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Abstract 

The application of artificial intelligence makes the collaboration between machine and human closer in the 

future. How to build the architecture of human and machine collaboration and evaluate the profit of human and 

machine collaboration is the premise of promoting the effective application of artificial intelligence in flight control 

system. The paper proposes an architecture of human and machine collaboration, focusing on the method 

based on human-machine cognition and behavioral ability evaluation, and how to make task allocation between 

human and machine through the analysis of man-machine ability expertise and collaboration efficiency. Using 

NASA-TLX scale and objective metrics, an example of allocating the human and machine tasks during the 

design process of the flight control system using this architecture is proposed in the paper, showing the 

effectiveness of the architecture. 
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1. General Introduction 
In the process of performing complex tasks, the pilot needs to observe the environment, read a large 

amount of information displaying on the screen and decide how to react in a short time. Reducing the 

pressure of the pilot will increase the rate of correct decision and making it easier to pay attention to 

items related to the task, not to the flight operation. Application of artificial intelligence system is such 

an obvious way, but currently most of the AI systems developed today is aimless. Some of the AI is 

trying to replace all the tasks assigned to human, or some AI just spit out lots of information, wasting 

the time human doesn’t really have. 

Previous research shows that it is possible to match the attributes of the tasks between human and 

machine and by identifying the status of human being, some of the tasks will be assigned to human 

while the left will be handled by machine. The usage of AI will improve the assisting decision-making 

ability of the flight control system, and it is possible for the AI-enabled control system handling tasks 

from conventional control to decision-making and management, so as to realize the perception, 

evaluation, decision-making and control for different tasks. Machine vision, gaming and speech 

recognition are already in use in flight control system. LLMs are also a potential way, with a possibility 

of increasing the awareness ability and knowledge base of the AI system. 

1.1 Different style of human-machine collaboration 
Human-robot collaborative technology is currently the most deeply researched field within robotics. 

Researchers have designed various human-robot collaboration models based on different robotic 

functionalities. Currently, the primary six modes of collaboration between humans and robots include 

guided control, supervisory control, traded control, direct shared control, indirect shared control, and 

allocation control [1].
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Guided Control: This mode facilitates task completion in unknown environments by providing haptic 

and motion feedback from the robot to the human operator. The primary form of feedback involves 

force feedback transmitted to the operator, enabling them to avoid excessive robot operation in 

environments with limited sensory perception [2]. 

Supervisory Control: A human operator oversees the robot's performance and intervenes with direct 

manipulation or program adjustments when necessary. For example, during pesticide spraying 

operations, the ground handler manually controls the robot when autonomous program function 

irregularly. 

Traded Control: Both humans and robots can possess full control at any given moment and transfer 

control to the other party under specific circumstances. In remote-controlled robots, the default 

behavior when communication signals are lost, such as returning to base, is pre-programmed. 

Alternatively, control between direct brain-machine interface control by a human and autonomous 

visual control by the machine could switch based on factors like distance to the target, where visual 

control handles all the control within closer ranges [3]. 

Shared Control: Control of the system is jointly held by humans and robots. It is divided into direct 

shared control, where both entities act as independent sources of commands, and indirect shared 

control, converting high-level human inputs into low-level robot commands through a controller, 

which is always used in surgical robots. 

Allocation Control: Humans and robots have distinct task assignments. Industrial robots on 

production lines primarily fall under this category, responsible for tasks such as assembly, welding, 

and gluing. 

Complex interaction and task allocation become even more intricate in scenarios involving 

sophisticated manned aircraft cockpits or ground stations for medium to large unmanned aerial 

vehicles (UAVs), leading to hybrid styles combining allocation control and direct shared control, 

among others. 

For instance, the need for single-pilot operations in commercial airlines implies that part of the flight 

control tasks is automated [4-6]. MITRE Corporation's assistive system integrates pilot voice or 

keyboard inputs, airspace surveillance, weather forecasts, and runway information to provide 

cognitive assistance and alerts via auditory and visual notifications [7]. However, the widespread 

adoption of such systems is hindered by unresolved technical issues, including a high rate of false 

positives for rare risks, decreased safety awareness among pilots due to new systems leading to 

riskier maneuvers, and imperfect intent inference. 

