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Abstract

The effects of engine mass and location on the flutter characteristics of transport aircraft wings are investigated
in this paper. Four representative transport aircraft wings are investigated for their flutter characteristics. This is
achieved first by idealising the wing, structurally and aerodynamically. The structural idealisation includes a
coupled bending-torsion beam element representation of the wing through the application of the dynamic stiffness
method. To this end, the wing is modelled as a series of bending-torsion coupled beams connected at nodes. The
aerodynamic idealisation is based on the two-dimensional unsteady aerodynamics theory given by Theodorsen,
considering the spanwise variations of the wing chord. The free vibration or modal analysis is carried out using
the dynamic stiffness method through the implementation of the Wittrick-Williams algorithm, as solution technique.
This is followed by flutter analysis using the normal mode method in conjunction with the generalised co-ordinates.
The complex flutter matrix is formed by summing the generalised mass, stiffness, and aerodynamic matrices. The
flutter determinant is subsequently solved for flutter speed and flutter frequency, which is basically an iterative
process in that the complex (double) eigenvalue problem involving both the airspeed and the frequency is handled.
Thus, the computation is focused on the vanishing of both the real and imaginary parts of the flutter determinant
for a particular airspeed and frequency which are the flutter speed and flutter frequency. The complete procedure
for modal and flutter analyses of an aircraft wing is an integral part of the computer program CALFUN (CALculation
of Flutter speed Using Normal modes) developed by the first author more than four decades ago. CALFUN has
been successfully used on numerous occasions in the past to investigate the aeroelastic behaviour of aircraft
wings. With this pretext, CALFUN has been used to analyse four representative transport aircraft wings in this
paper, which are designated as Ti, T2, Tz and T4. Two of the aircraft carry one engine on each wing, while the
other two carry two engines on each wing. The main purpose of this paper is to investigate the effects of the
engine mass and location on the free vibration and flutter behaviour of the above four wings when a cantilever
boundary condition is applied at the root. A detailed parametric investigation is carried out on these wide-ranging
aircraft wings and the results are discussed with significant conclusions drawn. The findings of this research could
be of great help to the aircraft industry.
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1. Introduction

Transport aircraft wings are generally slender because of their high aspect ratios ranging typically
between 8 and 12. Consequently, they can be prone to flutter and other dynamic phenomena. In this
respect, flutter analysis of transport aircraft wings, has always been an area of intense research activity.
Furthermore, it is one of the mandatory airworthiness requirements to carry out flutter analysis of aircraft
wings, as laid down by the aviation authorities. For high aspect ratio aircraft wings such as those of
transport airliners the flutter behaviour is principally affected by, their bending (EI) and torsional
stiffnesses (GJ) as well as by their mass and inertia distributions. Additionally, the engine masses and
their locations on the wing can have significant effects on the flutter behaviour. The purpose of this
paper is to carry out a detailed investigation on the effects of engine masses and their locations on
flutter behaviour for a range of high aspect ratio transport aircraft wings using the normal mode method
and generalised coordinates. The dynamic stiffness method is applied for the modal behaviour and
Theodorsen type unsteady aerodynamics for the flutter behaviour.

There are several papers published in the literature dealing with the free vibration and flutter behaviour
of hight aspect ratio aircraft, see for example [1-9]. In general, the finite element method (FEM) is widely
used to investigate the modal and flutter behaviour of aircraft wings. When the normal mode method of
flutter analysis is employed, the free vibration analysis is first carried out to generate the mode shapes
and then, through the application of generalised coordinates, the flutter problem is formulated using
some form of unsteady aerodynamics such as that of Theodorsen type [1, 2, 7, 9]. Thus, the free
vibration or modal analysis is the first step prior to flutter analysis. In this respect, the FEM is commonly
and routinely used. However, FEM is an approximate method based on assumed shaped functions
from which the stiffness and mass properties of all individual elements are derived and assembled to
form the overall stiffness matrix [K] and mass matrix [M] of the final structure, which in this case, is an
aircraft wing. Next, the modal analysis is carried out by imposing the boundary conditions. The
procedure in FEM leads to a linear eigenvalue problem of the type [[K] — A[M]]{A} = 0 where {A} is the
nodal displacement vector and the square root of A (the eigen parameter) gives the natural frequencies
of the structure.

Against the above background, there is a powerful alternative to FEM for modal analysis of structures
such as an aircraft wing. The alternative is that of the dynamic stiffness method (DSM) [10-12] which is
not as widely used as the FEM. Notably, there are differences and similarities between FEM and the
DSM. For instance, the DSM unlike the FEM, relies on only one frequency dependent dynamic stiffness
element as the basic building block which contains both the mass and stiffness properties of the element
in an exact sense because the shape function used in DSM is not assumed, but derived from the exact
solution of the governing differential equation of the structural elements in free vibration. This is in sharp
contrast to FEM which uses separate (frequency-independent) mass and stiffness matrices. The
assembly procedure of structural elements in the DSM is essentially the same as the FEM, but the
former unlike the latter, uses a single dynamic stiffness matrix element for each structural component
as mentioned earlier to form the overall frequency-dependent dynamic stiffness matrix Kp of the
complete structure (wing). The eigenvalue problem in DSM is then expressed in the form [Kp]{A} =0
where {A} is the nodal displacement vector comprising amplitudes of nodal displacements. The next
step in the DSM is to extract the natural frequencies of the structure by solving the above transcendental
and non-linear eigenvalue problem. The best available solution technique to achieve this objective is to
apply the Wittrick-Williams algorithm [13], which has featured in literally hundreds of papers. The
algorithm monitors the Sturm sequence property of the dynamic stiffness matrix, and it ensures that no
natural frequency of the structure is missed. Given the importance and effectiveness of this solution
technique, the dynamic stiffness method and the Wittrick-Williams algorithm are somehow permanently
intertwined with each together.

As stated earlier, in the structural idealisation of the wing, dynamic stiffness theory of a bending-torsion
coupled beam is used to represent the wing [11,12] whereas in the aerodynamic idealisation strip theory
based on Theodorsen type unsteady aerodynamics [14] is exploited in the flutter formulation. The
computer program CALFUN [15] which was written using these established structural and aerodynamic
theories, has been extensively used when obtaining the results for this paper.
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The research is first focused on the modal analysis and then on flutter analysis. Four transport aircraft
wings are analysed for both modal and flutter analysis. Bending and torsional stiffness properties and
the details of the mass and inertia distributions were calculated from the original data for each aircraft
wing, which required considerable time and efforts to input into CALFUN. Once the modelling and data
preparation were completed for the respective wings, modal and flutter analysis were performed first
on the original (unmodified) wing. Then, a detailed parametric study was undertaken by varying the
engine mass and location to investigate the modal and flutter characteristics of each of the four wings.
The values for the engine masses and their locations from the wing root were varied between +25%
and -25% in steps of 5% and their subsequent effects on the modal and flutter behaviour were
examined. The results showing interesting trends and possibilities are discussed and commented on.
The paper concludes with significant remarks.

