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Abstract 

 
The effects of engine mass and location on the flutter characteristics of transport aircraft wings are investigated 
in this paper. Four representative transport aircraft wings are investigated for their flutter characteristics. This is 
achieved first by idealising the wing, structurally and aerodynamically. The structural idealisation includes a 
coupled bending-torsion beam element representation of the wing through the application of the dynamic stiffness 
method. To this end, the wing is modelled as a series of bending-torsion coupled beams connected at nodes. The 
aerodynamic idealisation is based on the two-dimensional unsteady aerodynamics theory given by Theodorsen, 
considering the spanwise variations of the wing chord. The free vibration or modal analysis is carried out using 
the dynamic stiffness method through the implementation of the Wittrick-Williams algorithm, as solution technique. 
This is followed by flutter analysis using the normal mode method in conjunction with the generalised co-ordinates. 
The complex flutter matrix is formed by summing the generalised mass, stiffness, and aerodynamic matrices. The 
flutter determinant is subsequently solved for flutter speed and flutter frequency, which is basically an iterative 
process in that the complex (double) eigenvalue problem involving both the airspeed and the frequency is handled. 
Thus, the computation is focused on the vanishing of both the real and imaginary parts of the flutter determinant 
for a particular airspeed and frequency which are the flutter speed and flutter frequency. The complete procedure 
for modal and flutter analyses of an aircraft wing is an integral part of the computer program CALFUN (CALculation 
of Flutter speed Using Normal modes) developed by the first author more than four decades ago. CALFUN has 
been successfully used on numerous occasions in the past to investigate the aeroelastic behaviour of aircraft 
wings. With this pretext, CALFUN has been used to analyse four representative transport aircraft wings in this 
paper, which are designated as T1, T2, T3 and T4. Two of the aircraft carry one engine on each wing, while the 
other two carry two engines on each wing. The main purpose of this paper is to investigate the effects of the 
engine mass and location on the free vibration and flutter behaviour of the above four wings when a cantilever 
boundary condition is applied at the root. A detailed parametric investigation is carried out on these wide-ranging 
aircraft wings and the results are discussed with significant conclusions drawn. The findings of this research could 
be of great help to the aircraft industry.  
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1. Introduction 
Transport aircraft wings are generally slender because of their high aspect ratios ranging typically 
between 8 and 12. Consequently, they can be prone to flutter and other dynamic phenomena. In this 
respect, flutter analysis of transport aircraft wings, has always been an area of intense research activity. 
Furthermore, it is one of the mandatory airworthiness requirements to carry out flutter analysis of aircraft 
wings, as laid down by the aviation authorities. For high aspect ratio aircraft wings such as those of 
transport airliners the flutter behaviour is principally affected by, their bending (EI) and torsional 
stiffnesses (GJ) as well as by their mass and inertia distributions. Additionally, the engine masses and 
their locations on the wing can have significant effects on the flutter behaviour. The purpose of this 
paper is to carry out a detailed investigation on the effects of engine masses and their locations on 
flutter behaviour for a range of high aspect ratio transport aircraft wings using the normal mode method 
and generalised coordinates. The dynamic stiffness method is applied for the modal behaviour and 
Theodorsen type unsteady aerodynamics for the flutter behaviour. 
 
There are several papers published in the literature dealing with the free vibration and flutter behaviour 
of hight aspect ratio aircraft, see for example [1-9]. In general, the finite element method (FEM) is widely 
used to investigate the modal and flutter behaviour of aircraft wings. When the normal mode method of 
flutter analysis is employed, the free vibration analysis is first carried out to generate the mode shapes 
and then, through the application of generalised coordinates, the flutter problem is formulated using 
some form of unsteady aerodynamics such as that of Theodorsen type [1, 2, 7, 9]. Thus, the free 
vibration or modal analysis is the first step prior to flutter analysis. In this respect, the FEM is commonly 
and routinely used. However, FEM is an approximate method based on assumed shaped functions 
from which the stiffness and mass properties of all individual elements are derived and assembled to 
form the overall stiffness matrix [K] and mass matrix [M] of the final structure, which in this case, is an 
aircraft wing. Next, the modal analysis is carried out by imposing the boundary conditions. The 

procedure in FEM leads to a linear eigenvalue problem of the type [[𝐊] − 𝜆[𝐌]]{∆} = 0 where {𝚫} is the 

nodal displacement vector and the square root of 𝜆 (the eigen parameter) gives the natural frequencies 
of the structure.  
 
Against the above background, there is a powerful alternative to FEM for modal analysis of structures 
such as an aircraft wing. The alternative is that of the dynamic stiffness method (DSM) [10-12] which is 
not as widely used as the FEM. Notably, there are differences and similarities between FEM and the 
DSM. For instance, the DSM unlike the FEM, relies on only one frequency dependent dynamic stiffness 
element as the basic building block which contains both the mass and stiffness properties of the element 
in an exact sense because the shape function used in DSM is not assumed, but derived from the exact 
solution of the governing differential equation of the structural elements in free vibration. This is in sharp 
contrast to FEM which uses separate (frequency-independent) mass and stiffness matrices. The 
assembly procedure of structural elements in the DSM is essentially the same as the FEM, but the 
former unlike the latter, uses a single dynamic stiffness matrix element for each structural component 
as mentioned earlier to form the overall frequency-dependent dynamic stiffness matrix KD of the 
complete structure (wing). The eigenvalue problem in DSM is then expressed in the form [𝐊𝐃]{𝚫} = 0 

where {Δ} is the nodal displacement vector comprising amplitudes of nodal displacements. The next 
step in the DSM is to extract the natural frequencies of the structure by solving the above transcendental 
and non-linear eigenvalue problem. The best available solution technique to achieve this objective is to 
apply the Wittrick-Williams algorithm [13], which has featured in literally hundreds of papers. The 
algorithm monitors the Sturm sequence property of the dynamic stiffness matrix, and it ensures that no 
natural frequency of the structure is missed. Given the importance and effectiveness of this solution 
technique, the dynamic stiffness method and the Wittrick-Williams algorithm are somehow permanently 
intertwined with each together.  
As stated earlier, in the structural idealisation of the wing, dynamic stiffness theory of a bending-torsion 
coupled beam is used to represent the wing [11,12] whereas in the aerodynamic idealisation strip theory 
based on Theodorsen type unsteady aerodynamics [14] is exploited in the flutter formulation. The 
computer program CALFUN [15] which was written using these established structural and aerodynamic 
theories, has been extensively used when obtaining the results for this paper.   
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The research is first focused on the modal analysis and then on flutter analysis. Four transport aircraft 

wings are analysed for both modal and flutter analysis. Bending and torsional stiffness properties and 

the details of the mass and inertia distributions were calculated from the original data for each aircraft 

wing, which required considerable time and efforts to input into CALFUN. Once the modelling and data 

preparation were completed for the respective wings, modal and flutter analysis were performed first 

on the original (unmodified) wing. Then, a detailed parametric study was undertaken by varying the 

engine mass and location to investigate the modal and flutter characteristics of each of the four wings. 

The values for the engine masses and their locations from the wing root were varied between +25% 

and -25% in steps of 5% and their subsequent effects on the modal and flutter behaviour were 

examined. The results showing interesting trends and possibilities are discussed and commented on. 

The paper concludes with significant remarks.  

 

2. Dynamic Stiffness Method (DSM) for Free Vibration Analysis 
The basic building block in DSM is the dynamic stiffness matrix of a structural element which essentially 
relates the amplitudes of the forces to those of the corresponding displacements at the nodes of the 
harmonically vibrating structural element. A general procedure to formulate the dynamic stiffness matrix 
of a structural element is briefly described in the following steps: 
(i) Derive the governing differential equation of motion in free vibration of the structural element for 
which the dynamic stiffness matrix is to be developed. This can be achieved by applying Newton’s 
second law or Lagrange’s equation or Hamilton’s principle. However, Hamilton’s principle is preferred 
because unlike Newton’s second law and Lagrange’s equation, the variationally based Hamilton’s 
principle provides natural boundary conditions, giving the expressions for forces and moments which 
are required in the dynamic stiffness formulation. 
(ii) For harmonic oscillation, seek a closed form analytical solution of the governing differential 
equation derived in (i) above, in terms of the arbitrary integration constants. The number of constants 
in the general solution will, of course, depend on the order of the differential equation. 
(iii) Apply the boundary conditions in algebraic form. The number of boundary conditions is generally 
equal to twice the number of integration constants. The boundary conditions are typically the nodal 
displacements and forces. 
(iv) Eliminate the constants by relating the harmonically varying amplitudes of nodal forces to the 
corresponding displacements at the nodes of the element. This will generate the frequency dependent 
dynamic stiffness matrix connecting dynamically the amplitudes of the nodal forces to those of the nodal 
displacements. 
 

