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Abstract 

The article constructs a convolutional neural network for predicting pressure and velocity fields around a two-
dimensional aircraft wing model (airfoil model). Training data is computed using the Reynolds-averaged method, 
then extracted, focusing on the flow around the wing. Input data includes geometric parameters, airfoil inlet 
velocity, and output data includes pressure field and flow velocity around the airfoil. The convolutional neural 
network is based on improving the U-Net network model, commonly used in medical applications. The results 
show that the convolutional neural network accurately predicts flow around the airfoil, with an average error below 
3%. Therefore, this network can be used and further developed to predict flow around the wing. Results related 
to pressure distribution, velocity, and method error are presented and discussed in the study. 
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1. Introduction 

The aircraft wing is the primary component generating lift, enabling the aircraft to operate in 
atmosphere. Along with the advancement of aviation and computational techniques over the past 100 
years, the wing database system has been built and improved. Some notable examples include the 
NACA wing system, the Xfoil software [1], which allows the output of lift, drag, and pressure distribution 
data on the wing surface in short time. More accurate methods, such as using software to solve finite 
volume problems, allow for the distribution of pressure, velocity, and friction around the wing surface. 
These are traditional approaches based on mathematical equations and solving problems by 
discretizing computational space [2], [3],[7]. 

Today, artificial neural networks have been widely applied in scientific and engineering fields. With 
large training datasets, the results obtained from neural networks have shown good predictions with 
small errors compared to traditional methods. In aerodynamics, artificial neural networks are used to 
predict lift and drag values of models. Global networks like convolutional neural networks allow for the 
distribution of pressure and velocity fields around models with small errors. In this method, training and 
testing data are generated from traditional computational methods, then rearranged into four-
dimensional arrays. The data passes through convolutional neural networks to extract features, which 
are then reconstructed into pressure and velocity fields. Through the training process, the network 
parameters are adjusted to provide pressure and velocity field results close to the original data. The 
network parameters are formed. Some networks developed for this task include Flow Net for optical 
flow, U-Net for medical applications [4],[6]. However, artificial neural networks, besides mathematical 
properties, also have architectural or artistic characteristics. Therefore, the results vary depending on 
the choice of convolutional network architecture. 
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In this study, we propose modifications to the structure of the conventional U-Net network to serve the 
extraction of pressure and velocity fields around a two-dimensional aircraft wing model (airfoil). Training 
and testing data include 400 airfoil cases with different shapes and flow conditions. The results of 
training on the U-Net network show that this model allows accurate prediction of velocity and pressure 
field features with a common error of less than 3%. Therefore, the networks can be used in computing 
flow features around physical models. 

2. Convolutional Neural Network Diagram and Training Data 

2.1. Convolutional Neural Network Diagram 

U-Net Convolutional Neural Network is a network architecture used in the field of image processing, 
particularly for segmentation tasks. This architecture is designed to retain high-level information 
(learned from convolutional layers) while also maintaining specific positional information (learned from 
pooling layers). U-Net is typically divided into two main parts: the encoder and the decoder. The 
encoder uses convolutional layers to extract information from the input image and applies pooling 
layers to reduce the feature size while retaining important information. Conversely, the decoder uses 
transposed convolutional layers to reconstruct the image with high resolution and combines information 
from the corresponding encoding layers through skip connections to recreate specific objects. U-Net 
has demonstrated good performance in various applications, including cell segmentation in medical 
images, object recognition in images, and many other tasks. The unique structure of U-Net allows it to 
retain both high-level and positional information, making it a popular choice for tasks that require both 
detailed and positional information of objects. The output results depend on the number of layers in the 
U-Net. For the airfoil models, this study uses a U-Net with three input-output layers. The network input 
is modified to be a three-dimensional matrix of size 128×128×3. The first two dimensions represent the 
image size, and the third dimension sequentially represents the model's geometry, the input velocity in 
the x direction, and the input velocity in the y direction. Each convolutional layer is followed by a ReLU 
layer, and the final convolutional layer is followed by a Max Pooling layer. Initially, the U-Net network 
was used for image segmentation. Therefore, the output parameter is changed to a three-dimensional 
matrix of size 128×128×3, where the third dimension sequentially represents the pressure field, the 
output velocity in the x direction, and the output velocity in the y direction. The network includes 7.6 
million parameters. The structure of the U-Net and its parameters are presented in Figure 1. The 
network structure and training process are built using MATLAB software. 