2. Dynamic Stiffness Method (DSM) for Free Vibration Analysis

The basic building block in DSM is the dynamic stiffness matrix of a structural element which essentially
relates the amplitudes of the forces to those of the corresponding displacements at the nodes of the
harmonically vibrating structural element. A general procedure to formulate the dynamic stiffness matrix
of a structural element is briefly described in the following steps:

® Derive the governing differential equation of motion in free vibration of the structural element for
which the dynamic stiffness matrix is to be developed. This can be achieved by applying Newton’s
second law or Lagrange’s equation or Hamilton’s principle. However, Hamilton’s principle is preferred
because unlike Newton’s second law and Lagrange’s equation, the variationally based Hamilton’s
principle provides natural boundary conditions, giving the expressions for forces and moments which
are required in the dynamic stiffness formulation.

(ii) For harmonic oscillation, seek a closed form analytical solution of the governing differential
equation derived in (i) above, in terms of the arbitrary integration constants. The number of constants
in the general solution will, of course, depend on the order of the differential equation.

(iii) Apply the boundary conditions in algebraic form. The number of boundary conditions is generally
equal to twice the number of integration constants. The boundary conditions are typically the nodal
displacements and forces.

(iv) Eliminate the constants by relating the harmonically varying amplitudes of nodal forces to the
corresponding displacements at the nodes of the element. This will generate the frequency dependent
dynamic stiffness matrix connecting dynamically the amplitudes of the nodal forces to those of the nodal
displacements.

2.1 Structural Idealisation of High Aspect Ratio Aircraft Wings Using the Dynamic Stiffness
Method

An aircraft wing shown in Figure 1 is a classic example of a bending-torsion coupled beam. Such a
representation is particularly relevant to analyse a high aspect ratio wing. A non-uniform aircraft wing
can be modelled by assembling several uniform bending-torsion coupled beams such as the one shown
in Figure 1. An important feature of the model both at an element level as well as at an assembly level
is that the coupling between the bending and torsional deformations are clearly prevalent during the
free vibratory motion.
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Elastic axis
Mass axis

Figure 1 — An aircraft wing idealised as a bending-torsion coupled beam.

In essence, the coupling between the bending and the torsional motions arises due to hon-coincident
mass and elastic axes which are respectively the loci of the centroid and shear centres of the beam
(wing) cross-section. Thus, for an aircraft wing it is not generally possible to realize a torsion-free
bending displacement or a bending-free torsional rotation during the free vibratory motion. Given this
perspective, this paper uses a dynamic stiffness approach and develops the dynamic stiffness matrix
of a uniform bending-torsion coupled beam and then extends it to model a non-uniform aircraft wing.

The governing partial differential equations of motion of the bending-torsion coupled beam (wing) shown
in Figure 1 are given by [11, 12]

EIR"" + mh — mx, = 0 (1)

GIY" +mx h — I, =0 2)

where El and GJ are the bending and torsional stiffnesses of the beam, m is the mass per unit length,
1, is the polar mass moment of inertia per length about the Y-axis, x, is the distance between the mass
axis and the elastic axis, and a prime and an over-dot denote partial differentiation with respect to
spanwise position y and time t, respectively.

For harmonic oscillation, sinusoidal variation in bending displacement h and torsional rotation 1 with
circular or angular frequency w may be assumed to give

h(y,t) = H(y) sinwt, ¥(y,t) = ¥Y(y)sinwt (3)
where H(y) and W(y) denote the amplitude of the bending displacement and torsional rotation.

Substituting Equation (3) into Equations (1) and (2) eliminates the time component and gives the
following ordinary differential equations

EIH"" — mw?H + mx,w?*¥Y =0 (4)
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GJ¥Y" + I,w*¥Y — mx,w?H=0 (5)
where prime now denotes full differentiation with respect to y.

Equations (4) and (5) can be combined into a sixth order ordinary differential equation by eliminating
either H or ¥ to give

v (- -G @) ED -0

where
W=HorV¥ ()

Equation (6) can be non-dimensionalised by using the non-dimensional length ¢ given by

—_—
§=7 ®)
Thus, with the help of Equation (8), the non-dimensional form of Equation (6) becomes
(D® + aD* — bD? — abc)W =0 (9)

where a, b and ¢ are non-dimensional parameters given by

0= (), pm (), oo w

and D is the following differential operator

d
D=q¢ (11)

The differential equation given by Equation (9) can be solved using standard procedures [11,12] to give

W (&) = C; cosh a& + C, sinh aé + C3 cos B¢ + C, sin f& + C5 cosy& + Cg sinyé (12)

where
1 1 1
o= 2@ s (@)~ n= [ (9 cos(52) + 'y = 22 cos(52) + 2] o
with
g=b+% (14)
and

_1 |27abc—9ab—2a3

¢ = cos 3
{Z(a2 +3b)§}

(15)

In Equation (12), C,—Cs are the integration constants resulting from the solution of the governing
differential equation (9).

W (&) in Equation (12) gives the solution for both the bending displacement H and the torsional rotation
Y. but with two different sets of constants. Thus, we can write,
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H(¢) = Ay coshaé + A, sinhaé + A5 cos B + A, sin BE + Ag cos yé + Ag sinyé (16)
and
Y (&) = B; coshaé + B, sinh a& + B; cos B¢ + B, sin B¢ + Bs cos yé + Bgsinyé (17)

The two different sets of constants A;—As and B1—Bs in Equations (16) and (17) can be related with the
help of either Equation (4) or Equation (5) to give.

