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Abstract

The main purpose of this paper, is to ensure the safety of pilots by monitoring fatigue
degree. To evaluate fatigue level, BP neural network method is adopted to collect data
features, and three physiological parameter data ---- SDNN of heart rate variability (HRV),
blink rate and body temperature are collected. The human heart rate variability and body
temperature are collected at the pilot's earlobe through the photoplethysmography (PPG
method). The blink rate is collected via a head-mounted device. According to the subjects’
subjective fatigue level and objective operation performance, a BP neural network
classification model can be established to achieve the discrimination effect . The paper
"Automatic Detection of Driver Impairment Based on Pupillary Light Reflex" [1]indicates
that the blink rate is strongly correlated with human fatigue level. The paper "Study on
Fatigue and Recovery of Engineering Vehicle Drivers Based on HRV" has proved that both
HRV and heart rate are associated with human fatigue level. The paper "Control of Liquid
Cooling Garments: Technical Control of Mean Skin Temperature and its Adjustments to
Exercise" also presents the relationship between body temperature and fatigue value. In
this paper, three indicators data are carefully analyzed and integrated via artificial
intelligence BP neural network, and a fatigue detection model is successfully built. In this

way, the model can classify the fatigue degrees efficiently and serve as a warning function.
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1. Introduction and Motivation



With the increasing workload of pilots, fatigue phenomenon is becoming more and
more prominent, and fatigue detection has become a key subject that needs long-
term research. Although fatigue detection technologies are emerging in an endless
stream, most of them are aimed at the field of automobile drivers, few studies are
targeted on the real-time fatigue detection of pilots. Moreover, most papers can
only indicate that some physiological parameters of the human body are related to
fatigue value, but there is no way to classify different degrees of fatigue direcily.
The results of current research on fatigue detection are mainly divided into three
categories: 1) Methods based on physiological signals, such as electromyographic
signals and electrocardiographic signals. 2) Methods based on driver behavior,
such as aircraft steering angle, flight attitude, etc. 3) Methods based on driver
facial features, such as eye closure degree, head deviation angle, etc.

The vast majority of studies related to fatigue are applied to the automotive field.
Taking into account the actual situation, the driver has no way to detect
physiological signals during driving. Thus, the mainly used technology in those
situations is to capture the face area through the camera for feature extraction, so
as to determine fatigue degree. However, since the pilot's face is covered by
helmet, sunglasses and mask, the camera is not easy to capture facial information.
PPG method is adopted to fit the pilot's earlobe, collect heart rate data, and
combine the blink rate to obtain more accurate physiological information, which
makes the physiological signal detection technology better applied.

Therefore, this paper focuses on the pilot fatigue detection method based on
physiological signals. Firstly, the heart rate variability, blink rate, and body
temperature data are obtained, and then the BP neural network model is
constructed. Through artificial intelligence, fatigue level classification is performed
eventually.

1.1 Theoretical Basis

The characteristic indicator of heart rate variability (HRV) is the rr interval, which is
the interval between two adjacent heartbeats and varies with different heartbeats.
Changes in heart rate are influenced by changes in the sympathetic and
parasympathetic nerves. Sympathetic nerve excitement will increase the heart rate,
while parasympathetic nerve excitement will slow down the heart rate. Heart rate
and rhythm are largely regulated by the autonomic nervous system. Fatigue is
mainly divided into physical fatigue and psychological fatigue[2]. Physical fatigue is
considered to be fatigue of the nervous system, which is mainly manifested by
insufficient release of acetylcholine in the anterior membrane of the neuromuscular
junction, resulting in the inability of skeletal muscle cells to contract. At the same
time, lactic acid accumulation and glycogen depletion lead to decreased muscle



tension and reduced exercise endurance. Psychological fatigue is a mental fatigue
phenomenon caused by long-term monotonous, repetitive work or continuous
high-intensity load work. Changes in the activity of the central nervous system are
an important factor which lead to the status of fatigue. When fatigue occurs, the
activity of the Sympathetic Nervous System (SNS) increases and the activity of the
Vagus Nervous System (VNS) decreases, both of which are related to fatigue of
the central nervous system.