In the UAV sector, the focus is on manned-unmanned teaming. Depending on the level of autonomy, 

the division of control and functionality between manned aircraft and UAVs varies, with different 

organizational structure and operation procedure [8]. As AI capabilities advance, manned aircraft 

pilots prefer more direct control over their aircraft but are more concerned with the UAV's ability to 

support their mission rather than its flight control [9]. 

Most commonly applied human-robot collaborative technologies are control augmentation, human-

robot authority allocation, and human-autonomous system formations. 

1.2 Control Compensation 
In indirect shared control, the machine must be capable of recognizing the operator's intentions and 

utilizing its superior sensors and actuators compared to humans to accomplish tasks. Where 

operational procedures are well-defined, future human behaviors can be predicted to a certain extent 

[10], although this approach often proves less effective in complex scenarios. Alternatively, instead 

of direct prediction, the focus can be on optimizing the overall performance of the human-robot 

system [11]. This involves compensating for human control under predefined criteria for evaluating 

operational effectiveness [12], necessitating an internal motion model (Internal Vehicle Model). This 

model integrates human input commands and outputs a fused human-robot action. The internal 

motion model functions by incorporating the human's control signals, enhancing the overall system 

response by adjusting for potential inadequacies or limitations in human reaction time or precision. 

Through this integration, the combined system can leverage the strengths of both human decision-

making and machine execution, thereby improving task efficiency and accuracy even in dynamically 

changing environments. 

With the advancement of machine learning techniques, particularly deep learning, Long Short-Term 
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Memory (LSTM) networks and Deep Reinforcement Learning (DRL) [13, 14] have further expanded 

the representation of state spaces, thereby expanding the capability of predictive and global 

optimization methods. These advancements have found applications in simpler scenarios such as 

robotic grasping and quadcopter landing [14], demonstrating improved performance. 

1.3 Human-Machine Task Allocation 
Allocation control regards humans and machines as parallel entities operating an aircraft, with the 

primary approach to human-machine cooperative control centering on the rational distribution of 

control authority between humans and machines. Methods for human-machine authority allocation 

can be categorized into those based on theoretical analysis and those grounded in learning 

approaches. 

Theoretical analysis-based methods involve modeling both humans and tasks separately to assess 

the compatibility between human cognition and machine capabilities. Human modeling techniques, 

such as those based on cognitive process modeling like ACT-R (Adaptive Control of Thought-

Rational) [15], are employed, alongside task modeling methodologies like IMPRINT (Improved 

Performance Research Integration Tool) [16] and SNA (Social Network Analysis), which are based 

on network analysis. 

ACT-R [17], initially proposed by John R. Anderson, comprehensively models cognitive processes 

through modules dedicated to memory, perception, and action, among others. These modules 

interact via a shared buffer, with decision mechanisms governing concurrent access. This model has 

evolved through multiple versions and can integrate with EEG measurements to account for 

individual differences [15]. 

IMPRINT, developed by the U.S. Army Research Laboratory, deconstructs tasks into subtasks and 

actions, connecting them in a network through action relationships [18]. By examining network 

structure and node interactions, it evaluates task performance and workload. 

SNA represents social relationships among multiple agents using undirected graphs, analyzing 

network metrics to evaluate structure and performance. It identifies nodes or edges prone to overload 

[19], applicable to modeling roles and tasks within a cockpit and pinpointing weak links in human-

machine interaction [20]. 

While modeling allows for a degree of analysis into the human-machine collaborative process, the 

accuracy of authority allocation conclusions depends heavily on modeling sophistication and 

analytical methods. Zhang [19] constructed an evolutionary game model incorporating pilots and 

intelligent decision systems, employing game theory to analyze a strategy space defined by machine 

intervention or non-intervention and crew trust or distrust in machine decisions. This yielded 

evolutionarily stable strategies under varying conditions of human error probability and task load 

change rates. 

Currently, online learning methods in human-machine authority allocation remain underexplored due 

to uncertainties involved [21], with prevailing research leaning towards offline theoretical analyses 

that are more subjective and require case-by-case examination. 

1.4 Human-Machine Interaction 
The rapid development of artificial intelligence technologies has significantly enhanced 

comprehension abilities of machines, shifting the recent research focus onto another approach for 

tackling complex human-machine collaborations: shared control, specifically in designing Human-

Autonomy Teaming (HAT) systems [22]. Direct shared control not only encounters issues of human-

machine authority allocation but also hinges critically on human-machine interaction. 

