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Abstract

The application of artificial intelligence makes the collaboration between machine and human closer in the
future. How to build the architecture of human and machine collaboration and evaluate the profit of human and
machine collaboration is the premise of promoting the effective application of artificial intelligence in flight control
system. The paper proposes an architecture of human and machine collaboration, focusing on the method
based on human-machine cognition and behavioral ability evaluation, and how to make task allocation between
human and machine through the analysis of man-machine ability expertise and collaboration efficiency. Using
NASA-TLX scale and objective metrics, an example of allocating the human and machine tasks during the
design process of the flight control system using this architecture is proposed in the paper, showing the
effectiveness of the architecture.
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1. General Introduction

In the process of performing complex tasks, the pilot needs to observe the environment, read a large
amount of information displaying on the screen and decide how to react in a short time. Reducing the
pressure of the pilot will increase the rate of correct decision and making it easier to pay attention to
items related to the task, not to the flight operation. Application of artificial intelligence system is such
an obvious way, but currently most of the Al systems developed today is aimless. Some of the Al is
trying to replace all the tasks assigned to human, or some Al just spit out lots of information, wasting
the time human doesn’t really have.

Previous research shows that it is possible to match the attributes of the tasks between human and
machine and by identifying the status of human being, some of the tasks will be assigned to human
while the left will be handled by machine. The usage of Al will improve the assisting decision-making
ability of the flight control system, and it is possible for the Al-enabled control system handling tasks
from conventional control to decision-making and management, so as to realize the perception,
evaluation, decision-making and control for different tasks. Machine vision, gaming and speech
recognition are already in use in flight control system. LLMs are also a potential way, with a possibility
of increasing the awareness ability and knowledge base of the Al system.

1.1 Different style of human-machine collaboration

Human-robot collaborative technology is currently the most deeply researched field within robotics.
Researchers have designed various human-robot collaboration models based on different robotic
functionalities. Currently, the primary six modes of collaboration between humans and robots include
guided control, supervisory control, traded control, direct shared control, indirect shared control, and
allocation control [1].
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Guided Control: This mode facilitates task completion in unknown environments by providing haptic
and motion feedback from the robot to the human operator. The primary form of feedback involves
force feedback transmitted to the operator, enabling them to avoid excessive robot operation in
environments with limited sensory perception [2].

Supervisory Control: A human operator oversees the robot's performance and intervenes with direct
manipulation or program adjustments when necessary. For example, during pesticide spraying
operations, the ground handler manually controls the robot when autonomous program function
irregularly.

Traded Control: Both humans and robots can possess full control at any given moment and transfer
control to the other party under specific circumstances. In remote-controlled robots, the default
behavior when communication signals are lost, such as returning to base, is pre-programmed.
Alternatively, control between direct brain-machine interface control by a human and autonomous
visual control by the machine could switch based on factors like distance to the target, where visual
control handles all the control within closer ranges [3].

Shared Control: Control of the system is jointly held by humans and robots. It is divided into direct
shared control, where both entities act as independent sources of commands, and indirect shared
control, converting high-level human inputs into low-level robot commands through a controller,
which is always used in surgical robots.

Allocation Control: Humans and robots have distinct task assignments. Industrial robots on
production lines primarily fall under this category, responsible for tasks such as assembly, welding,
and gluing.

Complex interaction and task allocation become even more intricate in scenarios involving
sophisticated manned aircraft cockpits or ground stations for medium to large unmanned aerial
vehicles (UAVS), leading to hybrid styles combining allocation control and direct shared control,
among others.

For instance, the need for single-pilot operations in commercial airlines implies that part of the flight
control tasks is automated [4-6]. MITRE Corporation's assistive system integrates pilot voice or
keyboard inputs, airspace surveillance, weather forecasts, and runway information to provide
cognitive assistance and alerts via auditory and visual notifications [7]. However, the widespread
adoption of such systems is hindered by unresolved technical issues, including a high rate of false
positives for rare risks, decreased safety awareness among pilots due to new systems leading to
riskier maneuvers, and imperfect intent inference.

In the UAV sector, the focus is on manned-unmanned teaming. Depending on the level of autonomy,
the division of control and functionality between manned aircraft and UAVs varies, with different
organizational structure and operation procedure [8]. As Al capabilities advance, manned aircraft
pilots prefer more direct control over their aircraft but are more concerned with the UAV's ability to
support their mission rather than its flight control [9].