 

Figure 1. Diagram of the 3-layer U-Net network 
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2.2. Training Data 

The training data used in this study is taken from the dataset published by Thuerey and colleagues [5]. 
Specifically, the Reynolds-Averaged Navier-Stokes (RANS) method with the Spalart-Allmaras 
turbulence model is used. Calculations are performed in the OpenFoam environment. The geometric 
features and the flow around the model are cropped to a size of 128 × 128 pixels to facilitate the training 
process. A total of 400 data sets are used for training. An example of the training data field is shown in 
Figure 2. It includes the geometry, the free stream in x and y directions, the results of pressure fields, 
velocity fields. All data of the input and output has the same size of 128 × 128 pixels. 

   

   

Figure 2. Training data for the training process 

2.3. Training Model 

The three-layer U-Net network described in section 2.1 is used for the training process. The airfoil data 
is divided into 80% for training and 20% for testing. The training data is divided into minibatches with a 
size of 10. The loss function is calculated as the average error of the pressure field and velocities during 
training with the standard data. A total of 100 epochs are performed for the training process. The 
adaptive moment estimation (Adam) algorithm is used. The learning rate is fixed at 0.001. It should be 
noted that the learning rate can affect the convergence of the problem. However, calculations in this 
study show that reducing or changing the learning rate around the chosen parameter does not 
significantly change the loss function. The training process is performed using MATLAB software in 
graphical card (GPU). 
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3. Results and Discussion 

3.1. Training Error 

Figure 3 shows the changes in the loss function over the number of epochs. The loss function 
decreases rapidly at the beginning and gradually decreases up to 3000 iterations. However, when 
further increasing the number of iterations, the results change little and converge to a value of 0.03. 
The loss error is small, and the training results for the pressure and velocity fields can be obtained with 
small errors. 

 

Figure 3. Changes in the loss function over iterations 

Figure 4 shows the average error results of the test data. Here, 80 test data sets are calculated. The 
average error of the calculations is less than 3% for both the pressure field and velocities. However, in 
some cases, the error increases to 6% or 8%. This can be explained by the fact that when changing 
the angle of attack, the flow field around the model becomes complex, and thus the error tends to 
increase. However, the average error is small, indicating that the method is effective in predicting the 
flow field around the model. 

 

Figure 4. Changes in error over test data 
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3.2. Training Results 

Figure 5 shows the training accuracy, training results, and the airfoil model for two different cases after 
100 epochs. In both cases, the training results predict the pressure and velocity fields around the model 
quite accurately. For example, in case a), the low-pressure and low-velocity region below the airfoil can 
be described quite accurately from the training. Similarly, the high-velocity region above the model can 
be described relatively accurately through training. For the highly curved airfoil shown in case b), similar 
results are obtained from the training. However, compared to numerical simulation calculations, the 
training results show less smoothness, especially in the pressure field and velocity field v (Figure 5a). 
This can be explained by the fact that the training model considers each pixel individually and lacks 
mathematical connections between neighboring pixels. 

 

Figure 5 (a). Training results 
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Figure 5 (b). Training results 

 

To further evaluate the error, Figure 6 shows the difference between the pressure and velocity fields 
between the training model and the standard results from numerical simulation for one airfoil case. In 
the regions far from the model, the error is small. The error tends to increase when approaching the 
model. This can be explained by the sudden changes in aerodynamic and geometric parameters at 
these locations. Additionally, some errors appear along certain streamlines due to the sudden changes 
in the velocity field. Therefore, further research needs to be conducted to improve the accuracy around 
the model. 

 

 

 

 



7 

 

 

APPLICATION OF CONVOLUTIONAL NEURAL NETWORKS IN DETERMINING THE VELOCITY AND 
PRESSURE FIELDS AROUND AIRFOIL MODELS 

 

  

 

Figure 6. Error between numerical simulation and training results for one airfoil case 