2.1 Structural Idealisation of High Aspect Ratio Aircraft Wings Using the Dynamic Stiffness 
Method 
An aircraft wing shown in Figure 1 is a classic example of a bending-torsion coupled beam. Such a 

representation is particularly relevant to analyse a high aspect ratio wing. A non-uniform aircraft wing 

can be modelled by assembling several uniform bending-torsion coupled beams such as the one shown 

in Figure 1. An important feature of the model both at an element level as well as at an assembly level 

is that the coupling between the bending and torsional deformations are clearly prevalent during the 

free vibratory motion. 
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Figure 1 – An aircraft wing idealised as a bending-torsion coupled beam. 

 

In essence, the coupling between the bending and the torsional motions arises due to non-coincident 

mass and elastic axes which are respectively the loci of the centroid and shear centres of the beam 

(wing) cross-section. Thus, for an aircraft wing it is not generally possible to realize a torsion-free 

bending displacement or a bending-free torsional rotation during the free vibratory motion. Given this 

perspective, this paper uses a dynamic stiffness approach and develops the dynamic stiffness matrix 

of a uniform bending-torsion coupled beam and then extends it to model a non-uniform aircraft wing. 

The governing partial differential equations of motion of the bending-torsion coupled beam (wing) shown 

in Figure 1 are given by [11, 12] 

𝐸𝐼ℎ′′′′ + 𝑚ℎ̈ − 𝑚𝑥𝛼𝜓̈ = 0                    (1) 

𝐺𝐽𝜓′′ + 𝑚𝑥𝛼ℎ̈ − 𝐼𝛼𝜓̈ = 0                  (2) 

where EI and GJ are the bending and torsional stiffnesses of the beam, m is the mass per unit length, 

𝐼𝛼 is the polar mass moment of inertia per length about the Y-axis, 𝑥𝛼 is the distance between the mass 

axis and the elastic axis, and a prime and an over-dot denote partial differentiation with respect to 

spanwise position y and time t, respectively.  

 

For harmonic oscillation, sinusoidal variation in bending displacement h and torsional rotation  𝜓 with 

circular or angular frequency 𝜔 may be assumed to give 

ℎ(𝑦, 𝑡) = 𝐻(𝑦) sin𝜔𝑡,   𝜓(𝑦, 𝑡) = Ψ(𝑦) sin𝜔𝑡               (3) 

where 𝐻(𝑦) and Ψ(𝑦) denote the amplitude of the bending displacement and torsional rotation. 

Substituting Equation (3) into Equations (1) and (2) eliminates the time component and gives the 

following ordinary differential equations 

𝐸𝐼𝐻′′′′ − 𝑚𝜔2𝐻 + 𝑚𝑥𝛼𝜔2Ψ = 0                 (4) 
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𝐺𝐽Ψ′′ + 𝐼𝛼𝜔2Ψ − 𝑚𝑥𝛼𝜔2H = 0                 (5) 

where prime now denotes full differentiation with respect to y. 

Equations (4) and (5) can be combined into a sixth order ordinary differential equation by eliminating 

either H or Ψ to give 

𝑊′′′′′′ + (
𝐼𝛼𝜔2

𝐺𝐽
)𝑊′′′′ − (

𝑚𝜔2

𝐸𝐼
)𝑊′′ − (

𝑚𝜔2

𝐸𝐼
) (

𝐼𝛼𝜔2

𝐺𝐽
) (

𝐼𝛼−𝑚𝑥∝
2

𝐼𝛼
)𝑊 = 0             (6) 

where 

   W = H or Ψ                   (7) 

Equation (6) can be non-dimensionalised by using the non-dimensional length 𝜉 given by 
 

𝜉 =
𝑦

𝐿
                    (8) 

Thus, with the help of Equation (8), the non-dimensional form of Equation (6) becomes 

(𝐷6 + 𝑎𝐷4 − 𝑏𝐷2 − 𝑎𝑏𝑐)𝑊 = 0                    (9) 

where a, b and c are non-dimensional parameters given by 

𝑎 = (
𝐼𝛼𝜔2𝐿2

𝐺𝐽
),    𝑏 = (

𝑚𝜔2𝐿4

𝐸𝐼
),   𝑐 = (

𝐼𝛼−𝑚𝑥∝
2

𝐼𝛼
)             (10) 

and D is the following differential operator 

𝐷 =
𝑑

𝑑𝜉
                   (11) 

The differential equation given by Equation (9) can be solved using standard procedures [11,12] to give 

𝑊(𝜉) = 𝐶1 cosh 𝛼𝜉 + 𝐶2 sinh 𝛼𝜉 + 𝐶3 cos 𝛽𝜉 + 𝐶4 sin 𝛽𝜉 + 𝐶5 cos 𝛾𝜉 + 𝐶6 sin 𝛾𝜉         (12) 

where 

𝛼 = [2 (
𝑞

3
)

1

2
cos (

𝜙

3
) −

𝑎

3
]

1

2

, 𝛽 = [2 (
𝑞

3
)

1

2
cos (

(𝜋−𝜙)

3
) +

𝑎

3
]

1

2

,𝛾 = [2 (
𝑞

3
)

1

2
cos (

(𝜋+𝜙)

3
) +

𝑎

3
]

1

2

 (13) 

with 

𝑞 = 𝑏 +
𝑎2

3
                   (14) 

and 

  𝜙 = cos−1 [
27𝑎𝑏𝑐−9𝑎𝑏−2𝑎3

{2(𝑎2+3𝑏)
3
2}

]                (15) 

In Equation (12), C1–C6 are the integration constants resulting from the solution of the governing 

differential equation (9). 

𝑊(𝜉) in Equation (12) gives the solution for both the bending displacement H and the torsional rotation 

𝛹, but with two different sets of constants. Thus, we can write, 
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𝐻(𝜉) = 𝐴1 cosh 𝛼𝜉 + 𝐴2 sinh 𝛼𝜉 + 𝐴3 cos 𝛽𝜉 + 𝐴4 sin 𝛽𝜉 + 𝐴5 cos 𝛾𝜉 + 𝐴6 sin 𝛾𝜉        (16) 

and  

Ψ(𝜉) = 𝐵1 cosh 𝛼𝜉 + 𝐵2 sinh𝛼𝜉 + 𝐵3 cos 𝛽𝜉 + 𝐵4 sin 𝛽𝜉 + 𝐵5 cos 𝛾𝜉 + 𝐵6 sin 𝛾𝜉         (17) 

The two different sets of constants A1–A6 and B1–B6 in Equations (16) and (17) can be related with the 

help of either Equation (4) or Equation (5) to give. 

