the information gained in the first steps, the analysis has prioritized a thorough examination
of operational data, to extract comprehensive insights into the system performance and behavior.

4.2.1 Reduced Database

After the Data Collection step, the research project focused on the elaboration of a Reduced Database
(RD) to extract data-driven insights on the subsystem operation. The RD is a subset of the overall
data repository and a scheme is reported in Figure [3] where the data is divided into Operational Data
(OD) and Non Operational Data (NOD), offering a more functional view of the data obtained and
employed in the following analysis.

Operational Data (OD) can be categorized into two main groups: Flight Data and Logistics and
Maintenance Data (LMX). Flight data encompasses in-service data collected from HUMS.

As already mentioned, HUMS data retrieved from the aircraft is segmented into Load files and Faults
and Alerts (F&A) (see subsection 4.2.2 for additional details on HUMS data). Scheduled mainte-
nance, unscheduled removals, equipment registers, technical queries and inconvenience reports are
contained in the LMX category.

Conversely, NOD covers all technical details related to the design, performance, process, and con-
figuration of aircraft components and subsystems, such as PN and SN.

In the context of this analysis, 22 aircraft and 60 PAS have been identified and taken into consideration
in the following analyses.
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4.2.2 AJT HUMS

In order to envision a tailored methodology, a detailed analysis of HUMS Load data, which is the main
operational data source, is required.

The AJT is equipped with a Health and Usage Monitoring System (HUMS) [41], a parametric data
acquisition and processing system that gathers, stores, and analyzes flight data. For the aircraft un-
der consideration, HUMS is design for the purpose of supporting Structural Health Monitoring (SHM)
and fatigue management initiatives. HUMSs have been developed in conjunction with the concepts
of CBM and PHM since their initial introduction for rotary wing systems in the 1990s. Currently, the
objectives of HUMSs are deeply intertwined with these aforementioned concepts. Primarily, HUMSs
perform elementary functions in fault detection by analyzing raw signals received from sensors during
aircraft troubleshooting and post-flight inspections. Consequently, these sensors and signal process-
ing techniques offer valuable insights into the condition of various systems structures, thus enabling
informed maintenance decisions. In this way, HUMS can be seen as a rudimentary PHM framework
at a very high level.

The HUMS airborne segment comprehensively leverages all operational data, encompassing data
obtained during ground activities, in-flight operations, and subsequent to landing. After the landing,
data, grouped in two distinct files (.str and .mnt) are elaborated in the HUMS land segment, through
a GSS (Ground Support System).

 The .str file provides information on the structural health state of the aircraft. The AJT HUMS
logs data obtained from strain gauge sensors as well as system level data (e.g weight-on-
wheel, flight surface deflections, etc), structural ones (forces, moments, buffeting coefficients,
etc) and general flight data (airspeed, angles, angular speeds, etc), for a total of 256 outputs.
While these data were originally designed to be used only for fatigue life reporting (SHM), they
could also potentially hold valuable information for system and component prognostics. The
system employs a peak and valley acquisition strategy: the system monitors and checks the
exceedance of some of the main flight parameters. The .str file is coded and written in binary
format and, on the ground, is converted into an intelligible format. At the same time, additional
values are synthetically calculated using raw signals, obtaining an elaborated .str file, called
Load file, which is used in the selected methodology.

» The .mnt file includes information on maintenance actions to be carried out and/or anomalies
registered during the flight and in this paper is hence called (F&A) register for reasons of clarity.

4.3 Data Ingestion

A single LOAD txt file is generated for each flight by the HUMS and data has been organized in
folders: a folder containing all txt files for each aircraft is created as reported in Figure [4]

Each txt file is labeled with the date, whereas data in each file are organized in a comma delimited
structure with some initial lines providing flight and pilot information.

N
—e —e
AIC2YYYY_MM_DDH
H

2.
AlCT it
Data1 Data2 Data3 Datad Data255 | Data256
b B M
&—— | Vole Value Value Value Value Value Value Value Value Value
Value Value Value Value Value Value Value Value Value Value

A/C2
HUMS_Load_Files ALY MMDDH

~
B AN
A/C3
LD,
AR,
: %

A/C22

Figure 4 — Folder organization.
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All data analyses have been performed in Python 3.8.18, utilizing VSCode in an Anaconda® powered
environment.