When the human body is in a state of fatigue, the eyes will be sensitive to light and
the pupil will shrink[1]. Therefore, the diameter of the pupil can be used to evaluate
the fatigue state of the eyes. However, the pilot's helmet is too close to their eyes.
If infrared light is directly exposed to their eyes, it will cause strong stimulation.
Therefore, the blinking frequency is used, instead of infrared light, to judge the
fatigue state.

Research from Shanghai Institute of Physical Education has confirmed that
branched-chain amino acids are related to human metabolism[3], and when the
human body is exercising, the body temperature will rise by 1 degree Celsius for
every 13% increase in basal metabolism. Therefore, the degree of exercise fatigue
can be reflected by body temperature.

2. Correlation Analysis

The existing equipment collected 9 different physiological parameters, including
heart rate, heart rate variability, blink rate, body temperature, electromyography,
respiratory rate, blood pressure, blood oxygen saturation, and EEG. As a practical
matter, EEG is not currently available for use on airplanes, so it is not used as a
physiological parameter input model. So far, the data volume is close to 10 million
sets, more than 50 gigabytes.

2.1 Correlation between physiological parameters and fatigue

Correlation analysis refers to the analysis of using two or more correlated variables
to measure the closeness of two factors. The correlation coefficient is an indicator
that reflects the degree of linear correlation between two variables. The following
two methods are used: Pearson correlation coefficient analysis and Spearman
correlation coefficient analysis.

Pearson correlation coefficient: it used to measure the correlation coefficient
between two continuous random variables;

Spearman correlation coefficient: it ranks correlation coefficient, it is solved
according to the rank order of the original data, it is also known as the Pearson



correlation coefficient between rank variables.

The value range of the above two coefficients is [-1,1]. When it is close to 1, it
means that the two have a strong positive correlation; when it is close to -1, it
means that there is a negative correlation; when the value is close to 0, it means
that the correlation is very low.

2.2 Code analysis results
Heart rate and heart rate variability

According to the Pearson correlation coefficient analysis, the absolute value of the
correlation coefficient between heart rate and heart rate variability reached 91.45,
and the significance coefficient reached 1.06, that is, the two affect each other and
cannot be used as different features to input the model.

According to the Spearman correlation coefficient analysis, the absolute value of
the correlation coefficient between heart rate and heart rate variability is 92.26.
Similarly, it cannot be used as different features to input the model.

In summary, heart rate and heart rate variability can only be selected as input
physiological parameters for fatigue assessment. Since heart rate variability
represents the change of heart rate, heart rate variability is selected as the
corresponding indicator.

Correlation of other parameters with fatigue

Pearson correlation Spearman  correlation
physiologica coefficient coefficient
parameters

Heart rate variability 0.79 0.8069
Blink 0.316 0.2951
Body temperature 0.53 0.4886
Respiratory rate 0.0506 0.3086
Electromyography 0.5052 0.4118
Blood oxygen saturation 0.3693 0.4722
High blood pressure 0.1151 0.2469
Low blood pressure 0.0000 0.02
Table 1

Correlation between heart rate variability and fatigue

According to the data in Table 1, the Pearson correlation coefficient between heart
rate variability and fatigue is 0.79, and the Spearman correlation coefficient is
0.8069, which proves that heart rate variability and fatigue are strongly correlated.




Correlation between blinking and fatigue

According to the data in Table 1, the Pearson correlation coefficient between
blinking and fatigue is 0.316, and the Spearman correlation coefficient is 0.2951,
which proves that blinking and fatigue are weakly correlated.

Correlation between body temperature and fatigue

According to the data in Table 1, the Pearson correlation coefficient between body
temperature and fatigue is 0.53, and the Spearman correlation coefficient is 0.4886,
which proves that body temperature and fatigue have a low correlation.

Correlation between respiratory rate and fatigue

According to the data in Table 1, the Pearson correlation coefficient between
respiratory rate and fatigue is 0.0506, and the Spearman correlation coefficient is
0.3086, which proves that respiratory rate and fatigue are weakly correlated.

Correlation between electromyography and fatigue

According to the data in the table, the Pearson correlation coefficient between
electromyography and fatigue is 0.5052, and the Spearman correlation coefficient
is 0.4118, which proves that electromyography and fatigue have a low correlation.