𝐵1 = 𝑘∝𝐴1,   𝐵2 = 𝑘∝𝐴2,  𝐵3 = 𝑘𝛽𝐴3, 𝐵4 = 𝑘𝛽𝐴4, 𝐵5 = 𝑘𝛾𝐴5, 𝐵6 = 𝑘𝛾𝐴6              (18) 

where 

𝑘∝ =
𝑏−∝4

𝑏𝑥∝
,  𝑘𝛽 =

𝑏−𝛽4

𝑏𝑥∝
,   𝑘𝛾 =

𝑏−𝛾4

𝑏𝑥∝
               (19) 

The expressions for bending rotation 𝛩(𝜉), bending moment 𝑀(𝜉), shear force 𝑆(𝜉)and torque 𝑇(𝜉) are 

given by 

Θ(𝜉) = (
1

𝐿
)𝐻′(𝜉) = (

1

𝐿
) {𝐴1𝛼 sinh 𝛼𝜉 + 𝐴2𝛼 cosh 𝛼𝜉 − 𝐴3𝛽 sin 𝛽𝜉 + 𝐴4𝛽 cos 𝛽𝜉 − 𝐴5𝛾 sin 𝛾𝜉 +

𝐴6𝛾 cos 𝛾𝜉}                  (20) 

M(𝜉) = −(
𝐸𝐼

𝐿2)𝐻′′(𝜉) = −(
𝐸𝐼

𝐿2) {𝐴1𝛼
2 cosh 𝛼𝜉 + 𝐴2𝛼

2 sinh 𝛼𝜉 − 𝐴3𝛽
2 cos 𝛽𝜉 − 𝐴4𝛽

2 sin 𝛽𝜉 −

𝐴5𝛾
2 cos 𝛾𝜉 − 𝐴6𝛾

2 sin 𝛾𝜉}                   (21) 

S(𝜉) = (
𝐸𝐼

𝐿3) {𝐴1𝛼
3 sinh𝛼𝜉 + 𝐴2𝛼

3 cosh 𝛼𝜉 + 𝐴3𝛽
3 sin 𝛽𝜉 − 𝐴4𝛽

3 cos 𝛽𝜉 + 𝐴5𝛾
3 sin 𝛾𝜉 −

𝐴6𝛾
3 cos 𝛾𝜉}                    (22) 

T(𝜉) = (
𝐺𝐽

𝐿
)Ψ′(𝜉) = (

𝐺𝐽

𝐿
) {𝐵1𝛼 sinh𝛼𝜉 + 𝐵2𝛼 cosh 𝛼𝜉 − 𝐵3𝛽 sin 𝛽𝜉 + 𝐵4𝛽 cos 𝛽𝜉 − 𝐵5𝛾 sin 𝛾𝜉 +

𝐵6𝛾 cos 𝛾𝜉}                    (23) 

With the help of Equations (16) – (23), the dynamic stiffness matrix of the coupled bending-torsion beam 

element which is essentially an aircraft wing element can be developed by applying the boundary 

conditions algebraically for displacements and forces at the ends of the elements. 

Referring to Figure 2, the boundary conditions for displacements are 

At  𝑦 = 0  (𝜉 = 0): 𝐻 = 𝐻1,  Θ = Θ1 and Ψ = Ψ1 

                       (24) 

At  𝑦 = 𝐿  (𝜉 = 1): 𝐻 = 𝐻2,  Θ = Θ2 and Ψ = Ψ2 

Similarly, referring to Figure 3, the boundary conditions for the forces are 

At  𝑦 = 0  (𝜉 = 0): 𝑆 = 𝑆1,  𝑀 = 𝑀1 and 𝑇 = −𝑇1 

                     (25) 

At  𝑦 = 𝐿  (𝜉 = 1): 𝑆 = −𝑆2,  𝑀 = −𝑀2 and 𝑇 = 𝑇2 
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Figure 2 – Boundary conditions for displacements of an aircraft wing element. 

 

 

Figure 3 – Boundary conditions for forces of an aircraft wing element. 
Substituting the boundary conditions for displacements given by Equation (24) into Equations. (16), (17) 

and (19), one obtains the following matrix relationship.  
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[
 
 
 
 
 
𝐻1

Θ1

Ψ1

𝐻2

Θ2

Ψ2]
 
 
 
 
 

=

[
 
 
 
 
 
 
 

1 0 1 0 1 0

0
𝛼

𝐿
0

𝛽

𝐿
0

𝛾

𝐿

𝑘𝛼 0 𝑘𝛽 0 𝑘𝛾 0

𝐶ℎ𝛼
𝑆ℎ𝛼

𝐶𝛽 𝑆𝛽 𝐶𝛾 𝑆𝛾

𝛼

𝐿
𝑆ℎ𝛼

𝛼

𝐿
𝐶ℎ𝛼

−
𝛽

𝐿
𝑠𝛽

𝛽

𝐿
𝐶𝛽 −

𝛾

𝐿
𝑠𝛾

𝛾

𝐿
𝐶𝛾

𝑘𝛼𝐶ℎ𝛼
𝑘𝛼𝑆ℎ𝛼

𝑘𝛽𝐶𝛽 𝑘𝛽𝑆𝛽 𝑘𝛾𝐶𝛾 𝑘𝛾𝑆𝛾]
 
 
 
 
 
 
 

[
 
 
 
 
 
𝐴1

𝐴2

𝐴3

𝐴4

𝐴5

𝐴6]
 
 
 
 
 

            (26) 

or 

𝚫 = 𝐁𝐀                (27) 

where A is the contact vector comprising the constants A1–A6 and 

𝐶ℎ𝛼
= cosh𝛼;  𝑆ℎ𝛼

= sinh𝛼;  𝐶𝛽 = cos 𝛽; 𝑆𝛽 = sin 𝛽; 𝐶𝛾 = cos 𝛾;  𝑆𝛾 = sin 𝛾           (28) 

Substituting the boundary conditions for forces given by Equation (25) into Equations (21), (22) and 

(23), one obtains the following matrix relationship. 

 

[
 
 
 
 
 
𝑆1

M1

T1

𝑆2

M2

T2 ]
 
 
 
 
 

=

[
 
 
 
 
 
 

0 𝑊3𝛼
3 0 −𝑊3𝛽

3 0 −𝑊3𝛾
3

−𝑊2𝛼
2 0 𝑊2𝛽

2 0 𝑊2𝛾
2 0

0 −𝑊1𝑘𝛼𝛼 0 −𝑊1𝑘𝛽𝛽 0 −𝑊1𝑘𝛾𝛾

−𝑊3𝛼
3𝑆ℎ𝛼

−𝑊3𝛼
3𝐶ℎ𝛼

−𝑊3𝛽
3𝑆𝛽 𝑊3𝛽

3𝐶𝛽 −𝑊3𝛾
3𝑆𝛾 𝑊3𝛾

3𝐶𝛾

𝑊2𝛼
2𝐶ℎ𝛼

𝑊2𝛼
2𝑆ℎ𝛼

−𝑊2𝛽
2𝐶𝛽 −𝑊2𝛽

2𝑆𝛽 −𝑊2𝛾
2𝐶𝛾 −𝑊2𝛾

2𝑆𝛾

𝑊1𝑘𝛼𝛼𝑆ℎ𝛼
𝑊1𝑘𝛼𝛼𝐶ℎ𝛼

−𝑊1𝑘𝛽𝛽𝑆𝛽 𝑊1𝑘𝛽𝛽𝐶𝛽 −𝑊1𝑘𝛾𝛾𝑆𝛾 𝑊1𝑘𝛾𝛾𝐶𝛾 ]
 
 
 
 
 
 

[
 
 
 
 
 
𝐴1

𝐴2

𝐴3

𝐴4

𝐴5

𝐴6]
 
 
 
 
 

 

                    (29) 

or 

𝐅 = 𝐃𝐀                 (30) 

where 

𝑊1 =
𝐺𝐽

𝐿
;  𝑊2 =

𝐸𝐼

𝐿2;  𝑊3 =
𝐸𝐼

𝐿3               (31) 

The constant vector A can now be eliminated from Equations (27) and (30) to give the following force-

displacement relationship 

𝐅 = 𝐊𝚫                  (32) 

where K is the 6 x 6 frequency dependent dynamic stiffness matrix given by 

𝐊 = 𝐃𝐁−1                           (33) 

 
 
The dynamic stiffness matrix of Equation (33) representing a bending-torsion coupled beam can now 
be used to model an aircraft wing. A non-uniform aircraft wing can be modelled as an assembly of many 
uniform dynamic stiffness elements. For instance, the cantilever wing of Figure 4 can be modelled as a 
stepped cantilever beam (wing) as shown in Figure 5 where the non-uniform wing is split into typically 
9 uniform dynamic stiffness elements. The dynamic stiffness elements of each of the 9 elements can 
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be assembled to form the overall dynamic stiffness matrix of the complete wing. Note that the theory 
given above is sufficiently general to handle swept wings with complex geometries. 
 