In order to efficiently process HUMS data, an automatic file ingestion framework has been created.
Thanks to this process, each folder is opened, then each file contained is loaded and the infor-
mation is extracted through Pandas and Numpy Python packages. Then, data is passed to the
Pre-Processing routine to be cleaned, elaborated and formatted.

5. Pre-Processing, EDA & Methodology

5.1 Pre-Processing

After the ingestion phase, data is pre-processed according to common pre-processing pipelines to
handle missing or inconsistent data.

Configuration Management (CM) information and URs have been transcribed and converted into a
single .csv file.

HUMS pre-processing phase is more intensive and involves several steps which are needed to pre-
pare the data for further analyses:

* Flight Information Processing. Each flight number and date is extracted from the first rows of
each HUMS file and saved.

» Dimensionality reduction. An essential step involves the dataset dimensionality reduction: this
is done during each file importing process not to overload the memory with superfluous data
and to store only essential data. Among the 256 signals, a total of 50 is selected through
physical reasoning, along with complementary information (i.e. Flight ID, UTC Date & Time,
etc). The 50 signals are selected as potential feature candidates whose physical meaning can
be linked to the HT health status. For instance, the aircraft variables in the longitudinal plane,
the mobile surfaces positions, the forces on the tail and on the HT, etc. Correlation matrices
have also been used in this step.

+ Data cleansing: Non flight rows. The rows in the Load file are designated as either "ground"
or "flight" rows, indicating whether the data was collected while the aircraft's systems were
operating while on the tarmac or while in flight. Ground rows have been thus excluded.

» Data cleansing: NaN and zeros. Rows containing NaN (Not-a-Number) and zeros have been
excluded from the analysis.

» Conversion of data types into coherent conventions. During the data ingestion phase, careful
consideration has been given to the establishment of a coherent data structure and formats in
order to facilitate the subsequent analyses.

« Date & Time formatting. Date and time of each flight as well as the time of each recording (i.e.
row) have been formatted in date-time object as well as in Unix TimeStamps (seconds from
01-01-1970), a popular format for saving time values.

+ Addition of work related features. In this analysis an additional group of 4 signals (position
differences and mechanical work on the actuator) have been added to increase the potential
feature space. Mechanical work for the right HT for the "i-th" row has been obtained as follows:

A Righiyr (1)

Work; Rightyr = My b

where
AQ; Rightyr = 0 — 041 (2)
Aa; righy,r 18 the difference of the HT position, calculated for each time step by subtracting the
value in the row before (i-1)and the value in the current row (/). b is a constant arm value of 1
meter.
» Column remapping. Column have been remapped and renamed.

8
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Number Flight Parameter (FP) Notes
a Mode Flight/Ground
b Flight ID Increasing Number on each FCC
power up

c Counter Increasing counter
d UTC Date & Time DD_MM_YYYY — hh_mm_ss
1 Weight kgl

2,3,4,5,6,7 LHT Fx, Fy, Fz, Mx, Six load components acting on the left

8,9,10,11,12,13

14,15,16,17,18,19

My, Mz

RHT Fx, Fy, Fz, Mx,
My, Mz

Tail Fx, Fy, Fz, Mx,
My, Mz

HT. [N or Nm]

Six load components acting on the
right HT. [N or Nm]

Six load components acting on the last
fuselage section. [N or Nm]

20,21,22 Nx, Ny, Nz Z, V¥, X axes accelerations [g]
23,24,25,26 Buffet Coefficients -
27,28,29 p,q,r, Roll, pitch and yaw rate [deg/s]
30,31,32 p, g, r dot Roll, pitch and yaw acceleration
[rad/s”2]
33,34,35 V (NEU) Speed North, East, Up [fi/s]
36,37 AoA, AoS Attack and sideslip angles [deq]
38 LEF Deflection Leading Edge Flap Position [deg]
39,40 Stick Position (long, Longitudinal and lateral stick position
lat) [mm]
41,42 LHT, RHT deflection Left and right HT position [deq]
43 Pedal position [mm]
44 Flap position Trailing Edge Flap position [deg]
45 Pressure Altitude [ft]
46 TAS True Air Speed [Knots]
47 Mach Mach number
48,49 Left and right throttle [%]
50 Static air temperature  [°C]
51,52 LHT, RHT deflection Left and right HT position difference
variations with the previous value [deq]
53,54 LHT, RHT Work Mechanical work of the actuators

Figure 5 — List of complementary information (a,b,c,d) and flight parameters (1-54) Flight dynamics,
loads and aircraft level signals are logged as indicated by [41].