In the context of flight control, human-machine interactions demand swift response times and high 

reliability, resulting in a cautious adoption of new technologies, especially AI, with many pilots 

concerned about added complexity [23]. But traditional control methods, such as button, joysticks, 

and pedals, alongside screen-based character and icon outputs for conveying information, still 

dominate aircraft control systems. 

Natural language interfaces are mostly confined to limited voice command inputs and alarm sounds 

[24]. Prada et al. addressed human-robot interaction challenges by employing a gesture-voice 

system (GSM) in mixed reality to expedite communication [25]. Using HoloLens for mixed reality and 

Baxter robot for execution, their study with 20 participants revealed a 21.33% speed increase in 
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grab-and-place tasks with the gesture-voice system over gestures alone. 

To overcome difficulties in control input using joystick and keyboard faced by astronauts in bulky 

spacesuits, Fu et al. proposed a voice-based human-machine interaction solution for space 

exploration [26]. They developed the CO-Sense Reasoning Prediction (Co-SRP) framework for 

human-robot dialogues, emphasizing knowledge sharing and joint spatial cognition. This framework 

enables object localization and pathfinding tasks, with robots interpreting astronauts' spatial 

descriptions to determine paths, measurements, and attributes, bypassing traditional directional 

controls. Tests using task completion time as a metric showed that voice-aided human-robot 

dialogue, especially in visually obstructed scenarios, reduced task duration. 

COMBI [22], a concept system by Thales, enhances interaction between humans and autonomous 

intelligent systems. It translates human intentions into low-level semantics for the AI system via a 

downlink translator and converts AI's low-level outputs into high-level operational intent through an 

uplink translator. The conversion model is built using Genetic Fuzzy Trees (GFT), a process involving 

expert knowledge acquisition, fuzzy inference system construction, and optimization through genetic 

algorithms to refine the translation model. 

Ye et al. demonstrated, through a case where a robotic arm was manipulated to assist operators in 

tool pick-and-place tasks [26], that leveraging large language models like ChatGPT can enhance 

semantic understanding and communication between humans and robots. They initiated this by 

constructing RoboGPT and designed an experiment employing trust questionnaires and the NASA-

TLX scale as metrics for quantifying trust and task completion time as an indicator of task quality. 

Fifteen participants were involved in the trial, validating that ChatGPT can indeed elevate the level 

of human-robot collaboration. However, the authors pointed out that ChatGPT's understanding and 

responses might be based on erroneous communication cues, potentially leading to misoperations. 

They further suggested that integrating text-based interactions with image inputs could potentially 

improve outcomes. Given the current immaturity of multimodal large models, an alternative approach 

involves employing image interpretation models to generate text, which can then be combined with 

large language models. For instance, TypeFly utilizes YOLO as an object detector to generate object 

names and position coordinates, which are then relayed to the large language model [27]. 

1.5 Human-Machine Collaboration Architecture 

Human strengths lie in their possession of knowledge and cognitive abilities, coupled with a strong 

adaptability to uncertain environments. Machines, on the other hand, excel in performing repetitive 

tasks according to fixed patterns, with no emotional fluctuations. Consequently, it is advisable to 

minimize involvement of human in repetitive operational patterns, freeing up their time and mental 

resources to focus on addressing uncertain, unscripted scenarios. Human should handle tasks that 

require manipulation of knowledge and rules, while machines should be tasked with handling 

activities that involve rules and skills. Based on the allocations derived from the research, we 

proposed a task assignment structure for human-machine collaboration based on cognitive model 

as Fig.1 in [28].  
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Figure 1 – Authority allocation principle based on the general cognitive model [28] 

Specially, for spin recovery scenarios, we have a task assignment in Fig.2. 
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Figure 2 – Task Assignment in Spin Recovery Scenario 

 

On the basis of the architecture of authority allocation based on the general cognitive model, it is 

necessary to further evaluate the efficiency of the human-machine collaboration system. It is 

common to evaluate probability of winning or accuracy during flying along the specified trajectory. 

Most previous methods do not consider the possibility of reducing of mental pressure that people 

may obtain in the human-machine collaboration system as it is not easy to be quantified. This part 

of the work is often carried out by man-machine efficacy related studies through physiological 

characteristics such as eye tracker and pulse measurement, but at the same time, there are 

problems in the interference of the test results caused by the tester wearing the device. 