Most commonly applied human-robot collaborative technologies are control augmentation, human-
robot authority allocation, and human-autonomous system formations.

1.2 Control Compensation

In indirect shared control, the machine must be capable of recognizing the operator's intentions and
utilizing its superior sensors and actuators compared to humans to accomplish tasks. Where
operational procedures are well-defined, future human behaviors can be predicted to a certain extent
[10], although this approach often proves less effective in complex scenarios. Alternatively, instead
of direct prediction, the focus can be on optimizing the overall performance of the human-robot
system [11]. This involves compensating for human control under predefined criteria for evaluating
operational effectiveness [12], necessitating an internal motion model (Internal Vehicle Model). This
model integrates human input commands and outputs a fused human-robot action. The internal
motion model functions by incorporating the human's control signals, enhancing the overall system
response by adjusting for potential inadequacies or limitations in human reaction time or precision.
Through this integration, the combined system can leverage the strengths of both human decision-
making and machine execution, thereby improving task efficiency and accuracy even in dynamically
changing environments.

With the advancement of machine learning techniques, particularly deep learning, Long Short-Term
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Memory (LSTM) networks and Deep Reinforcement Learning (DRL) [13, 14] have further expanded
the representation of state spaces, thereby expanding the capability of predictive and global
optimization methods. These advancements have found applications in simpler scenarios such as
robotic grasping and quadcopter landing [14], demonstrating improved performance.

1.3 Human-Machine Task Allocation

Allocation control regards humans and machines as parallel entities operating an aircraft, with the
primary approach to human-machine cooperative control centering on the rational distribution of
control authority between humans and machines. Methods for human-machine authority allocation
can be categorized into those based on theoretical analysis and those grounded in learning
approaches.

Theoretical analysis-based methods involve modeling both humans and tasks separately to assess
the compatibility between human cognition and machine capabilities. Human modeling techniques,
such as those based on cognitive process modeling like ACT-R (Adaptive Control of Thought-
Rational) [15], are employed, alongside task modeling methodologies like IMPRINT (Improved
Performance Research Integration Tool) [16] and SNA (Social Network Analysis), which are based
on network analysis.

ACT-R [17], initially proposed by John R. Anderson, comprehensively models cognitive processes
through modules dedicated to memory, perception, and action, among others. These modules
interact via a shared buffer, with decision mechanisms governing concurrent access. This model has
evolved through multiple versions and can integrate with EEG measurements to account for
individual differences [15].

IMPRINT, developed by the U.S. Army Research Laboratory, deconstructs tasks into subtasks and
actions, connecting them in a network through action relationships [18]. By examining network
structure and node interactions, it evaluates task performance and workload.

SNA represents social relationships among multiple agents using undirected graphs, analyzing
network metrics to evaluate structure and performance. It identifies nodes or edges prone to overload
[19], applicable to modeling roles and tasks within a cockpit and pinpointing weak links in human-
machine interaction [20].

While modeling allows for a degree of analysis into the human-machine collaborative process, the
accuracy of authority allocation conclusions depends heavily on modeling sophistication and
analytical methods. Zhang [19] constructed an evolutionary game model incorporating pilots and
intelligent decision systems, employing game theory to analyze a strategy space defined by machine
intervention or non-intervention and crew trust or distrust in machine decisions. This yielded
evolutionarily stable strategies under varying conditions of human error probability and task load
change rates.

Currently, online learning methods in human-machine authority allocation remain underexplored due
to uncertainties involved [21], with prevailing research leaning towards offline theoretical analyses
that are more subjective and require case-by-case examination.

1.4 Human-Machine Interaction

The rapid development of artificial intelligence technologies has significantly enhanced
comprehension abilities of machines, shifting the recent research focus onto another approach for
tackling complex human-machine collaborations: shared control, specifically in designing Human-
Autonomy Teaming (HAT) systems [22]. Direct shared control not only encounters issues of human-
machine authority allocation but also hinges critically on human-machine interaction.

In the context of flight control, human-machine interactions demand swift response times and high
reliability, resulting in a cautious adoption of new technologies, especially Al, with many pilots
concerned about added complexity [23]. But traditional control methods, such as button, joysticks,
and pedals, alongside screen-based character and icon outputs for conveying information, still
dominate aircraft control systems.