Correlation between blood oxygen saturation and fatigue

According to the data in the table, the Pearson correlation coefficient between
blood oxygen saturation and fatigue is 0.3693, and the Spearman correlation
coefficient is 0.4722, which proves that blood oxygen saturation and fatigue have a
low correlation.

Correlation between high and low blood pressure and fatigue

According to the data in the table, the Pearson correlation coefficient between high
blood pressure and fatigue is 0.1151, and the Spearman correlation coefficient is
0.2469, which proves that high blood pressure and fatigue are weakly correlated.

According to the data in the table, the Pearson correlation coefficient between low
blood pressure and fatigue is close to 0, and the Spearman correlation coefficient
is 0.02, which proves that low blood pressure and fatigue are not correlated.

Combining high and low blood pressure proves there is no correlation between
blood pressure and fatigue.



Conclusion

In summary, the correlation between the eight physiological parameters and
fatigue is ranked from high to low as follows: heart rate variability = heart rate >
electromyography > blood oxygen saturation > body temperature > blinking >
respiratory rate > blood pressure.

At the same time, since heart rate variability basically has no difference from heart
rate, and according to correlation analysis, the significant coefficient of the two
reaches 1.06, and the absolute value of the correlation exceeds 92%, that is, the
two affect each other and cannot be used as different features to input the model.

Finally, according to actual needs, heart rate variability, body temperature, and
blink rate are selected as input parameters of the neural network model.

3. Data processing

3.1 Obtaining data

The device synchronously collects ECG signals to ensure the synchronization and
stability of the data during the experiment, as well as recording the original data of
HRV, body temperature, blink rate and corresponding time in real time during the
experiment (see Figure 1).

Time(s) Value(ms)
0 1.190240 690.429688
1 1.868950 678.710938
2 2.549615 680.664062
3 3.246880 697.265625
4 3.959771 712.890625

5231 3675.153130 656.250000
5232 3675.813286 660.156250
5233 3676.475396 662.109375
5234 3677.134575 659.179688
5235 3677.797661 663.085938

[5236 rows x 2 columns]

Figure 1

The blink data collected by the ErgoLAB device is shown in Figure 2.
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Figure 2

3.2 Data preprocessing

Due to the instability of the equipment, it is necessary to pre-process the data to
avoid data packet loss and to check whether there are outliers. Through the IQR
method, we set upper and lower boundaries and delete outliers to obtain more
accurate data. It is shown in Figure 3.

Time(s) Value(ms)

0 1.190240 690.429688
1 1.868950 678.710938
2 2.549615 680.664062
3 3.246880 697.265625
4 3.959771 712.890625

5231 3675.153130 656.250000
5232 3675.813286 660.156250
5233 3676.475396 662.109375
5234 3677.134575 659.179688
5235 3677.797661 663.085938

[5217 rows x 2 columns]

Figure 3
4. Neural networks

4.1 BP neural network
Since the collected pilot physiological data is structured and linear, a BP neural

network method is selected for classification. Give a sample D, x = [x;...x3]7, the
linear model is:

f(x,w) = wix; + WXy + W3x3 + b
X1,Xy,X3 represent blink rate, body temperature, and heart rate variability
respectively. w;~ws are the corresponding weights, and b is the bias.

BP (Back Propagation) neural network is a multi-layer feedforward network which



is trained according to the error back propagation algorithm. Its learning rule is to
use the gradient descent method to continuously adjust the weights and thresholds
of the network through back propagation, so as to minimize the sum of square
errors of the network. It contains an input layer, a hidden layer, and an output layer.
The input layer is the physiological parameters (blink rate, body temperature, heart
rate variability); the hidden layer contains the ReLU activation function, the loss
function optimizer Adam and the loss function cross entropy; the output layer
includes the fatigue classification (such as awake state, moderate fatigue state and
severe fatigue state), and contains the softmax activation function. The structure of
the BP neural network is shown in Figure 4:

Moderate

Fatigue

Severe
Fatigue

Figure 4

4.1.1 Input layer
The pilots’ physiological parameters, namely body temperature, heart rate
variability and blink rate, were collected and divided into a training set (80%) and a
testing set (20%). The training set was used for feature extraction, iteration and
loss optimization of the data, and the testing set was used to test the model's
accuracy.