B1 = koCA11 BZ = kO(Az, B3 = kﬁA3, B4 = kﬂA4_, Bs = k]/AS’ B6 = k)/AG (18)
where
b—oc* __b- 4 _ b—y*
ke = bxy ' kﬁ T bxe ky T bxy (19)

The expressions for bending rotation @(¢), bending moment M (&), shear force S(é)and torque T(¢) are
given by

0(¢) = (%) H'(§) = (%) {A;a sinh aé + A,a cosh a&é — A3 B sin B€ + A, cos B¢ — Agy sinyé +

Agy cosyS} (20)
M(§) = — (g) H'(§) = - (g) {A;a? cosh a& + A,a? sinh aé — A3B2 cos f& — A,f3? sin & —
Asy? cosy$ — Agy? siny$} (21)
S(¢) = (%) {A;a3 sinh aé + Aya3 cosh aé + A3B3 sin B¢ — A,B3 cos Bé + Asy3 sinyé —
Agy® cosy$} (22)
GJ ' GJ . . .
T() = (T) W (&) = (T) {Bya sinh @& + B,a cosh a& — Bsf3 sin BE + B,f3 cos B& — Bgy siny& +
Bgy cosy¢} (23)

With the help of Equations (16) — (23), the dynamic stiffness matrix of the coupled bending-torsion beam
element which is essentially an aircraft wing element can be developed by applying the boundary
conditions algebraically for displacements and forces at the ends of the elements.

Referring to Figure 2, the boundary conditions for displacements are

At y=0 (§=0):H=H, 0=0,and¥ =¥,

(24)
At y=L ((=1):H=H,, 0=0,and¥ =Y,
Similarly, referring to Figure 3, the boundary conditions for the forces are
At y=0(=0):5=8, M=M,andT =-T,

(25)

At y=L (§=1):S=-S,, M=-M,andT =T,
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Figure 2 — Boundary conditions for displacements of an aircraft wing element.

Figure 3 — Boundary conditions for forces of an aircraft wing element.
Substituting the boundary conditions for displacements given by Equation (24) into Equations. (16), (17)
and (19), one obtains the following matrix relationship.
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u 1 0 1 0 1 0 7 4
[111] a B 4 1
0, 0 . 0 ; 0 |4,
g | ke 0 kg 0 k, 0 As 06
Hy[ 7| Chg Sha Cp Sp Cy Sy || As (26)
0 e i _B B _Y Y A
_Lpz_ PRI L6 LB LS T i AZ-
| koCh, kaSn, kgCp kgSp k,C, kS, ]
or
A = BA (27)
where A is the contact vector comprising the constants A;—As and
Ch, = cosha; Sy, = sinha; Cg = cosf; Sg =sinf; C, = cosy; S, =siny (28)

Substituting the boundary conditions for forces given by Equation (25) into Equations (21), (22) and
(23), one obtains the following matrix relationship.

0 Wsad 0 —W, B3 0 —Way® 7

[51] 2 2 2 [A1]
l\/[1 _Wza 0 Wzﬁ 0 Wz)/ 0 AZ
’1"1 _ O _Wlkaa O _Wlkﬁﬁ 0 _Wlk]/y A3
SZ —W3(Z3Sha _W3a3Cha _W3ﬁ3SB W3ﬁ3CB _W3)/3SV W3)/36y A4_
1\412 Woa?Cp,  Woa?Sn,, —W,B%Cs —W,oB2Sg —Woy2C, —W,y?S, ;115
e _Wlkaasha WlkaaCha _WlkBﬁSB WlkﬁﬁCﬁ —Wlky]/Sy Wlky)/Cy_ 6-
(29)
or
F = DA (30)
where
GJ. EI, EI
Wl:T’ W2=L_21 W3=L_3 (31)

The constant vector A can now be eliminated from Equations (27) and (30) to give the following force-
displacement relationship

F = KA (32)
where K is the 6 x 6 frequency dependent dynamic stiffness matrix given by

K=DB! (33)

The dynamic stiffness matrix of Equation (33) representing a bending-torsion coupled beam can now
be used to model an aircraft wing. A non-uniform aircraft wing can be modelled as an assembly of many
uniform dynamic stiffness elements. For instance, the cantilever wing of Figure 4 can be modelled as a
stepped cantilever beam (wing) as shown in Figure 5 where the non-uniform wing is split into typically
9 uniform dynamic stiffness elements. The dynamic stiffness elements of each of the 9 elements can
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be assembled to form the overall dynamic stiffness matrix of the complete wing. Note that the theory
given above is sufficiently general to handle swept wings with complex geometries.

The solution procedure to extract the natural frequencies and mode shapes from the overall dynamic
stiffness matrix of the wing is based on the application of the Wittrick-Williams algorithm [13] as
mentioned before. The algorithm is particularly suitable for solving free vibration problem using the

dynamic stiffness method.

X
A
I
I
I
Y
———
Figure 4 — A non-uniform cantilever wing.
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Figure 5 — A non-uniform cantilever wing idealised as a stepped beam.
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2.2 Application of the Wittrick-Williams Algorithm

The dynamic stiffness matrix of Equation (34) can now be used to compute the natural frequencies and
mode shapes of aircraft wings. A non-uniform and/or swept wing can be analysed for its natural
frequencies and mode shapes by idealising it as an assemblage of many uniform dynamic stiffness
elements of bending-torsion coupled beams. The natural frequency calculation is accomplished by
applying the Wittrick-Williams algorithm [13] which has received extensive coverage in the literature.
Before applying the algorithm, the dynamic stiffness matrices of all individual elements (see Figures 4
and 5) need to be assembled to form the overall dynamic stiffness matrix K; of the final structure, i.e.,
the complete wing. The algorithm monitors the Sturm sequence condition of Ks in such a way that there
is no possibility of missing any natural frequency of the wing. The application procedure of the algorithm
is briefly summarised as follows.

Suppose that w denotes the circular (or angular) frequency of the vibrating wing. Then according to the
Wittrick-Williams algorithm [13], j, the number of natural frequencies passed, as w is increased from
zero to a trial frequency w*, is given by

Jj =Jjo + s{Ks} (34)

where Ky, the overall dynamic stiffness matrix of the wing whose elements depend on w is evaluated at
w=w" s{Kf} is the number of negative elements on the leading diagonal of Kﬁ, K? is the upper

triangular matrix obtained by applying the usual form of Gauss elimination to Ks, and j, is the number
of natural frequencies of the wing still lying between  =0; and w = w*; when the displacement
components to which Ks corresponds are all zeros. (Note that the structure can still have natural
frequencies when all its nodes are clamped, because exact member equations allow each individual
member to displace with an infinite number of degrees of freedom, between nodes.) Thus

Jo = Z]m (35)

where j,, is the number of natural frequencies between w = 0 and w = «* for an individual component
member with its ends fully clamped, while the summation extends over all members of the structure.
Thus, with the knowledge of Equations (34) and (35), it is possible to ascertain how many natural
frequencies of the wing lie below an arbitrarily chosen trial frequency. This simple feature of the
algorithm can be used to converge upon any required natural frequency to any desired accuracy. As
successive trial frequencies can be chosen, computer implementation of the algorithm is very simple.
However, for a detailed understanding, readers are referred to the original work of Wittrick and Williams
[13].