The solution procedure to extract the natural frequencies and mode shapes from the overall dynamic 

stiffness matrix of the wing is based on the application of the Wittrick-Williams algorithm [13] as 

mentioned before. The algorithm is particularly suitable for solving free vibration problem using the 

dynamic stiffness method.  

                  

 

Figure 4 – A non-uniform cantilever wing. 
 

                        

 

Figure 5 – A non-uniform cantilever wing idealised as a stepped beam. 
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2.2 Application of the Wittrick-Williams Algorithm 

The dynamic stiffness matrix of Equation (34) can now be used to compute the natural frequencies and 

mode shapes of aircraft wings. A non-uniform and/or swept wing can be analysed for its natural 

frequencies and mode shapes by idealising it as an assemblage of many uniform dynamic stiffness 

elements of bending-torsion coupled beams. The natural frequency calculation is accomplished by 

applying the Wittrick-Williams algorithm [13] which has received extensive coverage in the literature. 

Before applying the algorithm, the dynamic stiffness matrices of all individual elements (see Figures 4 

and 5) need to be assembled to form the overall dynamic stiffness matrix Kf of the final structure, i.e., 

the complete wing. The algorithm monitors the Sturm sequence condition of Kf in such a way that there 

is no possibility of missing any natural frequency of the wing. The application procedure of the algorithm 

is briefly summarised as follows. 

Suppose that 𝜔 denotes the circular (or angular) frequency of the vibrating wing. Then according to the 

Wittrick-Williams algorithm [13], j, the number of natural frequencies passed, as 𝜔 is increased from 

zero to a trial frequency 𝜔∗, is given by 

𝑗 = 𝑗0 + 𝑠{𝐾𝑓}                  (34) 

where Kf, the overall dynamic stiffness matrix of the wing whose elements depend on 𝜔 is evaluated at 

𝜔 = 𝜔∗; 𝒔{𝑲𝒇} is the number of negative elements on the leading diagonal of 𝑲𝒇
𝚫, 𝑲𝒇

𝚫 is the upper 

triangular matrix obtained by applying the usual form of Gauss elimination to Kf , and 𝑗0 is the number 

of natural frequencies of the wing still lying between  𝜔 = 0; and  𝜔 = 𝜔∗; when the displacement 

components to which Kf corresponds are all zeros. (Note that the structure can still have natural 

frequencies when all its nodes are clamped, because exact member equations allow each individual 

member to displace with an infinite number of degrees of freedom, between nodes.) Thus 

𝑗0 = ∑𝑗𝑚                (35) 

where 𝑗𝑚 is the number of natural frequencies between 𝜔 = 0 and 𝜔 = 𝜔∗ for an individual component 

member with its ends fully clamped, while the summation extends over all members of the structure. 

Thus, with the knowledge of Equations (34) and (35), it is possible to ascertain how many natural 

frequencies of the wing lie below an arbitrarily chosen trial frequency. This simple feature of the 

algorithm can be used to converge upon any required natural frequency to any desired accuracy. As 

successive trial frequencies can be chosen, computer implementation of the algorithm is very simple. 

However, for a detailed understanding, readers are referred to the original work of Wittrick and Williams 

[13]. 

 

3. Unsteady Aerodynamic Theory of Theodorsen 

The unsteady aerodynamic theory for flutter analysis used in this paper is that of Theodorsen [14] who 

gave the expressions for the unsteady lift and moment of a unit strip cut out from a two-dimensional 

aerofoil, oscillating harmonically, and exhibiting bending displacement and torsional rotation in an 

incompressible air flow (see Figure 6). In standard notation, the semi-chord of the aerofoil is b, i.e., the 

chord is c = 2b, the airspeed is U and the elastic axis is located at a distance ahb behind the mid-chord, 

as shown in Figure 6. If the bending displacement of the elastic axis is ℎ𝑒𝑖𝜔𝑡, and torsional rotation 

about the elastic is 𝜓𝑒𝑖𝜔𝑡 where h and  are the amplitudes of bending displacement and torsional 

rotation,  being the circular or angular frequency of oscillation and 𝑖 = √−1, then the expressions for 

the harmonically varying unsteady lift 𝐿𝑒𝑖𝜔𝑡and moment 𝑀𝑒𝑖𝜔𝑡 are represented by the Theodorsen 

theory [14] as follows. 
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𝐿

𝜌𝜋𝑏𝑈2
= −𝑘2 (

ℎ

𝑏
− 𝑎ℎ𝜓) + 𝑖𝑘𝜓 + 2𝐶(𝑘) {𝜓 +

𝑖

𝑏
𝑘ℎ + (

1

2
− 𝑎ℎ) 𝑖𝑘𝜓}          (36) 

𝑀

𝜌𝜋𝑏2𝑈2
= (

1

2
+ 𝑎ℎ) 2𝐶(𝑘) {𝜓 +

𝑖

𝑏
𝑘ℎ + (

1

2
− 𝑎ℎ) 𝑖𝑘𝜓} − 𝑘2𝑎ℎ (

ℎ

𝑏
− 𝑎ℎ𝜓) − (

1

2
− 𝑎ℎ) 𝑖𝑘𝜓 +

𝑘2

8
𝜓

                     (37) 

where k is the reduced frequency parameter and C(k) is the Theodorsen function given by 

𝑘 =
𝜔𝑏

𝑈
;      𝐶(𝑘) =

𝐻1
(2)

(𝑘)

𝐻1
(2)

(𝑘)+𝑖𝐻0
(2)

(𝑘)
              (38) 

In Equation (38), 𝐻1
(2)

(𝑘) and 𝐻0
(2)

(𝑘) are Hankel functions which are related to Bessel functions of first 

and second kinds and of orders 0 and 1, as follows. 

𝐻1
(2)

(𝑘) = 𝐽1(𝑘) − 𝑖𝑌1(𝑘);    𝐻0
(2)(𝑘) = 𝐽0(𝑘) − 𝑖𝑌0(𝑘)           (39) 

                           

Figure 6 – A strip of unit width of a two-dimensional aerofoil with two degrees of freedom h and  in an 

incompressible airflow. 

In the following section, the Theodorsen expressions for the unsteady lift and moment given in Equation 

(36) and (37) are integrated along the span, and subsequently applied in the formulation of the flutter 

problem. 

 

4. Flutter Analysis Using Generalised Coordinates, Normal Modes, and Theodorsen 

Theory of Unsteady Aerodynamics 

The normal mode method of flutter analysis is well known [1,2], particularly in the context of high aspect 

ratio wings for which the computer program CALFUN [15] is well suited (and it has a composite 

capability). CALFUN idealises the aircraft wing both structurally and aerodynamically. In the structural 

idealisation, bending-torsion coupled beam theory (the DSM method) is used to represent the wing 

[11,12] whereas the aerodynamic idealisation includes strip theory based on Theodorsen type unsteady 

aerodynamics [14]. The methodology is briefly summarised as follows. 

4.1 Formulation of Generalised Mass and Stiffness Matrices 

The mass and stiffness matrices of the wing are reduced to diagonal form to give generalised mass 

and stiffness matrices. This is achieved by using the normal modes obtained from the dynamic stiffness 

method. The procedure is briefly explained as follows. 
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If [𝚽] is the modal matrix, i.e., the matrix formed by the selected normal mode shapes so that each 

column of [𝚽]  represents a normal mode shape 𝚽𝒊, then the generalised mass and stiffness matrices 

are respectively obtained by post multiplying the mass and stiffness matrices by the modal matrix [𝚽], 

and premultiplying the resultant matrix by the transpose of the modal matrix (i.e [Φ]𝑇). In matrix notation 

[𝐌𝐆] = [Φ]𝑇[𝐌][Φ]                                   (40) 

    [𝐊𝐆] = [Φ]𝑇[𝐊][Φ]                                                         (41) 

where [𝐌𝐆] and [𝐊𝐆] are respectively, the generalised mass and stiffness matrices of the wing. Clearly 

if the number of modes chosen in the analysis is 𝑛, the order of [𝐌𝐆] and [𝐊𝐆] will each be of order 

𝑛 ×  𝑛. 