* Flight number grouping. An additional column has been added containing the increasing flight
number so that each file can be easily found in the database.

+ File Concatenation. The files have been concatenated in a single data frame

 Saving in dictionary. Each data frame has been then saved both locally in the computer memory
for easy access and in a Python dictionary.

Figure |5 shows the final set of 54 Flight Parameters.

Finally data have been saved in several data structures which contains HUMS data for each aircraft.
As a result, 22 data structures (one for each aircraft) have been created and saved in a Python
dictionary, with the tail numbers of each aircraft used as the dictionary keys.

5.2 EDA and Methodology
5.2.1 Data Insights

Exploratory Data Analysis (EDA) [42] refers to the important process of conducting initial investiga-
tions on data in order to uncover patterns, assess data quality, and explore relationships between
data sources with simple representations.



Condition-Based Maintenance: a Framework for the Horizontal Tail Actuator of an Advanced Jet Trainer Aircraft

Records (freq > 20Hz): 72842 (21.82%)
Records (freq > 40Hz): 10144 (3.04%)
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Figure 6 — Sampling analysis for one aircraft.
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Figure 7 — Block diagram with available data along the HT control flow.

In this section, some considerations about the load file data sampling frequency and signal analysis
are reported. These factors have been paramount in determining the appropriate methodology.

A sampling analysis has been carried out for 4 aircrafts.

The results are comparable for all analysed aircrafts and, hence, can be extended for the whole fleet
since the recording equipment, training flights and overall subsystem infrastructure are shared across
the whole fleet.

An example for a single aircraft is reported in Figure[g] The performed sampling analysis highlights an
extremely variable frequency with few (at most 22%) irregular and sparse batches of high frequency
data, whereas most of the samplings are acquired at frequencies below 5 Hz. It has to be noted that
HUMS was not designed for PHM applications but for SHM and, as such, high frequency sampling
was not required.

As it can be seen from Figure[7} no actuator level data is saved in the HUMS load file apart from the
HT position, logged by the FCC but obtained synthetically from the jack position.

After an in depth evaluation of the selected parameters and signals, a general methodology has been
envisioned.

5.2.2 Methodology Rationale

At the current state, component analyses as reported in the literature review cannot be applied for
the selected case study as component level signals are not logged. On top of that, the low frequency
sampling adds an additional difficulty layer not enabling dynamic analyses on the components (which
are characterized by much higher frequencies).

Therefore, according to EDA results and insights, a methodology has been envisioned in order to
extract potential value from the operational data set. The adopted approach involves the central role
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of the first four Statistical Moments (SMs), which serve as lumped statistical properties indicators.
SMs are a typical way to characterize distributions, as they allow to accurately describe the properties
of the distribution with a limited number of parameters. Moreover, there has been a strong literature
base supporting the applications of SM for PHM applications especially for mechanical components
(43,144, 145, |46].

This approach has been chosen to highlight possible correlations between stored fleet usage data
and the HT PAS URs. The SMs are assembled in a cumulative fashion to discover pattern in data. A
similar approach of cumulative feature assessment has been used by the authors in [47] for inverter
fault detection and diagnosis. Cumulative features are employed in [48] and in [49] to carry out
fault detection and remaining useful life (RUL) prediction for bearings. The resulting workflow for the
selected statistical approach is reported in Figure [8|

6. Models & Algorithms for FDI/PHM

The inputs and pre-processing steps have been already examined in the previous sections. The
processing phase involves two main steps: Feature Creation and Feature Analysis.

6.1 Feature Creation

In the feature creation step, three main tasks can be found: Statistical Moments (SM) Evaluation,
PAS Data Assembly and Cumulative Feature (CF) Calculation.

6.1.1 SM Evaluation

In the SMs Evaluation phase, the four main SMs have been applied to the already pre-processed
data-set. In this step, for each aircraft, flight data is concatenated one after the other. A total of 22
data frames (one for each aircraft) with variable length according to the total number of flights has
hence been elaborated.

The first four statistical moments have been selected to better represent the statistical content of
each signal for each flight. In fact, thanks to the column highlighting the flight number (added in the
pre-processing step), each flight data is analyzed separately from the others. As a result, the four
values represent the main properties of each signal for each flight.

The first four statistical moments are: mean, skewness, kurtosis and variance.

 First Statistical Moment: Mean.