3. Unsteady Aerodynamic Theory of Theodorsen

The unsteady aerodynamic theory for flutter analysis used in this paper is that of Theodorsen [14] who
gave the expressions for the unsteady lift and moment of a unit strip cut out from a two-dimensional
aerofoil, oscillating harmonically, and exhibiting bending displacement and torsional rotation in an
incompressible air flow (see Figure 6). In standard notation, the semi-chord of the aerofoil is b, i.e., the
chord is c = 2b, the airspeed is U and the elastic axis is located at a distance anb behind the mid-chord,
as shown in Figure 6. If the bending displacement of the elastic axis is he®t, and torsional rotation
about the elastic is pe'®t where h and y are the amplitudes of bending displacement and torsional
rotation, @ being the circular or angular frequency of oscillation and i = v—1, then the expressions for
the harmonically varying unsteady lift Le!®*and moment Me®t are represented by the Theodorsen
theory [14] as follows.

10
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L h . i 1 .
s = k2 (3= anp) + ilap + 2C(0) {p + 5 e + (5 — @) ik} (36)
M 1 i 1 . h 1 ] K2
s = (G + ) 2000 {p + Sk + (G = @) ik} = K (3= anp) = (5 - an) tep +
(37)
where k is the reduced frequency parameter and C(k) is the Theodorsen function given by
@)
_ wb, _ H;” (k)
k = o C(k) 1P 0+ (k) (38)

In Equation (38), Hl(z)(k) and Héz)(k) are Hankel functions which are related to Bessel functions of first
and second kinds and of orders 0 and 1, as follows.

HP (k) = 1(k) — i¥y(k);  HP (k) = Jo(k) — i¥y (k) (39)

Figure 6 — A strip of unit width of a two-dimensional aerofoil with two degrees of freedom h and win an
incompressible airflow.

In the following section, the Theodorsen expressions for the unsteady lift and moment given in Equation
(36) and (37) are integrated along the span, and subsequently applied in the formulation of the flutter
problem.

4. Flutter Analysis Using Generalised Coordinates, Normal Modes, and Theodorsen
Theory of Unsteady Aerodynamics

The normal mode method of flutter analysis is well known [1,2], particularly in the context of high aspect
ratio wings for which the computer program CALFUN [15] is well suited (and it has a composite
capability). CALFUN idealises the aircraft wing both structurally and aerodynamically. In the structural
idealisation, bending-torsion coupled beam theory (the DSM method) is used to represent the wing
[11,12] whereas the aerodynamic idealisation includes strip theory based on Theodorsen type unsteady
aerodynamics [14]. The methodology is briefly summarised as follows.

4.1 Formulation of Generalised Mass and Stiffness Matrices

The mass and stiffness matrices of the wing are reduced to diagonal form to give generalised mass
and stiffness matrices. This is achieved by using the normal modes obtained from the dynamic stiffness
method. The procedure is briefly explained as follows.

11
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If [®] is the modal matrix, i.e., the matrix formed by the selected normal mode shapes so that each
column of [®@] represents a normal mode shape ®;, then the generalised mass and stiffness matrices
are respectively obtained by post multiplying the mass and stiffness matrices by the modal matrix [®],
and premultiplying the resultant matrix by the transpose of the modal matrix (i.e [®]7). In matrix notation

[Mg] = [@]"[M][®] (40)
[K¢] = [@]7[K][P] (41)

where [M¢] and [Kg] are respectively, the generalised mass and stiffness matrices of the wing. Clearly
if the number of modes chosen in the analysis is n, the order of [Mg] and [K¢] will each be of order
n X n.

4.2 Formulation of the Generalised Aerodynamic Matrix

The generalised aerodynamic matrix is formed by applying the principle of virtual work. The
aerodynamic strip theory is based on Theodorsen’s expressions for unsteady lift and moment [14] and
the normal modes obtained from the dynamic stiffness method [11,12] are used when applying the
principle of virtual work. The displacements considered are the vertical deflection (bending) h(y), and
the pitching rotation (torsion) ¥ (y) of the elastic axis of the wing at a spanwise distance y from the root.
Thus, the displacement components of the i" mode ®; are respectively, h;(y) and ¥;(y). If q;(t)
(i=1,2,3....n) are the generalised coordinates, then h(y) and ¥ (y) can be expressed as

h(y) = Ziz  hi()q: (1) (42)
Y(y) = Zis1 V(g (0 (43)
Equations (42) and (43) can be written in the following matrix form

[AO] _ [0 120)-ha) Z_l

v = () w00 v () (44)

4n

If L(y) and M(y)are respectively the unsteady lift and moment at a spanwise distance y from the root,
the virtual work done (6W) by the aerodynamic forces is given by

SW = T 8q; [{IL() + MOV ()} dy (45)
where s is the semi-span of the wing and n is the number of normal modes considered in the analysis.

Equation (45) can be written in matrix form as

_%_

gfvl hy ¥,

Wz h, ¥,

691 sl . . [L(y)]

= : : d 46
B I B | 1709 i )
wo| I, v,

L 5qp, 4
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The unsteady lift L(y) and moment M(y) in two-dimensional flow given by Theodorsen [14] and shown
by Equations (36) and (37) can be expressed in the following matrix form

ool =1 4211 @
where
Ay = —mpU{—k? + 2C(K)ik)
Ay, = —mpU?b [(ahk2 + ik) + 2C (k) {1 + ik G — ah)}]
Ay = —mpU?b {ZC(k)ik (% + ah) — kzah}
Ay, = —mtpU?b? {2 (% + ah> C(k) {1 + ik (% — ah>} + %2 + k%a,? + (ah — %) ik}
(48)

In the above equation, U, b, p, k, C(k) and a, are in the usual notation: the airspeed, semi-chord,
density of air, reduced frequency parameter, Theodorsen function and elastic axis location from mid-
chord in non-dimensional form, respectively [14].