4.1.2 Hidden layer

The role of the hidden layer is to extract the features of the input data into another
dimensional space to present its more abstract features, which can be better
linearly divided. The training data is passed through the Relu activation function,
cross entropy and Adam loss function optimizer to get the minimum error, and then
the error is backpropagated, iterated continuously, and the weights and thresholds
are updated. After a large number of iterations, the weights tend to stabilize, and
finally, the testing set is passed into the model for accuracy calculation.

ReLU activation function: In the fatigue classification task, since the output target



fatigue level y is a discrete label, and the value range of the pilot's physiological
parameters is a real threshold, it cannot be used directly for prediction, so it is
necessary to add a nonlinear function ReLU to predict the output target.

RelLU(x) = max (%, 0)
ReLU function image:

10 1

relu(x)

-10.0 -7.5 -5.0 =25 0.0 25 5.0 7.5 10.0
A

Figure 5

Cross Entropy Loss: A prediction result will be obtained after the pilot's
physiological parameters are passed through the model. Due to the reasons
including equipment instability, data packet loss, etc., there may be errors and
deviations between the determined fatigue level and the actual situation, that is,
losses. The loss function is essentially a function that calculates the difference
between the two and minimizes the error between the two so that the predicted
value is infinitely close to the true value. Cross entropy can measure the difference
between true and predicted probability. The formula is as follows:

H(p, @) =— 3 p(xy) log (q(xy))
p(x;)is the true probability, q(x;)is the predicted probability. The smaller the cross
entropy value, the better the prediction model effects.

Adam loss function optimizer: According to the above loss function principle, in
order to minimize the loss, it is necessary to calculate the gradient of the weight
and bias b of the i-th training data relative to the loss function. Then the minimum
value of the objective function is finally found by updating the weight value and
deviation value iteratively, which is called gradient descent. The Adam loss
function optimizer can make the gradient descent faster, and reduce the training
time of physiological parameter samples, as well as updating the neural network
parameters according to the gradient information so that the predicted value of the
pilot's physiological parameters is closer to the true value. The Adam optimizer
update rules are as follows:

m; =PBimi_; + (1 —P1)g:
Vi = Bavi_g + (1 — B2)g?
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Where g; is the gradient, B; and P, are the decay coefficient of the two
exponentially weighted averages, m; and V; are the moving average corrected by
the gradient deviation, 6., is the updated parameter, 1 is the learning rate, € is a
small constant used to avoid division by 0.

Error back propagation: In a neural network, it is difficult to obtain the best
regression effect through the network with the initialized parameters. Therefore, it
is necessary to continuously reduce the error, update the weight, and iterate again
to minimize the loss, so as to optimize the model. The formula is as follows:
Output value

ym) = [v},vZ. . V]
Expected output is

d(n) = [dy, d3...dy]
The error at the nth iteration is

ej(n) = d;(n) —y;(n)
The total error is

1 J
e =53 ef (n)
J:

Assume that the weight between the hidden layer and the output layer is wy;,
calculate the gradient of the error to the weight, and then adjust it in the opposite
direction:

de(n)

awy; (n)

Awj(n) =—n

wi(n + 1) = Awy(n) + wyi(n)
According to the chain rule:
de(n) _ de(n) N aeJ:(n) . avi(n) aui:(n)
dwj(n) dej(n) dvi(n) duj(n) Iwy(n)

Therefore, the weight correction is:
av} (n) auj:(n)

aui: (n) aWIJ (n)

AWij (n) = naeJ (n) *

Since the transfer function is generally a linear function in the output layer, the



. avl(n)
derivative is 1, then j =1
E)uj (n)

Substitute into the above formula, we get:
duj(n)

dwy;(n)

AWij (n) = naeJ (n) *

After calculating the reverse error, the corrected weight is only the weight between
the hidden and output layers. When the network completes a complete update, it is
necessary to update the weight between the input and hidden layers as well.
Similarly,

. . I
61 = f (uj(n)) 21 8jwj;
]=

At this point, a round of weight adjustment of the three-layer BP neural network is
completed.

