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Abstract

This paper examines challenges faced by aviation industry stakeholders in developing complex systems within
a decentralized environment. As aircraft, engine, and equipment manufacturers grapple with multinational
structures and geographically dispersed teams, traditional document-centric approaches prove cumbersome.
This paper explores potentials of Model-Based Systems Engineering (MBSE) to address these challenges.
MBSE minimizes document reliance, enhances collaboration, and offers a centralized system model to ensure
consistency. The approach not only promises efficiency gains but also a less segmented development process
in the intricate landscape of the aerospace industry. The central research question investigates the successful
integration of aircraft design and MBSE to navigate the complexities of distributed system development. This
inquiry sets the stage for introducing a model-based multidisciplinary method and illustrating its application
through a use case.
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1. Introduction
The aviation industry is faced with the challenge of developing complex systems which fulfill the re-
quirements of safety, efficiency and performance [1]. Complex systems consist of a large number
of elements that interact through diverse and non-linear relationships both with and independently of
each other [2]. The development process of such systems requires a finely balanced collaboration
between different departments and development teams in order to ensure the frictionless interaction
and extremely important coordination of the numerous interfaces.

Until now, the development of aircraft systems has been managed through the use of documents [3].
This means that separate documents such as detailed technical specifications, design descriptions
or test plans are created in each discipline, which serve as input for the downstream development
departments. However, this approach carries a number of risks, particularly inefficiencies and errors,
which can also affect development time and costs. The greatest difficulty is coordinating and man-
aging the interdependencies between the documents and making the current development status
available to all of their participants [4, 5].

One approach that has recently emerged as promising for the development of complex systems is
Model-Based Systems Engineering (MBSE). MBSE aims to use a central system model [6] to mini-
mize the documentation effort required in the classical development process and to reduce the effort
required to maintain consistency at the same time. These models are created using the modeling lan-
guage SysML. SysML stands for Systems Modeling Language and is a graphical modeling language.
The use of these formal modeling languages minimizes misinterpretations, simplifies simulation and
analysis, supports model reuse, and ensures development consistency. At the same time, the model
enables efficient management of different solution variants and improves the traceability of changes.
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Above all, the model is intended as an effective knowledge repository that captures the knowledge
of all participants in a standardized, machine-readable form [7]. The ultimate goal is to store all infor-
mation in one central location [1, 4, 6–10].

However, conventional MBSE methodologies are not convenient for aircraft development. One central
issue that is missing, is an approach for task assignment and distribution. The parallel development
of different subsystems requires seamless coordination and information transfer, taking into account
the dependencies and interfaces between the systems. For example, requirements must be contin-
uously exchanged between teams and subsystems. The goal is a consistent development process.
Without this assignment process, model-based aircraft design is not sufficiently feasible.

Since model-based development is to be retained due to its many advantages, an extension of the
MBSE methods is required. The goal of this paper is to develop such an extension, especially for
task assignment. The central research question is therefore: How can an aircraft development be
successfully established using the MBSE approach in order to meet the challenge of decentralized
system development in the aerospace industry?

2. State of the art
Aerospace companies face the difficult challenge of continuously optimizing the development of new
aircraft and their systems to meet increasing customer requirements and tough competitive condi-
tions. Reducing development and production cycles as well as the associated costs over the entire
lifecycle of an aircraft is a constant challenge. The completion of an airplane is the result of a complex
compromise that reflects the knowledge and experience of many engineers in an aircraft manufac-
turer’s multidisciplinary development groups [11]. The design and construction of aircraft and their
systems requires the integration of a common product and process model distributed across multiple
sites and/or suppliers [12].

2.1 Aircraft Development Process
The aircraft development process is a complex and iterative process that goes through several phases
to build a functional and safe aircraft. In the specification phase, aircraft configuration studies are
conducted to determine appropriate technologies and technical requirements. This is followed by
the iterative concept phase in which conventional, innovative and revolutionary aircraft concepts are
evaluated for technical and economic feasibility. The selected aircraft configuration is then further de-
veloped in the preliminary aircraft design. This involves several specialized departments that design
and optimize the airframe and aircraft systems grouped by ATA chapters [13]. This process is iterative,
allowing for continuous improvements and adjustments. In the detailed aircraft design, the individ-
ual assemblies are finally designed in detail, whereby development tasks can also be outsourced to
suppliers. Close cooperation between the various development teams and suppliers is essential to
achieve an optimal result. MBSE is becoming increasingly important as an interdisciplinary approach
to managing this complexity.