 

4.2 Formulation of the Generalised Aerodynamic Matrix 

The generalised aerodynamic matrix is formed by applying the principle of virtual work. The 

aerodynamic strip theory is based on Theodorsen’s expressions for unsteady lift and moment [14] and 

the normal modes obtained from the dynamic stiffness method [11,12] are used when applying the 

principle of virtual work. The displacements considered are the vertical deflection (bending) ℎ(𝑦), and 

the pitching rotation (torsion) 𝛹(𝑦) of the elastic axis of the wing at a spanwise distance y from the root. 

Thus, the displacement components of the ith mode Φ𝑖 are respectively, ℎ𝑖(𝑦) and 𝛹𝑖(𝑦). If 𝑞𝑖(𝑡) 

(i=1,2,3....n) are the generalised coordinates, then ℎ(𝑦) and 𝛹(𝑦) can be expressed as 

   ℎ(𝑦) = ∑ ℎ𝑖(𝑦)𝑞𝑖(𝑡)
𝑛
𝑖=1                (42) 

   𝛹(𝑦) = ∑ 𝛹𝑖(𝑦)𝑞𝑖
(𝑡)𝑛

𝑖=1                (43) 

Equations (42) and (43) can be written in the following matrix form  

  [
ℎ(𝑦)

𝛹(𝑦)
] = [

ℎ1(𝑦)

𝛹1(𝑦)
  
ℎ2(𝑦)

𝛹2(𝑦)

⋯
⋯

⋯
⋯

ℎ𝑛(𝑦)

𝛹𝑛(𝑦)
] [

𝑞1

𝑞2..
𝑞𝑛

]              (44) 

If 𝐿(𝑦) and 𝑀(𝑦)are respectively the unsteady lift and moment at a spanwise distance y from the root, 

the virtual work done (𝛿𝑊) by the aerodynamic forces is given by 

  𝛿𝑊 = ∑ 𝛿𝑞𝑖 ∫ {𝐿(𝑦)ℎ𝑖(𝑦)
𝑠

0
𝑛
𝑖=1 + 𝑀(𝑦)𝛹𝑖(𝑦)} 𝑑𝑦             (45) 

where s is the semi-span of the wing and n is the number of normal modes considered in the analysis. 

Equation (45) can be written in matrix form as 

   

[
 
 
 
 
 
 
𝛿𝑊1

𝛿𝑞1

𝛿𝑊2

𝛿𝑞1

⋮
⋮

𝛿𝑊𝑛

𝛿𝑞𝑛 ]
 
 
 
 
 
 

= ∫

[
 
 
 
 
ℎ1

ℎ2

⋮
⋮

ℎ𝑛

𝛹1

𝛹2

⋮
⋮

𝛹𝑛]
 
 
 
 

[
𝐿(𝑦)

𝑀(𝑦)
] 𝑑𝑦

𝑠

0
              (46) 
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The unsteady lift 𝐿(𝑦) and moment 𝑀(𝑦) in two-dimensional flow given by Theodorsen [14] and shown 

by Equations (36) and (37) can be expressed in the following matrix form 

[
𝐿(𝑦)

𝑀(𝑦)
] = [

𝐴11

𝐴21
 
𝐴12

𝐴22
 ] [

ℎ(𝑦)

𝛹(𝑦)
]               (47) 

where 

𝐴11 = −𝜋𝜌𝑈2{−𝑘2 + 2𝐶(𝑘)𝑖𝑘} 

𝐴12 = −𝜋𝜌𝑈2𝑏 [(𝑎ℎ𝑘2 + 𝑖𝑘) + 2𝐶(𝑘) {1 + 𝑖𝑘 (
1

2
− 𝑎ℎ)}] 

𝐴21 = −𝜋𝜌𝑈2𝑏 {2𝐶(𝑘)𝑖𝑘 (
1

2
+ 𝑎ℎ) − 𝑘2𝑎ℎ} 

𝐴22 = −𝜋𝜌𝑈2𝑏2 {2 (
1

2
+ 𝑎ℎ)𝐶(𝑘) {1 + 𝑖𝑘 (

1

2
− 𝑎ℎ)} +

𝑘2

8
+ 𝑘2𝑎ℎ

2 + (𝑎ℎ −
1

2
) 𝑖𝑘} 

                     (48) 

In the above equation, 𝑈, 𝑏, 𝜌, 𝑘, 𝐶(𝑘) and 𝑎ℎ are in the usual notation: the airspeed, semi-chord, 

density of air, reduced frequency parameter, Theodorsen function and elastic axis location from mid-

chord in non-dimensional form, respectively [14].  

Substituting Equation (47) into Equation (46) and then using Equation (44) gives 

[
 
 
 
 
 
 
𝛿𝑊1

𝛿𝑞1

𝛿𝑊2

𝛿𝑞1

⋮
⋮

𝛿𝑊𝑛

𝛿𝑞𝑛 ]
 
 
 
 
 
 

= ∫

[
 
 
 
 
ℎ1

ℎ2

⋮
⋮

ℎ𝑛

𝛹1

𝛹2

⋮
⋮

𝛹𝑛]
 
 
 
 

[
𝐴11

𝐴21
 
𝐴12

𝐴22
 ]

𝑠

0
[
ℎ1

𝛹1
  
ℎ2

𝛹2

⋯
⋯

⋯
⋯

ℎ𝑛

𝛹𝑛
]

[
 
 
 
 
𝑞1
𝑞2

⋮
⋮

𝑞𝑛]
 
 
 
 

𝑑𝑦 = [

𝑄𝐹11 𝑄𝐹12 ⋯ 𝑄𝐹1𝑛

𝑄𝐹21 𝑄𝐹22 ⋯ 𝑄𝐹2𝑛
⋯

𝑄𝐹𝑛1

⋯
𝑄𝐹𝑛2

⋯
⋯

⋯
𝑄𝐹𝑛𝑛

]

[
 
 
 
 
𝑞1
𝑞2

⋮
⋮

𝑞𝑛]
 
 
 
 

    

                      (49) 

where [𝐐𝐅] is the generalised aerodynamics matrix with elements 

𝑄𝐹𝑖𝑗 = ∫ (𝐴11ℎ𝑖ℎ𝑗 + 𝐴12ℎ𝑗𝛹𝑖 + 𝐴21ℎ𝑖𝛹𝑗 + 𝐴22𝛹𝑖𝛹𝑗)
𝑠

0
𝑑𝑦              (50) 

The generalised aerodynamic matrix [𝐐𝐅] is usually a complex matrix with each element having a real 

part and an imaginary part. This is because the terms 𝐴11, 𝐴12,  … etc in Equation (50) are complex 

(see equations (48)). By contrast, the generalised mass and stiffness matrices are both real and 

diagonal matrices. 

 

4.3 Formulation of Flutter Problem and Solution of the Flutter Determinant as a Double 

Eigenvalue Problem 

The flutter determinant is the determinant formed from the flutter matrix which is formed by algebraically 

summing the generalised mass, stiffness, and aerodynamic matrices. Thus, for a system without 

structural damping (which generally has a small effect on the oscillatory motion and is not considered 

here) the flutter matrix [𝐐𝐀]  can be formed as 
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[𝐐𝐀]{𝐪} = [−𝜔2[𝐌𝐆] + [𝐊𝐆] − [𝐐𝐅]]{𝑞}              (51) 

where 𝜔 is the circular or angular frequency in rad/s of the oscillatory harmonic motion. 

For the flutter condition to occur, the determinant of the complex flutter matrix must be zero so that from 

Equation (51), 

|−𝜔2[𝐌𝐆] + [𝐊𝐆] − [𝐐𝐅]| = 0               (52) 

The solution of the above flutter determinant is a complex eigenvalue problem because the determinant 

is primarily a complex function of two unknown variables, the airspeed (U) and the frequency (𝜔). The 

method used in CALFUN [15] selects an airspeed and evaluates the real and imaginary parts of flutter 

determinant for a range of frequencies and the process is repeated for a range of airspeeds, until both 

the real and imaginary parts of the flutter determinant (and hence the whole flutter determinant) vanish 

completely. 

 

5. Results 
Using the above theory, four transport aircraft wings with cantilever boundary condition at the root are 

analysed for their flutter characteristics using the computer program CALFUN [15]. A typical layout of 

such aircraft is shown in Figure 7. Four wings of transport airliners (T1, T2, T3 and T4) with particulars 

given in Table 1, are analysed. 