Natural language interfaces are mostly confined to limited voice command inputs and alarm sounds
[24]. Prada et al. addressed human-robot interaction challenges by employing a gesture-voice
system (GSM) in mixed reality to expedite communication [25]. Using HoloLens for mixed reality and
Baxter robot for execution, their study with 20 participants revealed a 21.33% speed increase in
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grab-and-place tasks with the gesture-voice system over gestures alone.

To overcome difficulties in control input using joystick and keyboard faced by astronauts in bulky
spacesuits, Fu et al. proposed a voice-based human-machine interaction solution for space
exploration [26]. They developed the CO-Sense Reasoning Prediction (Co-SRP) framework for
human-robot dialogues, emphasizing knowledge sharing and joint spatial cognition. This framework
enables object localization and pathfinding tasks, with robots interpreting astronauts' spatial
descriptions to determine paths, measurements, and attributes, bypassing traditional directional
controls. Tests using task completion time as a metric showed that voice-aided human-robot
dialogue, especially in visually obstructed scenarios, reduced task duration.

COMBI [22], a concept system by Thales, enhances interaction between humans and autonomous
intelligent systems. It translates human intentions into low-level semantics for the Al system via a
downlink translator and converts Al's low-level outputs into high-level operational intent through an
uplink translator. The conversion model is built using Genetic Fuzzy Trees (GFT), a process involving
expert knowledge acquisition, fuzzy inference system construction, and optimization through genetic
algorithms to refine the translation model.

Ye et al. demonstrated, through a case where a robotic arm was manipulated to assist operators in
tool pick-and-place tasks [26], that leveraging large language models like ChatGPT can enhance
semantic understanding and communication between humans and robots. They initiated this by
constructing RoboGPT and designed an experiment employing trust questionnaires and the NASA-
TLX scale as metrics for quantifying trust and task completion time as an indicator of task quality.
Fifteen participants were involved in the trial, validating that ChatGPT can indeed elevate the level
of human-robot collaboration. However, the authors pointed out that ChatGPT's understanding and
responses might be based on erroneous communication cues, potentially leading to misoperations.
They further suggested that integrating text-based interactions with image inputs could potentially
improve outcomes. Given the currentimmaturity of multimodal large models, an alternative approach
involves employing image interpretation models to generate text, which can then be combined with
large language models. For instance, TypeFly utilizes YOLO as an object detector to generate object
names and position coordinates, which are then relayed to the large language model [27].

1.5 Human-Machine Collaboration Architecture

Human strengths lie in their possession of knowledge and cognitive abilities, coupled with a strong
adaptability to uncertain environments. Machines, on the other hand, excel in performing repetitive
tasks according to fixed patterns, with no emotional fluctuations. Consequently, it is advisable to
minimize involvement of human in repetitive operational patterns, freeing up their time and mental
resources to focus on addressing uncertain, unscripted scenarios. Human should handle tasks that
require manipulation of knowledge and rules, while machines should be tasked with handling
activities that involve rules and skills. Based on the allocations derived from the research, we
proposed a task assignment structure for human-machine collaboration based on cognitive model
as Fig.1 in [28].

System Status ; Task
Knowledge Analysis 4 Planning % Generation

System Information Task Human
Rule System Status % Status/Order ] Rule Machine
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Figure 1 — Authority allocation principle based on the general cognitive model 8!
Specially, for spin recovery scenarios, we have a task assignment in Fig.2.
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Figure 2 — Task Assignment in Spin Recovery Scenario
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On the basis of the architecture of authority allocation based on the general cognitive model, it is
necessary to further evaluate the efficiency of the human-machine collaboration system. It is
common to evaluate probability of winning or accuracy during flying along the specified trajectory.
Most previous methods do not consider the possibility of reducing of mental pressure that people
may obtain in the human-machine collaboration system as it is not easy to be quantified. This part
of the work is often carried out by man-machine efficacy related studies through physiological
characteristics such as eye tracker and pulse measurement, but at the same time, there are
problems in the interference of the test results caused by the tester wearing the device.