3.3. Discussion 

The results for the airfoil show that the average error of the pressure and velocity fields is less than 
3%. Although the error is acceptable, there are questions about whether the error can be further 
reduced. Clearly, increasing the training and test data can help reduce the calculation error. However, 
increasing the training data significantly increases computer resources, which is relatively complex 
under conditions in Vietnam. Moreover, improving the artificial neural network can help reduce errors. 
However, in our studies, using 4 or 5 layers of the U-Net network does not significantly reduce the 
calculation error, although the network parameters increase. Other types of artificial neural networks, 
such as Flownet, or entirely new networks can be used to reduce calculation errors. The second 
question is the accuracy of the pressure distribution on the model surface when using this type of 
artificial neural network. Although some other networks can be used to increase the accuracy of the 
pressure field distribution prediction, the artificial neural network does not yet represent the physical 
constraints of the flow, such as the continuity of the velocity and pressure fields. Therefore, physical 
constraints can be incorporated into the input to increase the model's accuracy. These questions will 
be specifically answered in our future studies. 
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4. Conclusion 
In this study, a convolutional neural network is built to reproduce the flow around an airplane wing 
model. The training data is constructed from solving the Navier-Stokes equations using the RANS 
method. Although the training model is relatively simple, the number of hidden parameters in the neural 
network is large. The training results show a certain fit and a small error between the training data and 
the simulation calculations. Therefore, the results of this study can be used to predict the main 
characteristics of the pressure and velocity fields around the model, serving the optimization process 
of the airplane wing shape in specific operating conditions. However, the model still needs 
improvement. Additionally, helping the machine learning model understand the physical phenomena 
of the flow is a complex issue that needs to be addressed in future studies. 
 
5. Acknowledgments  
We acknowledge support from LOTTE Foundation Japan, and Yoshida Foundation for Science and 
Technology Japan awarded to G.S. as a Scholarship and Travel grant. Also partially supported by the 
Grant-in-Aid for Scientific Research from JSPS, Japan, KAKENHI (Grant No. JP23K28189) awarded 
to Professor J.T., we would like to express our gratitude to them. 
 
6. Contact Author Email Address 
The Hung Tran, PhD, thehungmfti@gmail.com 
Gopal Sharma, gopal.sharma409@gmail.com 
 
7. Copyright Statement 
The authors confirm that they, and/or their company or organization, hold copyright on all the original material 
included in this paper. The authors also confirm that they have obtained permission, from the copyright holder 
of any third-party material included in this paper, to publish it as part of their paper. The authors confirm that 
they give permission or have obtained permission from the copyright holder of this paper, for the publication and 
distribution of this paper as part of the ICAS proceedings or as individual off-prints from the proceedings. 
 
References 
 
[1]  M. Drela, XFOIL: An analysis and design system for low Reynolds number airfoils, in Low Reynolds  
      Number Aerodynamics: Proceedings of the Conference Notre Dame, Indiana, USA, pp. 1–12, 1989. 
[2]  T. H. Tran, D. A. Le, T. M. Nguyen, C. T. Dao, and V. Q. Duong, Comparison of Numerical and  
      Experimental Methods in Determining Boundary Layer of Axisymmetric Model, International Conference on  
      Advanced Mechanical Engineering, Automation and Sustainable Development, pp. 297–302,2022. 
[3]  T. H. Tran, H. Q. Dinh, H. Q. Chu, V. Q. Duong, C. Pham, and V. M. Do, Effect of boattail angle on near- 
       wake flow and drag of axisymmetric models: a numerical approach, J. Mech. Sci. Technol., vol. 35, no. 2, 
       pp. 563–573, Feb. 2021, doi: 10.1007/s12206-021-0115-1. 
[4]  G. Du, X. Cao, J. Liang, X. Chen, and Y. Zhan, Medical image segmentation based on u-net: A review, J.  
      Imaging Sci. Technol., 2020. 
[5]  N. Thuerey, K. Weißenow, L. Prantl, and X. Hu, Deep Learning Methods for Reynolds-Averaged Navier– 
      Stokes Simulations of Airfoil Flows, AIAA J., vol. 58, no. 1, pp. 25–36, 2020,doi: 10.2514/1.j058291. 
[6]  Sharma, Gopal, The Hung Tran, Xuan Long Trinh, and Jun Tanimoto. "Skin-Friction Topology on  
      Axisymmetric Boattail Models by an Optical-Flow Algorithm with a Sub-grid Function. In Asia-Pacific  
      International Symposium on Aerospace Technology, pp. 189-198. Singapore: Springer Nature  
       Singapore,2023. 
[7]  Nguyen, Trung Dung, The Hung Tran, Van Khiem Pham, Gopal Sharma, and Jun Tanimoto. Mixing Layer  
      for Incompressible Flows: A Numerical Study. In Asia-Pacific International Symposium on Aerospace 
     Technology, pp. 1505-1515. Singapore: Springer Nature Singapore, 2023. 

 

mailto:gopal.sharma409@gmail.com