4.1.3 Output layer
Softmax activation function: It is often used with the cross entropy loss function in
classification problems. Softmax processes the output results so that the sum of
the predicted values of multiple classifications is 1, and then the loss is
calculated by cross entropy. Since the fatigue classification task is a kind of multi-
classification, that is y = {1,2. . C}, the conditional probability of softmax prediction
is:
P(y = c|x) = softmax(wlx)
According to the characteristics of the softmax activation function, the function
outputs a real number between 0 and 1, which represents the probability, that is,
the possibility of classification of different fatigue levels. The formula is as follows:
_ exp (ak)
i, exp (ai)
exp (ak) is an exponential function. There are n neurons in the output layer. The
output yk of the kth neuron is calculated. The numerator is the exponential function
of a single input value, and the denominator is the sum of the exponential functions
of all input information.
The BP neural network is used to extract features of the blink rate, body
temperature, and heart rate variability data sets. The minimum gradient method is
used, and the epoch is set to 100. The learning rate is 0.02. In this way, the loss
function converges to the minimum value at an appropriate speed and the loss in
the iterative process is minimized, with the aim of improving the final classification
accuracy.

5. Test plan



5.1 Test design

In this experiment, the subjects were in a simulated cockpit. They wear personal
protective equipment, simulating the actual wearing situation of pilots and actual
working conditions to obtain test data. The independent variable was flight
simulation operation; the dependent variables were subjective questionnaire
survey, physiological indicators, and performance indicators.

Independent variables

The flight monitoring operation task is to simulate the pilot's dynamic monitoring of
flight parameters, using a medium load simulation scenario. During the test, the
test subject needs to monitor and respond to the simulated flight attitude
parameters on the display interface: pitch angle, roll angle, heading angle,
airspeed, pressure altitude, speed, and cylinder temperature. The specific
operations are shown in Tables 2 and 3 below.

State Real operation in case of abnormality
parameters
Airspeed Adjusting the throttle position
Barometric Push or pull the control lever/adjust the
altitude throttle
Pitch angle Pushing or pulling the control lever
Roll angle Left or right pressure control lever

Heading angle

Left or Right Hand Joystick

Engine speed

Adjusting the throttle position

Cylinder Adjusting the size of the air duct
temperature
Table 2 Real operation when state parameters are abnormal
State Normal Increase Reduce
parameters numerical
range
Airspeed 90~130 Insert key Delete Key
Barometric 1200 ~ 1800 Page up Page Down
altitude Key Key
Pitch angle -20 ~ +20 Direction Direction
keys 1 keys |
Roll angle -30~+30 Direction Direction
keys<— keys—
Heading Course of the Mini Mini
angle target +5 keyboard O keyboard
Enter
engine speed 1800 ~ 2700 Mini Mini
keyboard 1 keyboard 7
Cylinder 120 ~ 200 Mini Mini
temperature keyboard 2 keyboard 8




Table 3 Operations in case of abnormal state parameters in the experiment

To study the fatigue of pilots during flight missions, this experiment adopted a
repeated measurement display interface design.

Figure 6 Flight Monitoring and Control Test

In the simulated monitoring task, no more than one abnormal information appears
at the same time, and the probability of abnormality in each flight parameter is the
same. The frequency of abnormal information is set to appear randomly every 10
to 30 seconds, and the subjects need to quickly complete the identification,
judgment and response operations of abnormal information. The software
background automatically records the subjects' operation and reaction time when
they complete the driving task as the subjects’ performance evaluation indicators.

5.2 Dependent variable

The dependent variables mainly include subjective questionnaire surveys,
physiological indicators and performance indicators.

a) Subjective questionnaire survey

The subjective questionnaire survey uses the Karolinska Sleepiness Scale
questionnaire.

To facilitate subsequent data integration and processing, the table mainly records
the basic information such as the subject's name, age, gender, and whether
he/she has flight experience in simulated flight.

1 Extremely alert

2 Vert alert




Alert

Rather alert

Neither alert nor sleepy

Some signs of sleepiness

Sleepy,but no effort to keep awake

Sleepy,but some effort to keep awake

Ol |N|Joju|h~]|®

Very sleepy,greater effort to keep awake,fighting sleep

Table 4 karolinska Sleepiness Scale

The Karolinska Sleepiness Scale is mainly used for test subjects to self-assess
their current fatigue status during each test. It is divided into nine levels. The
specific assessment criteria for each level are shown in Table 4.

b) Physiological indicators

Physiological indicators mainly include EEG, ECG, EMG, blood oxygen saturation,
blink rate, ear pulse, body temperature and other physiological parameters. The
physiological parameters of the test subjects are monitored in real-time throughout
the test.

c) Performance indicators

Performance indicators mainly include reaction time and manipulation accuracy.
The manipulation results are mainly divided into four situations: correct, wrong
handling, normal state misjudged as fault, and no fault found. Among them, no
fault found and normal state misjudged as fault can be used as indicators to judge
cognitive accuracy; handling errors are used as manipulation accuracy indicators.