Currently, some experiments are already carried out. Using NASA-TLX, we interviewed 5 trained
UAV pilots, and calculating the coefficients used by the scale. After using a weighted human and
control algorithm using predetermined control coefficient, we found that the pressure scores
decreased, and the wining rate of aircraft recover from spinning increases. We are also trying to
evaluating the architecture presented in the paper, trying to show different task allocation with
different intelligent level of Al.

We presented in this paper a human-machine collaboration system architecture based on cognitive
model. Using mixed evaluation method combing improved NASA-TLX scale and operation
performance, we try to evaluate the performance of the system, considering human manipulation
pressure. Different scenarios are tested with different level of assistance. Comparing to just using
wining rate, our method is more conducive to the evaluating the performance of artificial intelligence
algorithm.

2. Simulation Environment Construction

2.1 Model Preparation

The accuracy of flight control and flight dynamics model is very important in the experiment. To
simulate the flight characteristic of high attack angle, we carried out wind tunnel tests to obtain the
model. Building upon existing aircraft models, we focus on enhancing the fidelity of post-stall
maneuver modelling. Wind tunnel tests and flight tests are conducted to establish baseline models,
with particular emphasis on modelling high angle-of-attack conditions. A series of spin wind tunnel
tests were carried out based on a specific aircraft configuration, yielding static three-axis force and
moment data for the aircraft at designated points across an angle of attack range from -90 degrees
to +90 degrees. Dynamic data of the aircraft was further obtained through the use of derivative
motion analyses and rotating balance tests.

By analyzing this data and constructing aircraft models, predictions were made regarding the angle
of attack at which spins occur and the characteristics of the spin rate. This comprehensive approach
not only advances our understanding of post-stall behaviors but also contributes to enhancing flight
safety by improving simulation accuracy for these critical flight regimes.
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Figure 2 — Flow chart of dynamic model construction based on wind tunnel test
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Figure 3 —Verification of Modeling Accuracy Based on Wind Tunnel Test of Tail Rotation

2.2 Simulation Environment

The simulation system is a combination of task environment simulation, unmanned aerial vehicle
(UAV) simulation, manned aircraft simulation, human-machine environment simulation, and an agent
design and verification platform tailored for research application.

Task Environment Simulation: Primarily, this component provides simulations of terrain,
electromagnetic environments, and weather conditions, furnishing information such as
communication conditions, air density, and temperature within the scenario to enhance the realism
of simulation. Simplified simulation of other aircraft and ground units within the environment, offers
simplified dynamic states of moving objects and a highly integrated control interface. Additionally, it
simulates interactions among different entities involved in mission execution, including visibility
determinations, payload trajectory calculation, collision assessment, and integrity evaluation.
Manned Aircraft Simulation: Comprised of aerodynamic models, electromechanical models, sensor
models, flight control and management simulation, and cockpit simulation, this module ensures a
level of complexity and fidelity in modeling. The dynamic, electromechanical, and sensor models can
be replaced with newer ones and are capable of introducing faults, changes in center of gravity,
mass, and configurations. The flight control/management simulation mimics the real-time behavior
of onboard systems, capable of executing given flight control/logic management algorithms.
Unmanned Aerial Vehicle Simulation: Similar in composition to manned aircraft simulation but
including ground station simulation, this module focuses on UAV-specific aspects. The aerodynamic,
electromechanical, and sensor models also exhibit a realistic degree of complexity and can be easily
swapped out, with capabilities to simulate failures, variations in center of gravity, mass, and
configurations. The flight control and management aspect mirrors the real-time responsiveness of
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onboard systems, processing predefined control logic.

Human-Machine Interaction Simulation: This component is designed to gather and transmit
information related to human-machine interactions during system operations. It captures pilot inputs
such as stick, pedal, switch and button manipulations for use as control commands in manned and
unmanned aircraft simulations. Integrated voice recognition and synthesis systems are set up to
capture and process verbal communications between manned aircraft pilots, UAV operators, and air
traffic controllers. The manned aircraft cockpit simulation replicates the pilot's operational interface,
emulating the information observed by a pilot during actual flight and enabling simulated operational
inputs.