Substituting Equation (47) into Equation (46) and then using Equation (44) gives

_%_
84 hy ¥ 01 q1
sw, o 4 QFi1 QFi2 -+ QFul|q,
8q1 — fs . [All AlZ] hl hZ .... hn dv = QFZI QFZZ QFZTL :
0 ; Ayy Ayy ||, Wy v, y F F F :
6]/:I/n hn llun In Q ni Q n2 °° Q nn In
[ 5,
(49)
where [QF] is the generalised aerodynamics matrix with elements
QF;j = [J(Avihiby + A h¥i + Ay i) + Ay ¥ i¥)) dy (50)

The generalised aerodynamic matrix [QF] is usually a complex matrix with each element having a real
part and an imaginary part. This is because the terms A;4, 4;,, ... etc in Equation (50) are complex
(see equations (48)). By contrast, the generalised mass and stiffness matrices are both real and
diagonal matrices.

4.3 Formulation of Flutter Problem and Solution of the Flutter Determinant as a Double
Eigenvalue Problem

The flutter determinant is the determinant formed from the flutter matrix which is formed by algebraically
summing the generalised mass, stiffness, and aerodynamic matrices. Thus, for a system without
structural damping (which generally has a small effect on the oscillatory motion and is not considered
here) the flutter matrix [QA] can be formed as

13
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[QAl{q} = [~w?[Mg] + [K¢] — [QF]{q} (51)
where w is the circular or angular frequency in rad/s of the oscillatory harmonic motion.

For the flutter condition to occur, the determinant of the complex flutter matrix must be zero so that from
Equation (51),

|-w?[Mg¢] + [K¢] — [QF]| =0 (52)

The solution of the above flutter determinant is a complex eigenvalue problem because the determinant
is primarily a complex function of two unknown variables, the airspeed (U) and the frequency (w). The
method used in CALFUN [15] selects an airspeed and evaluates the real and imaginary parts of flutter
determinant for a range of frequencies and the process is repeated for a range of airspeeds, until both
the real and imaginary parts of the flutter determinant (and hence the whole flutter determinant) vanish
completely.

5. Results

Using the above theory, four transport aircraft wings with cantilever boundary condition at the root are
analysed for their flutter characteristics using the computer program CALFUN [15]. A typical layout of
such aircraft is shown in Figure 7. Four wings of transport airliners (T1, T2, Tz and T4) with particulars
given in Table 1, are analysed.

%‘f?

Figure 7 — A general lay-out of a typical transport aircraft.
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FLUTTER OF TRANSPORT AIRCRAFT WINGS

Table 1 — Particulars of transport airliners

Transport airliner
Parameters T T, T, T,
Wing Span (m) 40 30 35 60
Wing Area (m?) 162 93 123 362
Aspect Ratio 10 9 10 10
Wing Root Chord (m) 5 5.5 6 10.5
Wing Tip Chord (m) 2.5 15 15 2.5
Sweep Angle (deg) 0 28 28 28
Length Overall (m) 30 36 38 60
Height Overall (m) 12 11 12 17
Weight Empty (kg) 34000 | 26000 | 42000 | 130000
Max Take-off Weight (kg) | 70000 | 46000 | 74000 | 275000
Max \Q’ég?mﬁ‘)’ad'”g 434 | 511 | 600 760
Max Cr(‘;':(')rt‘sg)s'oeed 348 | 529 | 516 | 569
Range (nmi) 2835 2400 2592 8000
Engine mass (kg) 3698 2827 4063 7780
Number of Engines 2 1 1 2

Figures 8-10 show the stiffness (bending stiffness El and torsional stiffness GJ), mass per unit length
and mass moment of inertia (MMOI) per unit length distributions of the transport aircraft wings Ti, Ta,
Tz and T4, respectively. These data were used to compute their natural frequencies and mode shapes.
Figure 11 illustrates the first five natural frequencies and mode shapes of the Ti, T2, T3z and T, wings
showing the bending displacements (solid lines) and torsional displacements (broken lines). For the T,
wing, the first two modes are bending modes, the third mode is coupled in bending and torsion, the
fourth mode is bending, and the fifth mode is torsional. For the T>wing, the first three modes are bending
modes, while the fourth and fifth modes are coupled in bending and torsion. For the Tz wing, the first
three modes are bending but the fourth and the fifth mode are essentially torsional. For the T4 wing, the
first two and the fourth modes are bending dominated whereas the third and fifth modes are torsional.
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Figure 8 — Stiffness distributions of transport airliner wings.
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FLUTTER OF TRANSPORT AIRCRAFT WINGS

The first five natural frequencies and flutter results for all of the original aircraft wings (T1, T2, Tz and Ta)
are given in Table 2. The letters B and T used in the table and elsewhere in the paper indicate bending
and torsion dominated modes respectively whereas the letter C indicates a bending torsion coupled
mode.

Table 2 - First five natural frequencies and flutter results of the baseline aircraft wings

Natural Frequencies (@) (rad/s) Flutter Flutter

Aircraft speed freq
) @ 3 4 @5 (m/s) (rad/s)

Tl 11.52 (B) | 33.09 (B) | 45.40 (C) | 87.86 (B) | 97.75 (T) | 249.1 28.77
T2 19.71 (B) | 55.29 (B) | 100.3 (B) | 120.9 (C) | 197.7 (C) | 410.5 78.56
T3 11.99 (B) | 34.59 (B) | 67.47 (B) | 72.74 (T) | 111.6 (T) | 275.0 43.16
T4 8.988 (B) | 26.45 (B) | 45.26 (T) | 72.06 (B) | 94.09 (T) | 385.8 46.50

A parametric study is now undertaken for all of the four transport airliner wings by varying the engine
mass and location. It should be noted that among the four transport airliners, T1 and T4 have two engines
on each of their wings, whereas T, and T3, each have a single engine on each of their wings. A variation
between -25% to 25% in steps of 5% for the engine mass is allowed and for the engine locations, some
realistic distances from the wing root relative to the current locations of the engines are considered.
The first five natural frequencies with the identifications of the modes are presented in Tables 3 to 10
due to the engine mass and location variations. The results corresponding to the original engine mass
and location of the baseline wing are shown in bold.