 

Figure 7 – A general lay-out of a typical transport aircraft. 
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Table 1 – Particulars of transport airliners 
 

Parameters 
Transport airliner 

T1 T2 T3 T4 

Wing Span (m) 40 30 35 60 

Wing Area (m2) 162 93 123 362 

Aspect Ratio 10 9 10 10 

Wing Root Chord (m) 5 5.5 6 10.5 

Wing Tip Chord (m) 2.5 1.5 1.5 2.5 

Sweep Angle (deg) 0 28 28 28 

Length Overall (m) 30 36 38 60 

Height Overall (m) 12 11 12 17 

Weight Empty (kg) 34000 26000 42000 130000 

Max Take-off Weight (kg) 70000 46000 74000 275000 

Max Wing Loading 
(kg/m2)  

434 511 600 760 

Max Cruising Speed 
(knots) 

348 529 516 569 

Range (nmi) 2835 2400 2592 8000 

Engine mass (kg) 3698 2827 4063 7780 

Number of Engines 2 1 1 2 

 

Figures 8-10 show the stiffness (bending stiffness EI and torsional stiffness GJ), mass per unit length 

and mass moment of inertia (MMOI) per unit length distributions of the transport aircraft wings T1, T2, 

T3 and T4, respectively. These data were used to compute their natural frequencies and mode shapes. 

Figure 11 illustrates the first five natural frequencies and mode shapes of the T1, T2, T3 and T4 wings 

showing the bending displacements (solid lines) and torsional displacements (broken lines). For the T1 

wing, the first two modes are bending modes, the third mode is coupled in bending and torsion, the 

fourth mode is bending, and the fifth mode is torsional. For the T2 wing, the first three modes are bending 

modes, while the fourth and fifth modes are coupled in bending and torsion. For the T3 wing, the first 

three modes are bending but the fourth and the fifth mode are essentially torsional. For the T4 wing, the 

first two and the fourth modes are bending dominated whereas the third and fifth modes are torsional.  
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Stiffness distribution of transport airliner T1                Stiffness distribution of transport airliner T2 

 
 
 

               
 
 
 

Stiffness distribution of transport airliner T3                Stiffness distribution of transport airliner T4 

 
 
 

Figure 8 – Stiffness distributions of transport airliner wings. 
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Mass per unit length variation of T1                        Mass per unit length variation of T2 

 

                  

 

          Mass per unit length variation of T3                            Mass per unit length variation of T4 

Figure 9 – Mass per unit length variation of transport airliner wings. 
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MMOI per unit length variation of T1                     MMOI per unit length variation of T2 

 

                

    MMOI per unit length variation of T3                       MMOI per unit length variation of T4 

Figure 10 – Mass moment of inertia per unit length variation of transport airliner. 
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Mode shape of transport airliner T1                                 Mode shape of transport airliner T2 

 

                 

Mode shape of transport airliner T3                                Mode shape of transport airliner T4 

Figure 11 – Mode shapes of transport airliner. 
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The first five natural frequencies and flutter results for all of the original aircraft wings (T1, T2, T3 and T4) 

are given in Table 2. The letters B and T used in the table and elsewhere in the paper indicate bending 

and torsion dominated modes respectively whereas the letter C indicates a bending torsion coupled 

mode. 

 
Table 2 - First five natural frequencies and flutter results of the baseline aircraft wings  
 

Aircraft  

Natural Frequencies (i) (rad/s) Flutter 
speed 
(m/s) 

Flutter 
freq 

(rad/s) 1 2 3 4 5 

T1 11.52 (B) 33.09 (B) 45.40 (C) 87.86 (B) 97.75 (T) 249.1 28.77 

T2 19.71 (B) 55.29 (B) 100.3 (B) 120.9 (C) 197.7 (C) 410.5 78.56 

T3 11.99 (B) 34.59 (B) 67.47 (B) 72.74 (T) 111.6 (T) 275.0 43.16 

T4 8.988 (B) 26.45 (B) 45.26 (T) 72.06 (B) 94.09 (T) 385.8 46.50 

 

A parametric study is now undertaken for all of the four transport airliner wings by varying the engine 
mass and location. It should be noted that among the four transport airliners, T1 and T4 have two engines 
on each of their wings, whereas T2 and T3, each have a single engine on each of their wings. A variation 
between -25% to 25% in steps of 5% for the engine mass is allowed and for the engine locations, some 
realistic distances from the wing root relative to the current locations of the engines are considered. 
The first five natural frequencies with the identifications of the modes are presented in Tables 3 to 10 
due to the engine mass and location variations. The results corresponding to the original engine mass 
and location of the baseline wing are shown in bold. 

 
For the transport airliner T1, the first five natural frequencies due to the variation of engine masses and 

their locations are presented in Tables 3 and 4 respectively. It should be noted that the transport airliner 

T1 has two engines on its wing and the masses of each of the two engines are both increased by the 

same amount as indicated in Table 3. Table 4 shows the results when the engine positions are changed 

for the T1 wing. The outboard engine from its original location at 10.8m from the wing root was relocated 

in the analysis at 9.53m and 12.07m from the wing root, respectively whereas the original location of 

the inboard engine was altered from 5.59m to 4.32m and 6.93m, respectively. From the results shown 

in Tables 3 and 4, it can also be seen that the first, second and fourth modes are always bending while 

third mode is generally coupled in bending and torsion and the fifth mode is always torsional. For this 

wing, there is no significant change in the modal characteristics due to the variation of engine mass 

with the torsional natural frequency effectively unaltered, but the variation of engine location makes 

some difference in the natural frequencies, the maximum difference being around 10%. As expected, 

increasing engine mass reduces the natural frequencies particularly in bending, whereas reducing it, 

has the opposite effect. From Table 3, It can be observed that the flutter speed increases when the 

engine mass is increased. By contrast, the flutter speed decreases when the engine mass is decreased. 

The reason for this can be attributed to the fact that the separation between the fundamental bending 

and fundamental torsional natural frequencies increases when the engine mass is increased whereas 

the separation between the two frequencies decreases when the engine mass is reduced, bearing in 

mind that the fundamental bending and torsional modes are seen to be the main contributors to the 

flutter. Table 4 gives results showing the effects of engine location on the flutter of the T1 wing, depicting 

a somewhat different picture. As expected, the outboard engine has a greater effect on the bending 

natural frequencies. This is principally due to the cantilever boundary condition assumption of the wing. 

The flutter speed of the T1 wing is again influenced by the margin of separation between the 
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fundamental bending and torsional natural frequencies in that, the greater the difference between the 

two frequencies, the greater the flutter speed and vice-versa. From the results shown in Tables 3 and 

4, it is observed that around 5% change in the flutter speed is possible for theT1 wing. The flutter 

frequency lies between the fundamental bending and torsional natural frequencies. This is to be 

expected, particularly in classical bending-torsion flutter of a cantilever wing.  