Other Aircraft Terrain Electromagnetic environments Ground Units Weather
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Figure 4 —Architecture of Simulation Environment
3. Experiment Design

3.1 Experiment scale design

The NASA-TLX scale was developed by NASA as a multidimensional mental load evaluation scale.
The scale consists of six items (or dimensions), namely mental demand (Mental Demand, MD),
physical demand (Physical Demand, PhD), time demand (Temporal Demand, TD), effort (Effort, EF),
performance level (Performance, PER), and degree of frustration (Frustration Level, FR). The scale
is mainly based on the subjective scores given by the participants. The paper proposes a mixed test
method combining NASA-TLX test scale and objective performance of flying, taking the spin
recovery as an example to verify the effective degree of human efficiency improvement under
different Al-assisted circumstances. Objective manipulation performance indicators, including state
guantity evaluation in manipulation cases, are static difference, average variance, maximum
minimum, and arrival time and arrival ball error in the designated landing site or target point. The
modified NASA-TLX scale is used, and spin recovery is evaluated as an example to verify the
rationality of the human-machine collaboration system architecture proposed in this paper. 5 trained
UAYV pilots are tested under the scenario of getting out of the situation of UAV spinning. They are
7
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tested with different level of Al-assisted, such as:
= TC1: Screen display, no voice prompts

e TC2: Weighted human and control algorithm using predetermined control coefficient

3.2 Experiment steps design

The test flow includes introduction of test subjects, adaptation of test environment, operator
manipulation test, operator evaluation, data processing and analysis, etc.

The introduction of test subjects is to explain the operation, display position and possible display
settings of the test environment to the subjects participating in the test, so as to make the operators
familiar with the test environment.

The adaptation link of test environment is that the subjects participating in the test perform 3 flight
manipulations, and are familiar with the flight conditions that may occur in the test flow and the
operations that can be involved.

The flight test is as follows: when the operator is on the pilot's seat, when the test starts, the aircraft
is kept in the flat flight state, randomly select a time point within 1 ~ 5 minutes to start the stall state,
that is, the angle of attack of the aircraft is greater than the stall angle of attack under the influence
of instantaneous disturbance. The operator shall operate according to the prompts on the screen.
The tests will repeat for 4 times for each participant.

Operator manipulation test is to conduct manipulation test in sequence according to test subjects,
record process data, and decide whether to adjust test scheme or terminate test according to
abnormal conditions.

Operator evaluation is based on subjective evaluation questionnaire to evaluate the mental pressure
and operating difficulty of operators in different scenarios.

Data processing and analysis is to calculate the score of subjective evaluation questionnaire, and
evaluate the flight performance of man-machine cooperation system with objective control index,
and get the output result of human-machine cooperation system.

3.3 Experiment Result

In the course of flight, the tail spin is put into operation, the flight test subjects are carried out, and
the subjective psychological indexes and objective maneuvering indexes are calculated and
evaluated for the operators after the test. Five operators conducted a questionnaire after the test,
and the scores are shown below. TC stands for test case 1 and test case 2, P1 to P5 stands for
participants 1 to 5.

Table 1 — Test result of 5 participants

P1 P2 P3 P4 P5
TC1 82.33 79.67 66.67 77.33 71
TC2 59.33 59.16 56.33 10 52.67
From objective point of view, the probability of participants successfully getting out of spinning is as
Table 2.
Table 1 — Probability of participants getting out of spining
P1 P2 P3 P4 P5
TC1 0 0 25% 0 0
TC2 75% 100% 100% 100% 100%

4. Conclusion

We mainly discuss in this paper the application of a framework of human-machine task assignment
in spin recovery, and designs a verification method of human-machine authority assignment, which
consists of precise modeling, design of test flow and evaluation of test results. 5 pilots were
interviewed with NASA-TLX scale after the test. The results of interview and objective manipulation
effect evaluation showed that spin recovery assistance method could effectively reduce pilot's
manipulation pressure and increase manipulation efficiency.

However, the research of this paper still has the following contents to be studied:
8



System Architecture and Evaluation Method of Human-machine Collaboration in Flight Control System

1. Though spin recovery scenario of flight control is proved to be effective for this method, it is
necessary to prove that this method can be expanded to more complex scenarios with higher level
of task, such as rescue search, which can further enrich the changes of the scene and make the
rules more complete;

2. At present, this method is only applicable to the comparison between two methods, and the
analytic hierarchy process can be considered, which can be used to solve the multi-choice evaluation
problem.
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