Currently, some experiments are already carried out. Using NASA-TLX, we interviewed 5 trained 

UAV pilots, and calculating the coefficients used by the scale. After using a weighted human and 

control algorithm using predetermined control coefficient, we found that the pressure scores 

decreased, and the wining rate of aircraft recover from spinning increases. We are also trying to 

evaluating the architecture presented in the paper, trying to show different task allocation with 

different intelligent level of AI.  

We presented in this paper a human-machine collaboration system architecture based on cognitive 

model. Using mixed evaluation method combing improved NASA-TLX scale and operation 

performance, we try to evaluate the performance of the system, considering human manipulation 

pressure. Different scenarios are tested with different level of assistance. Comparing to just using 

wining rate, our method is more conducive to the evaluating the performance of artificial intelligence 

algorithm. 

2. Simulation Environment Construction 

2.1 Model Preparation 
The accuracy of flight control and flight dynamics model is very important in the experiment. To 

simulate the flight characteristic of high attack angle, we carried out wind tunnel tests to obtain the 

model. Building upon existing aircraft models, we focus on enhancing the fidelity of post-stall 

maneuver modelling. Wind tunnel tests and flight tests are conducted to establish baseline models, 

with particular emphasis on modelling high angle-of-attack conditions. A series of spin wind tunnel 

tests were carried out based on a specific aircraft configuration, yielding static three-axis force and 

moment data for the aircraft at designated points across an angle of attack range from -90 degrees 

to +90 degrees. Dynamic data of the aircraft was further obtained through the use of derivative 

motion analyses and rotating balance tests. 

By analyzing this data and constructing aircraft models, predictions were made regarding the angle 

of attack at which spins occur and the characteristics of the spin rate. This comprehensive approach 

not only advances our understanding of post-stall behaviors but also contributes to enhancing flight 

safety by improving simulation accuracy for these critical flight regimes. 
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Figure 2 – Flow chart of dynamic model construction based on wind tunnel test 

 

 
Figure 3 –Verification of Modeling Accuracy Based on Wind Tunnel Test of Tail Rotation 

2.2 Simulation Environment 
The simulation system is a combination of task environment simulation, unmanned aerial vehicle 

(UAV) simulation, manned aircraft simulation, human-machine environment simulation, and an agent 

design and verification platform tailored for research application. 

Task Environment Simulation: Primarily, this component provides simulations of terrain, 

electromagnetic environments, and weather conditions, furnishing information such as 

communication conditions, air density, and temperature within the scenario to enhance the realism 

of simulation. Simplified simulation of other aircraft and ground units within the environment, offers 

simplified dynamic states of moving objects and a highly integrated control interface. Additionally, it 

simulates interactions among different entities involved in mission execution, including visibility 

determinations, payload trajectory calculation, collision assessment, and integrity evaluation. 

Manned Aircraft Simulation: Comprised of aerodynamic models, electromechanical models, sensor 

models, flight control and management simulation, and cockpit simulation, this module ensures a 

level of complexity and fidelity in modeling. The dynamic, electromechanical, and sensor models can 

be replaced with newer ones and are capable of introducing faults, changes in center of gravity, 

mass, and configurations. The flight control/management simulation mimics the real-time behavior 

of onboard systems, capable of executing given flight control/logic management algorithms. 

Unmanned Aerial Vehicle Simulation: Similar in composition to manned aircraft simulation but 

including ground station simulation, this module focuses on UAV-specific aspects. The aerodynamic, 

electromechanical, and sensor models also exhibit a realistic degree of complexity and can be easily 

swapped out, with capabilities to simulate failures, variations in center of gravity, mass, and 

configurations. The flight control and management aspect mirrors the real-time responsiveness of 
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onboard systems, processing predefined control logic. 

Human-Machine Interaction Simulation: This component is designed to gather and transmit 

information related to human-machine interactions during system operations. It captures pilot inputs 

such as stick, pedal, switch and button manipulations for use as control commands in manned and 

unmanned aircraft simulations. Integrated voice recognition and synthesis systems are set up to 

capture and process verbal communications between manned aircraft pilots, UAV operators, and air 

traffic controllers. The manned aircraft cockpit simulation replicates the pilot's operational interface, 

emulating the information observed by a pilot during actual flight and enabling simulated operational 

inputs. 

 
Figure 4 –Architecture of Simulation Environment 

3. Experiment Design 

3.1 Experiment scale design 

The NASA-TLX scale was developed by NASA as a multidimensional mental load evaluation scale. 