For the transport airliner T, the first five natural frequencies due to the variation of engine masses and
their locations are presented in Tables 3 and 4 respectively. It should be noted that the transport airliner
T1 has two engines on its wing and the masses of each of the two engines are both increased by the
same amount as indicated in Table 3. Table 4 shows the results when the engine positions are changed
for the T1 wing. The outboard engine from its original location at 10.8m from the wing root was relocated
in the analysis at 9.53m and 12.07m from the wing root, respectively whereas the original location of
the inboard engine was altered from 5.59m to 4.32m and 6.93m, respectively. From the results shown
in Tables 3 and 4, it can also be seen that the first, second and fourth modes are always bending while
third mode is generally coupled in bending and torsion and the fifth mode is always torsional. For this
wing, there is no significant change in the modal characteristics due to the variation of engine mass
with the torsional natural frequency effectively unaltered, but the variation of engine location makes
some difference in the natural frequencies, the maximum difference being around 10%. As expected,
increasing engine mass reduces the natural frequencies particularly in bending, whereas reducing it,
has the opposite effect. From Table 3, It can be observed that the flutter speed increases when the
engine mass is increased. By contrast, the flutter speed decreases when the engine mass is decreased.
The reason for this can be attributed to the fact that the separation between the fundamental bending
and fundamental torsional natural frequencies increases when the engine mass is increased whereas
the separation between the two frequencies decreases when the engine mass is reduced, bearing in
mind that the fundamental bending and torsional modes are seen to be the main contributors to the
flutter. Table 4 gives results showing the effects of engine location on the flutter of the T1 wing, depicting
a somewhat different picture. As expected, the outboard engine has a greater effect on the bending
natural frequencies. This is principally due to the cantilever boundary condition assumption of the wing.
The flutter speed of the T: wing is again influenced by the margin of separation between the
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fundamental bending and torsional natural frequencies in that, the greater the difference between the
two frequencies, the greater the flutter speed and vice-versa. From the results shown in Tables 3 and
4, it is observed that around 5% change in the flutter speed is possible for theT1l wing. The flutter
frequency lies between the fundamental bending and torsional natural frequencies. This is to be
expected, particularly in classical bending-torsion flutter of a cantilever wing.

Table 3 — The effects of the variation of engine mass on the natural frequencies and

flutter results of T1 wing

Variation wi (rad/s) Flutter | Flutter
in Engine speed | freq

mass (%) 20 ] w3 2% (22 (m/s) | (rad/s)
-25 11.97 (B) | 34.55(B) | 45.40 (C) | 92.02 (B) | 97.76 (T) | 237.0 | 30.63
-20 11.88 (B) | 34.22 (B) | 45.40 (C) | 91.17 (B) | 97.76 (T) | 239.5 | 30.13
-15 11.79 (B) | 33.91 (B) | 45.40 (C) | 90.32 (B) | 97.75(T) | 241.5 | 29.87
-10 11.70 (B) | 33.62 (B) | 45.40 (C) | 89.49 (B) | 97.75(T) | 244.7 | 29.38

-5 11.61 (B) | 33.35(B) | 45.40 (C) | 88.67 (B) | 97.75(T) | 248.0 | 29.08

0 11.52 (B) | 33.09 (B) | 45.40 (C) | 87.86 (B) | 97.75(T) | 249.0 | 28.77

5 11.44 (B) | 32.84 (B) | 45.40 (C) | 87.07 (B) | 97.75(T) | 250.5 | 28.44

10 11.36 (B) | 32.61 (B) | 45.40 (C) | 86.28 (B) | 97.75(T) | 254.6 | 28.05

15 11.28 (B) | 32.39 (B) | 45.40 (C) | 86.28 (B) | 97.75(T) | 255.5 | 27.63

20 11.20 (B) | 32.17 (B) | 45.40 (C) | 86.28 (B) | 97.75(T) | 256.0 | 27.37

25 11.12 (B) | 31.97 (B) | 45.39 (C) | 84.01 (B) | 97.74 (T) | 258.5 | 26.88

Table 4 — The effects of the variation of engine location on the natural frequencies and

flutter results of T1

Engine | Engine o (rad/s)

1 from | 2 from Flutter | Flutter
wing wing Speed freq
root root (m/s) (rad/s)
(m) (m) an ar (1] @4 s

12.07 5.59 10.73 (B) | 34.40 (B) | 42.45 (C) | 79.79 (B) | 92.83 (T) | 254.2 27.62
12.07 4.32 10.80 (B) | 35.10 (B) | 42.96 (C) | 86.25 (B) | 95.67 (T) | 256.0 27.92
10.80 6.93 11.36 (B) | 32.13 (B) | 44.05(C) | 86.87 (B) | 97.10 (T) | 252.0 28.84
10.80 5.59 11.52 (B) | 33.09 (B) | 45.40 (C) | 87.86 (B) | 97.75(T) | 249.0 28.77
10.80 4.32 11.61 (B) | 33.78 (B) | 46.17 (C) | 93.66 (B) | 98.95 (T) | 245.5 29.49
9.53 6.93 12.00 (B) | 31.79 (B) | 45.62 (C) | 91.88 (B) | 96.55 (T) | 233.7 26.47
9.53 5.59 12.18 (B) | 32.85(B) | 47.28 (C) | 91.66 (B) | 96.91 (T) | 251.7 27.81

For the transport airliner T» wing, the first five natural frequencies due to the variation of engine mass
and its location are presented in Tables 5 and 6, respectively. It should be noted that the transport
airliner T, has a single engine on each of its wings. Table 5 shows that the first, second and third modes
are always bending while the fifth mode is always a coupled mode in bending and torsion. However,
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the fourth mode is generally a coupled mode for most of the cases, but when the engine mass is reduced
to 25%, the fourth mode although remains a coupled mode, but is dominated by torsion. Table 5 shows
that a +25% alteration of engine mass did not alter the natural frequencies of T2 wing significantly. A
small increase or decrease in flutter speed with the alteration of engine mass is also apparent. As was
the case with the T1 wing, the flutter speed for the T> wing increases with the increase in engine mass
and decreases with the reduction of engine mass. A similar argument based on frequency coalescence
relating the separation between the fundamental bending and torsional natural frequencies as given for
the T1 wing, can be applied here to the T, wing. In Table 6, the results using engine location variation
show that for T, wing, significant differences in the modal and flutter characteristics are possible when
the engine is moved. For the modal characteristics of T, the first and second modes are always bending
dominated, but the corresponding natural frequencies can change up to a maximum of around 10%
and 28%, respectively. The third natural frequency can change up to 25% and notably the character of
the mode changes from bending to a coupled mode when the engine is moved towards the wing tip,
but this mode remains bending as the engine is moved towards the wing root. The fourth mode with a
maximum frequency variation of around 25%, changes from a coupled mode to a torsional mode when
the engine is moved towards the wing root. By contrast, the fourth mode changes from a coupled mode
to a bending mode as the engine is moved towards the wing tip. The fifth mode with maximum possible
natural frequency variation of around 20% remains coupled as the engine is moved towards the wing
root, but it changes to a bending mode when moved towards the wing tip. For the T, wing flutter speed
variation of around £15% is possible by altering the engine position by +25%.