Mean value is linked to the central tendency of the data and highlights if the aircraft or actuator
is subjected to a high or low load baseline [46]. The formula is here reported:

1 n
mean = i = Y xi (3)
i=1

where n is the total number of samples, and x; is the single sample.

» Second Statistical Moment: Variance

The concept of variance involves the examination of the distribution of data points around their
mean value. It correlates with the magnitude of deviation of individual data points from the
average value. A higher variance indicates a wider dispersion of data points from the mean,
resulting in greater variability in the measurements.

Eq Processing & Features
Reg. 2.5M 3.PAS Data 4.CF
Evaluation Assembly Calculation
HUMS .
STR Files 1. Pre-Processing Feature Creation —»Outputs
5. Intervals 6. Histogram
UR N Computation Plotting
Register Feature Analysis

Figure 8 — Statistical methodology work flow.
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In the specific case study discussed, a high variance within a particular feature time series indi-
cates that the aircraft has experienced values significantly divergent from the average. Variance
is also used as a possible condition indicator in PHM applications as highlighted in [47]. For
instance, a high variance on work values may underline that the PAS jack has been subjected
to a wide range of movements and positions.

S

. 1
variance = 62 = - (i — p)? (4)
i=1

» Third Statistical Moment: Skewness

Skewness measures the asymmetry of the probability distribution of a variable. In physical
terms, skewness reflects the departure of a dataset from symmetry (Figure [9). Skewness has
been used extensively in PHM and diagnostics application for rotating mechanical equipment
[50], 45] and highlights peaks distant from the mean value. Skewness has been calculated
according to the following formula:

3

1Y (i —
skewness = s = 7#3#) (5)
n o

» Fourth Statistical Moment: Kurtosis

If skewness quantifies the extent of asymmetry within a distribution, kurtosis quantifies the de-
gree of peakedness or flatness. Kurtosis is the fourth central statistical moment and indicates
the degree of concentrations of a distribution in its tails with respect to to the distribution cen-
ter. A high kurtosis suggests that the distribution may have heavier tails, indicating a greater
occurrence of high values if compared to a standard normal distribution (Figure [9). Kurtosis
has been traditionally one of the most used statistical measure for PHM approaches for rotating
equipment and bearings [51}, 53].

In practical terms, kurtosis is a statistical measure used to assess the likelihood of very high
values occurring in a dataset. It indicates the distribution of observations within the dataset,
focusing on the frequency of deviations towards the tails of the distribution rather than remaining
centered around the mean. the formula used is here reported:
1Y (i — u)?

kurtosis =k = — 1
n o

(6)

6.1.2 PAS Data Assembly

Once the SMs have been calculated following the aircraft operational life, the PAS Data Assembly
phase has been carried out in order to recreate the operational time history of each PAS, which is
reconstructed by assembling the time windows from each aircraft on which the PAS was loaded on.
This process is essential to track down and follow a possible increasing degradation of a specific PAS
SN which, during its operational life, has been loaded on different aircrafts. This information would
have been lost if data had been analyzed following aircraft operational life.

An example of a PAS data assembly phase is reported in Figure

Negative Skewness Negative Kurtosis

Figure 9 — Differences between the effect of positive or negative kurtosis and skewness on a
distribution.
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42 PAS

'r'...."

PAS 001 | PAS 002 PAS 042
PAS 002 Register
AIC |Action |[A/ICOH| EqOH | Reason

03/10/2022 | AIC3 | L XXXX | XXXKEXX -
03/03/2023 |A/IC3| RP | xxxx | xx:xx:xx | PERF |'

01/01/21 02/02/22,,04/02/22 05/03/22 03/10/22 03/03/23

L J
01/01/2021 | 03/03/2022

PAS 002 Data
Data from A/C3

Figure 10 — PAS data assembly phase. PAS 002 data is assembled with data from aircraft 1, 2 and 3
according to the loading (L) and unloading (R or RP) dates. The reasons for the equipment
unloading is sometimes reported (PERF - Performance test Failed).

6.1.3 CF Calculation

Once PAS operational life data have been assembled, the next phase has involved the calculation
of CFs. CFs have been obtained by integrating the SMs in time (multiplying the FP SMs by the
flight duration (FD)) to replicate a time degradation tailored to the effective aircraft usage [48]. FD is
obtained from the starting and ending time of each Load file flight recording. This process, similar to
a finite difference integral operation, has been carried out for each PAS and for each SM. The results
provided 216 cumulative trends which have been analysed merging the information from URs in the
next steps.