Table 3 – The effects of the variation of engine mass on the natural frequencies and 
flutter results of T1 wing 
 

Variation 
in Engine 
mass (%) 

i (rad/s) Flutter 
speed 
(m/s) 

Flutter 
freq 

(rad/s) 1 2 3 4 5 

-25 11.97 (B) 34.55 (B) 45.40 (C) 92.02 (B) 97.76 (T) 237.0 30.63 

-20 11.88 (B) 34.22 (B) 45.40 (C) 91.17 (B) 97.76 (T) 239.5 30.13 

-15 11.79 (B) 33.91 (B) 45.40 (C) 90.32 (B) 97.75 (T) 241.5 29.87 

-10 11.70 (B) 33.62 (B) 45.40 (C) 89.49 (B) 97.75 (T) 244.7 29.38 

-5 11.61 (B) 33.35 (B) 45.40 (C) 88.67 (B) 97.75 (T) 248.0 29.08 

0 11.52 (B) 33.09 (B) 45.40 (C) 87.86 (B) 97.75 (T) 249.0 28.77 

5 11.44 (B) 32.84 (B) 45.40 (C) 87.07 (B) 97.75 (T) 250.5 28.44 

10 11.36 (B) 32.61 (B) 45.40 (C) 86.28 (B) 97.75 (T) 254.6 28.05 

15 11.28 (B) 32.39 (B) 45.40 (C) 86.28 (B) 97.75 (T) 255.5 27.63 

20 11.20 (B) 32.17 (B) 45.40 (C) 86.28 (B) 97.75 (T) 256.0 27.37 

25 11.12 (B) 31.97 (B) 45.39 (C) 84.01 (B) 97.74 (T) 258.5 26.88 

 

Table 4 – The effects of the variation of engine location on the natural frequencies and 
flutter results of T1 

 

Engine 
1 from 
wing 
root 
(m) 

Engine 
2 from 
wing 
root 
(m) 

i (rad/s) 

Flutter 
speed 
(m/s) 

Flutter 
freq 

(rad/s) 
1 2 3 4 5 

12.07 5.59 10.73 (B) 34.40 (B) 42.45 (C) 79.79 (B) 92.83 (T) 254.2 27.62 

12.07 4.32 10.80 (B) 35.10 (B) 42.96 (C) 86.25 (B) 95.67 (T) 256.0 27.92 

10.80 6.93 11.36 (B) 32.13 (B) 44.05 (C) 86.87 (B) 97.10 (T) 252.0 28.84 

10.80 5.59 11.52 (B) 33.09 (B) 45.40 (C) 87.86 (B) 97.75 (T) 249.0 28.77 

10.80 4.32 11.61 (B) 33.78 (B) 46.17 (C) 93.66 (B) 98.95 (T) 245.5 29.49 

9.53 6.93 12.00 (B) 31.79 (B) 45.62 (C) 91.88 (B) 96.55 (T) 233.7 26.47 

9.53 5.59 12.18 (B) 32.85 (B) 47.28 (C) 91.66 (B) 96.91 (T) 251.7 27.81 

 

For the transport airliner T2 wing, the first five natural frequencies due to the variation of engine mass 
and its location are presented in Tables 5 and 6, respectively. It should be noted that the transport 
airliner T2 has a single engine on each of its wings. Table 5 shows that the first, second and third modes 
are always bending while the fifth mode is always a coupled mode in bending and torsion. However, 
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the fourth mode is generally a coupled mode for most of the cases, but when the engine mass is reduced 
to 25%, the fourth mode although remains a coupled mode, but is dominated by torsion. Table 5 shows 
that a ±25% alteration of engine mass did not alter the natural frequencies of T2 wing significantly. A 
small increase or decrease in flutter speed with the alteration of engine mass is also apparent.  As was 
the case with the T1 wing, the flutter speed for the T2 wing increases with the increase in engine mass 
and decreases with the reduction of engine mass. A similar argument based on frequency coalescence 
relating the separation between the fundamental bending and torsional natural frequencies as given for 
the T1 wing, can be applied here to the T2 wing. In Table 6, the results using engine location variation 
show that for T2 wing, significant differences in the modal and flutter characteristics are possible when 
the engine is moved. For the modal characteristics of T2, the first and second modes are always bending 
dominated, but the corresponding natural frequencies can change up to a maximum of around 10% 
and 28%, respectively. The third natural frequency can change up to 25% and notably the character of 
the mode changes from bending to a coupled mode when the engine is moved towards the wing tip, 
but this mode remains bending as the engine is moved towards the wing root. The fourth mode with a 
maximum frequency variation of around 25%, changes from a coupled mode to a torsional mode when 
the engine is moved towards the wing root. By contrast, the fourth mode changes from a coupled mode 
to a bending mode as the engine is moved towards the wing tip. The fifth mode with maximum possible 
natural frequency variation of around 20% remains coupled as the engine is moved towards the wing 
root, but it changes to a bending mode when moved towards the wing tip. For the T2 wing flutter speed 
variation of around ±15% is possible by altering the engine position by ±25%.  

 

Table 5 - The effects of the variation of engine mass on the natural frequencies and 
flutter results of T2 wing  
 

Variation 
in Engine 
mass (%) 

i (rad/s) Flutter 
speed 
(m/s) 

Flutter 
freq 

(rad/s) 1 2 3 4 5 

-25 19.75 (B) 57.27 (B) 104.5 (B) 121.6 (C) 199.7 (C) 408.5 77.85 

-20 19.74 (B) 56.87 (B) 103.5 (B) 121.5 (C) 199.2 (C) 409.3 78.00 

-15 19.73 (B) 56.47 (B) 102.7 (B) 121.3 (C) 198.8 (C) 409.6 78.14 

-10 19.72 (B) 56.08 (B) 101.8 (B) 121.1 (C) 198.4 (C) 409.9 78.28 

-5 19.71 (B) 55.68 (B) 101.0 (B) 121.0 (C) 198.1 (C) 410.2 78.43 

0 19.71 (B) 55.29 (B) 100.2 (B) 120.9 (C) 197.7 (C) 410.5 78.56 

5 19.70 (B) 54.90 (B) 99.53 (B) 120.8 (C) 197.4 (C) 410.8 78.71 

10 19.69 (B) 54.51 (B) 98.84 (B) 120.7 (C) 197.2 (C) 410.9 78.83 

15 19.68 (B) 54.13 (B) 98.20 (B) 120.7 (C) 196.9 (C) 411.2 78.94 

20 19.67 (B) 53.76 (B) 97.59 (B) 120.6 (C) 196.6 (C) 411.3 79.06 

25 19.67 (B) 53.38 (B) 97.01 (B) 120.5 (C) 196.4 (C) 411.5 79.18 
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Table 6 – The effects of the variation of engine location on the natural frequencies and 
flutter results of T2 
 

Location 
of Engine 
from wing 
root (m) 

i (rad/s) Flutter 
speed 
(m/s) 

Flutter 
freq 

(rad/s) 1 2 3 4 5 

6.41 18.50 (B) 41.36 (B) 75.43 (C) 103.9 (B) 217.9 (B) 344.0 72.58 

5.48 19.11 (B) 44.68 (B) 86.04 (C) 101.1 (T) 215.4 (C) 358.0 85.84 

5.15 19.47 (B) 49.18 (B) 95.22 (B) 104.4 (C) 206.3 (C) 380.0 80.77 

4.37 19.71 (B) 55.29 (B) 100.2 (B) 120.9 (C) 197.7 (C) 410.5 78.56 

3.66 19.81 (B) 59.88 (B) 107.5 (B) 139.8 (T) 194.9 (C) 413.5 78.85 

2.95 19.86 (B) 62.64 (B) 117.7 (B) 160.4 (T) 200.5 (C) 415.8 80.12 

2.22 19.88 (B) 63.85 (B) 125.8 (B) 181.8 (T) 214.8 (C) 416.3 81.67 

 

For the transport airliner T3, the first five natural frequencies due to the variation of engine mass and its 

location are presented in Tables 7 and 8 respectively. It should be noted that the transport airliner T3 

has a single engine on each of its wings. It can be seen from Table 7 that the natural frequencies are 

virtually unaltered due to the variation of engine mass. Furthermore, the first, second and third modes 

are always bending while the fourth and fifth modes are always torsional. The original engine mass 

corresponding to the unmodified T3 wing gives the flutter speed as 275 m/s, which is virtually unaltered 

when changing the engine mass by ±25%. Table 8 shows the results for modal and flutter 

characteristics when the engine position is altered. As for modal behaviour, it can be seen from this 

table that the first and the second modes of T3 are always bending and the fifth mode is always torsional. 