Table 5 - The effects of the variation of engine mass on the natural frequencies and
flutter results of T2 wing

Variation wi (rad/s) Flutter | Flutter
in Engine speed | freq
mass (%) w1 w2 w3 s s (m/s) | (rad/s)

-25 19.75 (B) | 57.27 (B) | 104.5 (B) | 121.6 (C) | 199.7 (C) | 408.5 | 77.85
-20 19.74 (B) | 56.87 (B) | 103.5 (B) | 121.5 (C) | 199.2 (C) | 409.3 | 78.00
-15 19.73 (B) | 56.47 (B) | 102.7 (B) | 121.3 (C) | 198.8 (C) | 409.6 | 78.14
-10 19.72 (B) | 56.08 (B) | 101.8 (B) | 121.1 (C) | 198.4 (C) | 409.9 | 78.28

-5 19.71 (B) | 55.68 (B) | 101.0 (B) | 121.0 (C) | 198.1 (C) | 410.2 | 78.43
0 19.71 (B) | 55.29 (B) | 100.2 (B) | 120.9 (C) | 197.7 (C) | 410.5 | 78.56
5 19.70 (B) | 54.90 (B) | 99.53 (B) | 120.8 (C) | 197.4 (C) | 410.8 | 78.71
10 19.69 (B) | 54.51 (B) | 98.84 (B) | 120.7 (C) | 197.2 (C) | 410.9 | 78.83
15 19.68 (B) | 54.13 (B) | 98.20 (B) | 120.7 (C) | 196.9 (C) | 411.2 | 78.94
20 19.67 (B) | 53.76 (B) | 97.59 (B) | 120.6 (C) | 196.6 (C) | 411.3 | 79.06
25 19.67 (B) | 53.38 (B) | 97.01 (B) | 120.5 (C) | 196.4 (C) | 411.5 | 79.18
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Table 6 — The effects of the variation of engine location on the natural frequencies and
flutter results of T2

;Oéﬁtiﬁwr; w; (rad/s) Flutter | Flutter

o g_n speed | freq
om wing oy » s o) s (m/s) | (rad/s)
root (m)

6.41 | 18.50 (B) | 41.36 (B) | 75.43 (C) | 103.9 (B) | 217.9 (B) | 344.0 | 72.58
5.48 | 19.11 (B) | 44.68 (B) | 86.04 (C) | 101.1 (T) | 215.4 (C) | 358.0 | 85.84
5.15 | 19.47 (B) | 49.18 (B) | 95.22 (B) | 104.4 (C) | 206.3 (C) | 380.0 | 80.77
437 |19.71(B) | 55.29 (B) | 100.2 (B) | 120.9 (C) | 197.7 (C) | 410.5 | 78.56
3.66 |19.81(B) | 59.88 (B) | 107.5 (B) | 139.8 (T) | 194.9 (C) | 413.5 | 78.85
2.05 | 19.86 (B) | 62.64 (B) | 117.7 (B) | 160.4 (T) | 200.5 (C) | 415.8 | 80.12
222 | 19.88(B) | 63.85 (B) | 125.8 (B) | 181.8 (T) | 214.8 (C) | 416.3 | 81.67

For the transport airliner Ts, the first five natural frequencies due to the variation of engine mass and its
location are presented in Tables 7 and 8 respectively. It should be noted that the transport airliner Ts
has a single engine on each of its wings. It can be seen from Table 7 that the natural frequencies are
virtually unaltered due to the variation of engine mass. Furthermore, the first, second and third modes
are always bending while the fourth and fifth modes are always torsional. The original engine mass
corresponding to the unmodified T; wing gives the flutter speed as 275 m/s, which is virtually unaltered
when changing the engine mass by +25%. Table 8 shows the results for modal and flutter
characteristics when the engine position is altered. As for modal behaviour, it can be seen from this
table that the first and the second modes of T3 are always bending and the fifth mode is always torsional.
The third mode changes from bending to coupled and then to torsional as the engine is moved towards
the wing root, but it remains bending when it is moved towards the wing tip. The fourth modes change
from torsional to coupled and then to bending as the engine is moved towards the wing root. However,
the fourth mode remains torsional when the engine is moved towards the wing tip. The flutter speed
remains around 275 m/s which in fact corresponds to the case of unmodified Ts wing, but the flutter
speed drops around 9% when the engine is moved towards the tip by 1.6m from its current position. By
contrast, when the engine is moved towards the wing root, the flutter speed is virtually unaltered.
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Table 7 — The effects of the variation of engine mass on the natural frequencies and

flutter results of Ts wing

FLUTTER OF TRANSPORT AIRCRAFT WINGS

Variation @ (rad/s)
in Flutter | Flutter
Engine speed | freq

mass 121 2 3 4 s (m/s) | (rad/s)

(%)
-25 12.00 (B) | 35.08 (B) | 69.74 (B) | 72.78 (T) | 112.5(T) | 2715 | 44.48
-20 12.00 (B) | 34.98 (B) | 69.27 (B) | 72.77 (T) | 112.4(T) | 272.5 | 44.17
-15 12.00 (B) | 34.88 (B) | 68.80 (B) | 72.76 (T) | 112.2(T) | 273.5 | 43.88
-10 11.99 (B) | 34.78 (B) | 68.35 (B) | 72.75(T) | 112.0(T) | 274.0 | 43.71
-5 11.99(B) | 34.68 (B) | 67.90 (B) | 72.75(T) | 111.8(T) | 275.0 | 43.44
0 11.99(B) | 34.59 (B) | 67.47 (B) | 72.74 (T) | 111.6 (T) | 275.0 | 43.16
5 11.99(B) | 34.49(B) | 67.04 (B) | 72.74 (T) | 111.5(T) | 276.0 | 43.14
10 11.98 (B) | 34.39 (B) | 66.63 (B) | 72.73 (T) | 111.3(T) | 276.5 | 42.99
15 11.98 (B) | 34.29 (B) | 66.23 (B) | 72.73 (T) | 111.1 (T) | 277.0 | 42.87
20 11.98 (B) | 34.19(B) | 65.83 (B) | 72.73 (T) | 111.0(T) | 277.5 | 42.74
25 11.98 (B) | 34.09 (B) | 65.45 (B) | 72.73 (T) | 110.8 (T) | 277.5 | 42.71