If a specific PAS SN is taken into consideration, each point of the CF, linked to a specific flight f can
be obtained following Equation[7}

;
CF ;(f) = ];SMi,j(k) -FD(k) (7)

where CF; ;(f) is the CF at flight f of SM; ;. SM; ;(k) is the statistical moment i applied on the FP j
for the flight k. i is equal to "mean", "variance", "skewness" or "kurtosis" and j ranges from 1 to 56,
highlighting the different FPs. For instance, CF,..,1(k) refers to the value of the CF obtained using
the statistical moment "mean" on the FP number 1 for the flight k. Finally, FD(k) is the flight duration
of the flight k.

If the entire CF; ; vector is considered, a vectorized formula can be defined, as shown in Equation @:
CF,,j = cumsum(FP, ; ﬁ) (8)

where CF; ; is the CF of FP, ;. FP,; is the vector containing all concatenated FP / using the SM j; FD
is the vector containing all flight durations.

6.2 Feature Analysis

The Feature Analysis involves the interval computation and histogram plotting phases. In this step
the number of analysed PAS has been reduced from 60 to 42 due to data unavailability or absence
of URs for a specific PAS SN.

6.2.1 Intervals Computation

Once the 216 CFs have been obtained at a PAS level, the variations of the CF between two URs of
each PAS can be calculated.
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42 PAS
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PAS 001 | PAS 002 PAS 042 ) .
For sake of clarity, let's take into
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CumulativeDataForPAS002 CData SM (e.g. “mean”) of a particular FP (e.g. g).
mean,] . .
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1
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\( J
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Figure 11 — Interval calculation for one selected PAS.

Figure (11| shows this process for one actuator. PAS 002 is selected for this example. In the graph
on the right hand side a specific cumulative feature (e.g. the mean of CF,..,1) is reported with a
color code assigned to the aircraft on which the PAS was loaded on in function of the date. This
information is taken from the previous step and already shown in Figure The data presented in
the table located in the upper right section of the figure indicates that this particular PAS has been
utilized for a total of 1145 flights. Similar data can be extracted from all 216 CFs for comparison.
The CF is intersected by some vertical red dotted lines which are the removals that the PAS 002
suffered from. The variation between the beginning of the actuator operational life and the first UR
or between two URs are then calculated and inserted in a vector. It is important to highlight that PAS
002 encountered three URs, with only two of them attributed to failures (labeled as "RP" for Repair),
while the initial UR was simply a Removal (R) necessitated by logistical considerations to transfer the
component from one aircraft to another.

This process has been carried out automatically for each CF and for each PAS. The variations are

then grouped inside a single vector intervals; ; and analyzed in the next phase.

6.2.2 Histogram Plotting & Ranking

Histogram representations have been utilized to visually display the distribution of the obtained in-
tervals. A total of 37 intervals has been computed during the preceding phases. These intervals
depict the fluctuations in value of a particular CF over time, offering insights into identifying the most
meaningful CFs.

A histogram has been generated for each of the 216 CFs, complete with a fitted Kernel Density
Estimation (KDE) curve [54]. From this curve, a normalized Signal to Noise ratio (SN Ratio) has been
calculated to rank the features as shown in the following formula:

norm(m)
X

where m and X are the mean and standard deviation of the KDE.
The results show that the most informative CFs are:

S/Nnorm = (9)

* the skewness applied to the work on the right actuator

+ the skewness applied to the north speed component
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RHT_Mx_mean

Figure 12 — Histograms for the "Top 5" most informative CFs according to signal to noise ratio. The
first row shows the distribution along with the KDE curve, while the second row reports the
occurrences.

» the mean of the M, moment applied to the last section of the fuselage
» the mean of the M, moment applied on the right HT
* the kurtosis applied to the east speed component

Histograms for the top 5 CFs are reported in Figure[12]

It can be noted that all the most informative CFs are physically linked to the mechanical behaviours
of the HT and the related effect on the AJT flight mechanics. Moreover the prevalence of skewness,
mean and kurtosis indications and the absence of variance may highlight a more relevant effect of
higher loads with respect to the mean value.

These results are significant from two points of view: on the one hand, this analysis has provided
an objective and mathematically sound way to identify the most informative CFs from flight data. On
the other hand, for each CF a threshold distribution has been characterized, delineating a way to
statistically allocate a possible UR in time. In other words, when a CF is subjected to an increase
comparable to the values reported in the histograms, a possible warning can be raised as proposed
in the next paragraph.