The scale consists of six items (or dimensions), namely mental demand (Mental Demand, MD), 

physical demand (Physical Demand, PhD), time demand (Temporal Demand, TD), effort (Effort, EF), 

performance level (Performance, PER), and degree of frustration (Frustration Level, FR). The scale 

is mainly based on the subjective scores given by the participants. The paper proposes a mixed test 

method combining NASA-TLX test scale and objective performance of flying, taking the spin 

recovery as an example to verify the effective degree of human efficiency improvement under 

different AI-assisted circumstances. Objective manipulation performance indicators, including state 

quantity evaluation in manipulation cases, are static difference, average variance, maximum 

minimum, and arrival time and arrival ball error in the designated landing site or target point. The 

modified NASA-TLX scale is used, and spin recovery is evaluated as an example to verify the 

rationality of the human-machine collaboration system architecture proposed in this paper. 5 trained 

UAV pilots are tested under the scenario of getting out of the situation of UAV spinning. They are 
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tested with different level of AI-assisted, such as: 

• TC1: Screen display, no voice prompts 

• TC2: Weighted human and control algorithm using predetermined control coefficient 

3.2 Experiment steps design 

The test flow includes introduction of test subjects, adaptation of test environment, operator 

manipulation test, operator evaluation, data processing and analysis, etc.  

The introduction of test subjects is to explain the operation, display position and possible display 

settings of the test environment to the subjects participating in the test, so as to make the operators 

familiar with the test environment.  

The adaptation link of test environment is that the subjects participating in the test perform 3 flight 

manipulations, and are familiar with the flight conditions that may occur in the test flow and the 

operations that can be involved.  

The flight test is as follows: when the operator is on the pilot's seat, when the test starts, the aircraft 

is kept in the flat flight state, randomly select a time point within 1 ~ 5 minutes to start the stall state, 

that is, the angle of attack of the aircraft is greater than the stall angle of attack under the influence 

of instantaneous disturbance. The operator shall operate according to the prompts on the screen. 

The tests will repeat for 4 times for each participant. 

Operator manipulation test is to conduct manipulation test in sequence according to test subjects, 

record process data, and decide whether to adjust test scheme or terminate test according to 

abnormal conditions.  

Operator evaluation is based on subjective evaluation questionnaire to evaluate the mental pressure 

and operating difficulty of operators in different scenarios.  

Data processing and analysis is to calculate the score of subjective evaluation questionnaire, and 

evaluate the flight performance of man-machine cooperation system with objective control index, 

and get the output result of human-machine cooperation system. 

3.3 Experiment Result 

In the course of flight, the tail spin is put into operation, the flight test subjects are carried out, and 

the subjective psychological indexes and objective maneuvering indexes are calculated and 

evaluated for the operators after the test. Five operators conducted a questionnaire after the test, 

and the scores are shown below. TC stands for test case 1 and test case 2, P1 to P5 stands for 

participants 1 to 5. 

Table 1 – Test result of 5 participants 

 P1 P2 P3 P4 P5 

TC1 82.33 79.67 66.67 77.33 71 

TC2 59.33 59.16 56.33 10 52.67 

From objective point of view, the probability of participants successfully getting out of spinning is as 

Table 2. 

Table 1 – Probability of participants getting out of spining 

 P1 P2 P3 P4 P5 

TC1 0 0 25% 0 0 

TC2 75% 100% 100% 100% 100% 

4. Conclusion 

We mainly discuss in this paper the application of a framework of human-machine task assignment 

in spin recovery, and designs a verification method of human-machine authority assignment, which 

consists of precise modeling, design of test flow and evaluation of test results. 5 pilots were 

interviewed with NASA-TLX scale after the test. The results of interview and objective manipulation 

effect evaluation showed that spin recovery assistance method could effectively reduce pilot's 

manipulation pressure and increase manipulation efficiency.  

However, the research of this paper still has the following contents to be studied:  
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1. Though spin recovery scenario of flight control is proved to be effective for this method, it is 

necessary to prove that this method can be expanded to more complex scenarios with higher level 

of task, such as rescue search, which can further enrich the changes of the scene and make the 

rules more complete; 

2. At present, this method is only applicable to the comparison between two methods, and the 

analytic hierarchy process can be considered, which can be used to solve the multi-choice evaluation 

problem. 
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