5.3 Test personnel

This experiment was conducted through public announcement recruitment, and
selected according to the height and weight of the 50th percentile of fighter pilots in
the military standards of the People's Republic of China. By statistically analyzing
the basic information of the subjects, the average age of the sample was between
20 and 40 years old. The subjects had normal vision and hearing, no color
weakness and color blindness, no cognitive impairment and hearing impairment,
and they can correctly identify the prompt information set in the test and have no
bad habits such as smoking. At the same time, 2 days before the start of the test,
the subjects were required to rest normally, not stay up late, and not take any
drugs or drinks that affect the central nervous system.

5.4 Test length




Each subject wore personal protective equipment and completed the test
according to the display interface. Each test lasted 6 hours, with 1 hygiene and
mealtime at 12 noon.

5.5 Test debugging

The test debugging phase is mainly the process of debugging the test instruments,
test equipment, test environment and test platform. The debugging process is
mainly aimed at flight monitoring and control tasks which last more than 6 hours,
ensuring that the test platform will not experience any fluctuations and freezes
within 6 hours, and the background data records are normal and complete.

5.6 Test process
aPre-train and instruct the subjects, so that they can understand the test process,
clarify the test's purpose, know the test's safety requirements. Additionally, we also
need to make them familiar with flight operations, subjective scale level perception
and filling methods.

The subjects conduct 30 minutes to 1 hour of simulation exercises on the medium-
difficulty test to learn and master the operation and use of the test equipment.

The test personnel adjust the test procedures and measuring equipment. The
subjects fill in the fatigue scale and record the current status.

The subjects start to perform low-load boundary tests, and the test program
displays the instrument monitoring page. The flight parameters on the interface will
change randomly, and an abnormal parameter will appear randomly every 10s to
30s. The subjects need to monitor the changes in the parameters of the interface
at all times, to identify abnormalities in time, and to make the prescribed
corresponding operations. The specific operation methods are shown in Table 3.
The program automatically records the accuracy and reaction time of the subjects.
After the end of this test, the subjects fill in the KSS fatigue scale.

During the test, the subjects filled out the KSS scale every 20 minutes, and if
fatigue changes occurred at non-specified times, the specific time and KSS scale
level should also be stated.

5.7 Test results

The experimental data was put into the BP neural network, and after 100 iterations
and weight updates, the final classification accuracy was as follows:
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Test accuracy is the accuracy of model training, and train loss is the loss degree of
the data set during training. As can be seen from the figure, the model's accuracy
increases with the increase of iteration number and finally reaches 98%. The
degree of training loss decreases with the increase of iteration number. Both
illustrate that the model can achieve the expected fatigue assessment effect after

continuous training.

6. Summary and application

Based on the data of human physiological parameters including hrv, body
temperature and blink rate obtained in the experiment, a bp neural network model
is built, and the accuracy of the model is improved through continuous iteration
and loss degree optimization. Finally, the accuracy of the model is close to 100%,
which meets the expectation. This technology can accurately assess the pilot's
fatigue level by monitoring the pilot's physiological state and behavioral
performance in real-time. Moreover, it can serve as an early warning to remind the
pilot to take measures to relieve fatigue when necessary. At the same time, the
system also provides a certain degree of demand for human-computer interaction
technology. When the pilot is fatigued, the degree of automatic driving can be
more in-depth, and more intelligent flight management can be achieved. For



example, when the system detects pilot fatigue, it can automatically adjust the
flight plan to reduce the pilot's workload; or communicate with the ground control
center in real time to obtain more support and help. This integrated design not only
improves the level of flight automation, but also enhances the flexibility and safety
during the flight process. It helps to avoid operational errors or misjudgments
caused by pilot fatigue, thereby significantly reducing the risk of flight accidents.
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