Table 8 — The effects of the variation of engine location on the natural frequencies and

flutter results of T3

Location o (rad/s) Flutter | Flutter
of Engine
fromwing | g, @ s o1 o5 S(Fn%i? (rf£3?5>
root (m)
599 | 11.83(B) | 31.01(B) | 63.16 (B) | 70.09 (T) | 105.1 (T) | 257.2 | 36.61
520 | 11.93(B) | 32.98 (B) | 64.45 (B) | 71.65 (T) | 107.8 (T) | 279.3 | 42.91
4.40 | 11.99 (B) | 34.59 (B) | 67.47 (B) | 72.74 (T) | 111.6 (T) | 280.0 | 43.16
3.29 | 12.02(B) | 35.94 (B) | 72.95(C) | 73.95(C) | 118.1 (T) | 284.4 | 42.88
218 | 12.04(B) | 36.47 (B) | 73.92 (T) | 77.49 B) | 122.1(T) | 284.7 | 42.98

For the transport airliner T, the first five natural frequencies due to the variation of engine masses and
locations are presented in Tables 9 and 10 respectively. It should be noted that the transport airliner T,
has two engines on each of its wings. Note that, the masses of each of the two engines are increased
by the same amount, as indicated in Table 9. Clearly it can be seen from Table 9, that the natural
frequencies variation is quite small due to the variation of the engine masses from -25% to +25%. It can
also be seen from Table 9 that the first, second and fourth modes are always bending while the third
and fifth modes are always torsional within the range of engine mass variation. The changes in natural
frequencies and flutter speed due to +25% engine mass variations are rather inconsequential. However,
the effects of the engine locations on the free vibration and flutter characteristics of T4 wing shown in
Table 10 reveal somehow a different picture for flutter speed when both the inboard and outboard
engines are brought nearer to the fuselage and when the outboard engine is moved towards the wing
tip. It should be noted that out of all the four aircraft wings analysed, the T4 wing is the heaviest both in
terms of empty wing mass as well as the two engine masses carried by each of the wings. For modal
characteristics, the first, second and fourth modes of T4 wing are always bending while third and fifth
modes are always torsional. However, when the outboard engine is moved by only 0.5 m from its
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original position towards the wing tip, flutter speed increases by around 20% relative to the flutter speed

of the baseline wing.

Table 9 — The effects of the variation of engine mass on the natural frequencies and

flutter results of T4 wing

FLUTTER OF TRANSPORT AIRCRAFT WINGS

Variation wi (rad/s) Flutter | Flutter
in Engine speed | freq
mass (%) ! 2 w3 1 s (m/s) | (rad/s)
-25 9.324 (B) | 26.98 (B) | 45.26 (T) | 73.25(B) | 94.09 (T) | 386.7 | 46.50
-20 9.254 (B) | 26.86 (B) | 45.26 (T) | 73.01 (B) | 94.09 (T) | 386.5 | 46.50
-15 9.186 (B) | 26.75 (B) | 45.26 (T) | 72.77 (B) | 94.09 (T) | 386.3 | 46.50
-10 9.118 (B) | 26.64 (B) | 45.26 (T) | 72.54 (B) | 94.09 (T) | 386.2 | 46.50
-5 9.052 (B) | 26.54 (B) | 45.26 (T) | 72.30 (B) | 94.09 (T) | 386.0 | 46.50
0 8.988 (B) | 26.45 (B) | 45.26 (T) | 72.06 (B) | 94.09 (T) | 385.8 | 46.50
5 8.924 (B) | 26.35(B) | 45.26 (T) | 71.83 (B) | 94.09 (T) | 385.7 | 46.50
10 8.862 (B) | 26.26 (B) | 45.26 (T) | 71.59 (B) | 94.09 (T) | 385.5 | 46.50
15 8.801 (B) | 26.18 (B) | 45.26 (T) | 71.36 (B) | 94.09 (T) | 385.5 | 46.50
20 8.741 (B) | 26.09 (B) | 45.26 (T) | 71.13 (B) | 94.09 (T) | 385.3 | 46.50
25 8.682 (B) | 26.01 (B) | 45.26 (T) | 70.89 (B) | 94.09 (T) | 385.2 | 46.50

Table 10 — The effects of the variation of engine location on the natural frequencies and

flutter results of T4

Engine | Engine @ (rad/s)

1 from | 2 from Flutter | Flutter
wing wing speed | freq
root root w1 07, 3 s s (m/s) | (rad/s)
(m) (m)
17.6 5.6 8.811 (B) | 26.69 (B) | 45.07 (T) | 70.65 (B) | 94.31 (T) | 479.5 | 29.14
17.6 4.6 8.814 (B) | 26.73 (B) | 45.08 (T) | 72.67 (B) | 94.35(T) | 476.6 | 29.20
17.1 7.4 8.972 (B) | 26.30 (B) | 45.22 (T) | 66.62 (B) | 94.00 (T) | 389.7 | 46.51
17.1 5.6 8.988 (B) | 26.45 (B) | 45.26 (T) | 72.06 (B) | 94.09 (T) | 385.8 | 46.50
171 46 | 8.991(B) | 26.48 (B) | 45.28 (T) | 74.15(B) | 94.13 (T) | 385.8 | 46.50
15.8 7.4 9.400 (B) | 25.92 (B) | 45.82 (T) | 68.11 (B) | 93.73(T) | 433.4 | 42.99
15.8 4.6 9.418 (B) | 26.08 (B) | 45.87 (T) | 72.88 (B) | 93.82 (T) | 428.2 | 42.99
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6. Conclusions

Applying the dynamic stiffness method and Theodorsen type two-dimensional unsteady aerodynamics,
the free vibration and flutter characteristics of four transport airliner wings have been investigated. The
normal mode method in conjunction with the generalised coordinates has been utilised in formulating
the flutter problem. Natural frequencies, mode shapes, flutter speeds and flutter frequencies for the
wings are presented and the results are discussed. Next, a detailed parametric study on the effects of
the variation of engine mass and location on the free vibration and flutter characteristics has been
carried out. The engine masses are varied between +25% and -25% in steps of 5% whereas the engine
locations are varied approximately between +2m and -2m in small steps from their current locations
depending on the type of the aircraft. The results show that the natural frequencies, mode shapes,
flutter speed and flutter frequency can be changed to an appreciable extent for some of the airliner
wings to avoid or alleviate aeroelastic problems. Although some of the natural frequency variations due
to engine mass and location variations are small, even these small variations could be important to
solve frequency attenuation problems and avoid flutter and resonance phenomenon. The investigation
provides useful information to aircraft designers to make some engineering judgement on the engine
mass and location, from an aeroelastic standpoint. The research carried out here on metallic wings,
can be extended to composite wings.
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