The third mode changes from bending to coupled and then to torsional as the engine is moved towards 

the wing root, but it remains bending when it is moved towards the wing tip. The fourth modes change 

from torsional to coupled and then to bending as the engine is moved towards the wing root. However, 

the fourth mode remains torsional when the engine is moved towards the wing tip. The flutter speed 

remains around 275 m/s which in fact corresponds to the case of unmodified T3 wing, but the flutter 

speed drops around 9% when the engine is moved towards the tip by 1.6m from its current position. By 

contrast, when the engine is moved towards the wing root, the flutter speed is virtually unaltered. 
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Table 7 – The effects of the variation of engine mass on the natural frequencies and 
flutter results of T3 wing  
 
Variation 

in 
Engine 
mass 
(%) 

i (rad/s) 
Flutter 
speed 
(m/s) 

Flutter 
freq 

(rad/s) 1 2 3 4 5 

-25 12.00 (B) 35.08 (B) 69.74 (B) 72.78 (T) 112.5 (T) 271.5 44.48 

-20 12.00 (B) 34.98 (B) 69.27 (B) 72.77 (T) 112.4 (T) 272.5 44.17 

-15 12.00 (B) 34.88 (B) 68.80 (B) 72.76 (T) 112.2 (T) 273.5 43.88 

-10 11.99 (B) 34.78 (B) 68.35 (B) 72.75 (T) 112.0 (T) 274.0 43.71 

-5 11.99 (B) 34.68 (B) 67.90 (B) 72.75 (T) 111.8 (T) 275.0 43.44 

0 11.99 (B) 34.59 (B) 67.47 (B) 72.74 (T) 111.6 (T) 275.0 43.16 

5 11.99 (B) 34.49 (B) 67.04 (B) 72.74 (T) 111.5 (T) 276.0 43.14 

10 11.98 (B) 34.39 (B) 66.63 (B) 72.73 (T) 111.3 (T) 276.5 42.99 

15 11.98 (B) 34.29 (B) 66.23 (B) 72.73 (T) 111.1 (T) 277.0 42.87 

20 11.98 (B) 34.19 (B) 65.83 (B) 72.73 (T) 111.0 (T) 277.5 42.74 

25 11.98 (B) 34.09 (B) 65.45 (B) 72.73 (T) 110.8 (T) 277.5 42.71 

 

Table 8 – The effects of the variation of engine location on the natural frequencies and 
flutter results of T3 

 

Location 
of Engine 
from wing 
root (m) 

i (rad/s) Flutter 
speed 
(m/s) 

Flutter 
freq 

(rad/s) 1 2 3 4 5 

5.99 11.83 (B) 31.01 (B) 63.16 (B) 70.09 (T) 105.1 (T) 257.2 36.61 

5.20 11.93 (B) 32.98 (B) 64.45 (B) 71.65 (T) 107.8 (T) 279.3 42.91 

4.40 11.99 (B) 34.59 (B) 67.47 (B) 72.74 (T) 111.6 (T) 280.0 43.16 

3.29 12.02 (B) 35.94 (B) 72.95 (C) 73.95 (C) 118.1 (T) 284.4 42.88 

2.18 12.04 (B) 36.47 (B) 73.92 (T) 77.49 (B) 122.1 (T) 284.7 42.98 

 
For the transport airliner T4, the first five natural frequencies due to the variation of engine masses and 
locations are presented in Tables 9 and 10 respectively. It should be noted that the transport airliner T4 
has two engines on each of its wings. Note that, the masses of each of the two engines are increased 
by the same amount, as indicated in Table 9. Clearly it can be seen from Table 9, that the natural 
frequencies variation is quite small due to the variation of the engine masses from -25% to +25%. It can 
also be seen from Table 9 that the first, second and fourth modes are always bending while the third 
and fifth modes are always torsional within the range of engine mass variation. The changes in natural 
frequencies and flutter speed due to ±25% engine mass variations are rather inconsequential. However, 
the effects of the engine locations on the free vibration and flutter characteristics of T4 wing shown in 
Table 10 reveal somehow a different picture for flutter speed when both the inboard and outboard 
engines are brought nearer to the fuselage and when the outboard engine is moved towards the wing 
tip. It should be noted that out of all the four aircraft wings analysed, the T4 wing is the heaviest both in 
terms of empty wing mass as well as the two engine masses carried by each of the wings. For modal 
characteristics, the first, second and fourth modes of T4 wing are always bending while third and fifth 
modes are always torsional. However, when the outboard engine is moved by only 0.5 m from its 
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original position towards the wing tip, flutter speed increases by around 20% relative to the flutter speed 
of the baseline wing.  
 

Table 9 – The effects of the variation of engine mass on the natural frequencies and 
flutter results of T4 wing 
 

Variation 
in Engine 
mass (%) 

i (rad/s) Flutter 
speed 
(m/s) 

Flutter 
freq 

(rad/s) 1 2 3 4 5 

-25 9.324 (B) 26.98 (B) 45.26 (T) 73.25 (B) 94.09 (T) 386.7 46.50 

-20 9.254 (B) 26.86 (B) 45.26 (T) 73.01 (B) 94.09 (T) 386.5 46.50 

-15 9.186 (B) 26.75 (B) 45.26 (T) 72.77 (B) 94.09 (T) 386.3 46.50 

-10 9.118 (B) 26.64 (B) 45.26 (T) 72.54 (B) 94.09 (T) 386.2 46.50 

-5 9.052 (B) 26.54 (B) 45.26 (T) 72.30 (B) 94.09 (T) 386.0 46.50 

0 8.988 (B) 26.45 (B) 45.26 (T) 72.06 (B) 94.09 (T) 385.8 46.50 

5 8.924 (B) 26.35 (B) 45.26 (T) 71.83 (B) 94.09 (T) 385.7 46.50 

10 8.862 (B) 26.26 (B) 45.26 (T) 71.59 (B) 94.09 (T) 385.5 46.50 

15 8.801 (B) 26.18 (B) 45.26 (T) 71.36 (B) 94.09 (T) 385.5 46.50 

20 8.741 (B) 26.09 (B) 45.26 (T) 71.13 (B) 94.09 (T) 385.3 46.50 

25 8.682 (B) 26.01 (B) 45.26 (T) 70.89 (B) 94.09 (T) 385.2 46.50 

 

Table 10 – The effects of the variation of engine location on the natural frequencies and 
flutter results of T4 
 

Engine 
1 from 
wing 
root 
(m) 

Engine 
2 from 
wing 
root 
(m) 

i (rad/s) 
Flutter 
speed 
(m/s) 

Flutter 
freq 

(rad/s) 1 2 3 4 5 

17.6 5.6 8.811 (B) 26.69 (B) 45.07 (T) 70.65 (B) 94.31 (T) 479.5 29.14 

17.6 4.6 8.814 (B) 26.73 (B) 45.08 (T) 72.67 (B) 94.35 (T) 476.6 29.20 

17.1 7.4 8.972 (B) 26.30 (B) 45.22 (T) 66.62 (B) 94.00 (T) 389.7 46.51 

17.1 5.6 8.988 (B) 26.45 (B) 45.26 (T) 72.06 (B) 94.09 (T) 385.8 46.50 

17.1 4.6 8.991 (B) 26.48 (B) 45.28 (T) 74.15 (B) 94.13 (T) 385.8 46.50 

15.8 7.4 9.400 (B) 25.92 (B) 45.82 (T) 68.11 (B) 93.73 (T) 433.4 42.99 

15.8 4.6 9.418 (B) 26.08 (B) 45.87 (T) 72.88 (B) 93.82 (T) 428.2 42.99 
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6. Conclusions 
 
Applying the dynamic stiffness method and Theodorsen type two-dimensional unsteady aerodynamics, 

the free vibration and flutter characteristics of four transport airliner wings have been investigated. The 

normal mode method in conjunction with the generalised coordinates has been utilised in formulating 

the flutter problem. Natural frequencies, mode shapes, flutter speeds and flutter frequencies for the 

wings are presented and the results are discussed. Next, a detailed parametric study on the effects of 

the variation of engine mass and location on the free vibration and flutter characteristics has been 

carried out.  The engine masses are varied between +25% and -25% in steps of 5% whereas the engine 

locations are varied approximately between +2m and -2m in small steps from their current locations 

depending on the type of the aircraft. The results show that the natural frequencies, mode shapes, 

flutter speed and flutter frequency can be changed to an appreciable extent for some of the airliner 

wings to avoid or alleviate aeroelastic problems. Although some of the natural frequency variations due 

to engine mass and location variations are small, even these small variations could be important to 

solve frequency attenuation problems and avoid flutter and resonance phenomenon. The investigation 

provides useful information to aircraft designers to make some engineering judgement on the engine 

mass and location, from an aeroelastic standpoint. The research carried out here on metallic wings, 

can be extended to composite wings. 
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