7. Post Processing and Prognosis

Post processing studies and data mining steps are currently being carried out to enhance the statisti-
cal analysis, highlighting undiscovered patterns and correlations in data or identifying additional way
to treat features. These steps can be useful to handle the high uncertainty found in in-service data
and to reduce data volatility.

For instance, multivariate analyses in the feature space (e.g. clustering strategies) are to be per-
formed to discover patterns between different CFs. At the same time, similarity studies between
Load file time series can provide ways to aggregate different flight behaviours. Finally, the assess-
ment of maintenance intervals according to the known failure conditions and the CF trends between
two URs can allow for more precise tuning of refined CF calculation.

The combination of CFs analyses and post processing results can represent the founding stone for
the next step of the CBM framework: prognosis.

In this way, using the information contained in the last flight Load file, prognosis can be intended as
a twofold process: short-term prognosis and long-term prognosis (Figure [13).

On the one hand, a short-term prediction can be calculated from Load files. In fact, the AJT, being
a trainer aircraft, can be considered as it is subjected to a standard range of flight missions, regimes
or manoeuvres. Following this hypothesis, flight data from the Load files contained in the RD can be
categorized with time series clustering or other machine learning techniques into a set of Clustered
Mission Types (CMT). The new Load file can be classified according to the various CMTs contained

15



Condition-Based Maintenance: a Framework for the Horizontal Tail Actuator of an Advanced Jet Trainer Aircraft

Flight Repository

Markov Chain Future Projections &

|| Monte Carlo Prognosis
(MCMC)
Classifier ||
: Post Processing
Insights

New Short-Term Prognosis
Load File
Failure

Distribution

Future Projections &
Prognosis

Index tracking & Update

L-——LA

Markov Chain
Monte Carlo
(MCMC)

CF
Extraction

Long-Term Prognosis

New
Flight Plan

Figure 13 — Prognosis envisioned flowchart. Short-term prognosis can provide prompt information
on the near future, whereas long-term prognosis can allow for more precise and comprehensive
indication in the long term.

in the flight repository. In this way, the specific PAS SN history is compared with other SNs with similar
operational history.

Operational history can then be projected in the near future via Markov Chain Monte Carlo (MCMC)
analyses driven by the labeled historical historical flight repository. Moreover, considerations on the
number of URs, the UR reasons (if available) or the intervals magnitude trends can provide useful
and actionable data for a short term prognosis.

On the other hand, long-term prognosis methodology can be designed, providing a more compre-
hensive information, leveraging more data. Once a new Load file is downloaded and processed, CF
can be extracted and the relative trend can be updated. After that, according to the flight plan for a
potential new flight, the selected refined CFs can be projected in the future by assigning the proba-
bility of matching with one or more CMTs via MCMC analyses. In this way, the CFs can be projected
in the future with a certain probability distribution.

The CF probability distribution can be then compared with the failure threshold distribution obtained
from the histograms, obtaining a RUL distribution in time. Information previously gained from post
processing steps can help to reduce the volatility of the failure distribution and increase the over-
all analysis robustness. As a result, a solid methodology to statistically allocate failure distribution
probability can be envisioned.

8. Conclusions

This paper has accomplished the complex and challenging task of integrating in-service data from
an operational scenario into a CBM methodology bringing additional value to the logistical chain and
maintenance scheduling.

The findings and methodological strategies have significant implications from several perspectives.
Firstly, the analysis has offered an objective and mathematically rigorous method for determining the
most informative features from flight data. Secondly, a threshold distribution has been developed for
each contributing factor, establishing a statistical framework ground base for the temporal allocation
of URs.

The presented methodologies, developed on real life operational data from a fleet of assets, can be
hardly found in literature due to intellectual properties issues and can provide useful insights and
directions for maintenance organization and operators in better managing their assets.

Especially in the aerospace field and in the flight control realm, studies such as the one presented in
this paper are very rare and can offer field tested PHM and CBM solutions for legacy equipment that
can be modified and applied for a wider range of equipment, thus delineating a operational flow-chart.
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PHM strategies are significantly transforming and improving the way aircraft and industrial assets
are managed. Although this is certainly true for newly design products where PHM is (or should be)
integrated in the design loop; the proven value of PHM solutions goes well beyond that, offering main-
tenance practitioners, final end users and Original Equipment Manufacturer (OEMs) the possibility of
enhancing asset readiness and availability of already operational systems, facing a high commitment
but also a high reward scenario.
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