2.2 Model-Based Systems Engineering
The International Council on Systems Engineering (INCOSE) defines MBSE as „the formalized ap-
plication of modeling to support system requirements, design, analysis, verification and validation
activities that begin in the concept phase and extend throughout development and later lifecycle
phases“ [8]. Unlike the document-based SE approach, which has a number of challenges such as
managing document dependencies, the goal of MBSE is to minimize written documentation [4, 5].
At the same time, a central system model should reduce the effort required to maintain consistency.
All information relevant to the development of the system is contained in this model. This visionary
system model, see Figure 1, would contain all information so that it could be considered as "single
source of truth". Due to several factors, such as the size of the model and usability, such a visionary
system model is practically impossible to implement [7]. In practice, there is an interaction between
the SysML system model and the discipline-specific models, see Figure 1. The different discipline-
specific models describe different aspects of the system in detail. The SysML system model, on the
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other hand, incorporates certain parts of these discipline-specific models. The goal is to represent
the underlying understanding of the system. Engineers view the model from their discipline-specific
perspective, which gives them all the relevant data about the system. Avoiding media disruption and
centralizing information relevant to the development of the system in a system model makes it eas-
ier to maintain consistency and enables efficient cross-referencing between different aspects of the
model.

Figure 1 – Abstract representation of the system model, adapted from [7]

The modeling triad of language, tool and method plays a central role in MBSE. Language standards
define which elements should be used and how their syntax and semantics are designed, while
methods provide guidelines and recommendations for the modeling process. Tools are used to de-
sign and efficiently manage the complex system models. They provide the practical basis for applying
the model-based approach. Well-known tools include Cameo Systems Modeler from Dassault Sys-
tèmes, Enterprise Architect from SparxSystems, Rational Rhapsody from IBM, Visual Paradigm from
Visual Paradigm, Papyrus from Eclipse and Capella from PolarSys. The advantage of these tools
is that they allow developers to explicitly represent their abstract and conceptual models and to ex-
change information on this basis. Furthermore, they are designed to actively support developers in
the correct use of the modeling language. The effective coordination and interaction of these three
pillars is important for an effective work in the field of MBSE [14].

In recent years, several methods have been established in the field of systematic system develop-
ment, as well as some methodologies that are defined as a summary of related processes, methods
and tools according to [14]. These methods and methodologies include SYSMOD [15], OOSEM [14],
Harmony SE [14], Vitech MBSE Methodology [14, 16], State Analysis [14] and ARCADIA [17]. These
methodologies can be divided into two categories, as described by [5]. The first category includes
methodologies that provide concrete assistance in building a system model, such as MagicGrid and
SYSMOD. They have a strong focus on structured modeling. The second category includes method-
ologies that are applicable not only to MBSE, but also to SE in general, such as IBM’s Harmony SE
methodology. These methodologies provide tools and guidelines that support the entire development
process.

Despite their diversity, most methods share common steps that correspond to the left branch of the
V-model. These include the identification and analysis of requirements, the identification of functions
and the derivation of architectures from functional and non-functional requirements that describe the
system structure of the system from both a logical and physical perspective. The only exception is
the OOSEM methodology, which skips the functional development step.
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2.3 V-Model
The V-Model is the most established and widely used process model for the development of com-
plex systems in the aerospace industry. Basically, V-models serve as a framework for the interaction
of development processes and offer a targeted linking of the necessary tasks in the SE [7]. The
characteristics of the V-model basically comprise the three central steps: Requirements Engineer-
ing, Decomposition and Integration and Verification and Validation. The requirements development
includes the systematic elicitation of requirements and the management of requirements changes.
Decomposition and Integration are necessary to capture the high complexity of today’s systems and
make it manageable. This process takes into account the system environment and the desired inter-
action of the system of interest (SoI) to be developed within the higher-level system of systems (SoS).
The complexity is reduced by breaking it down into manageable elements, with the subsequent ac-
tivities focusing on the definition of solutions.

The RFLP concept is often used in the context of the V-model. The abbreviations stand for the
following as can be seen schematically in Figure 2:

1. Requirements: Requirements are precise descriptions of the functions, services and con-
straints that a system must satisfy. They can be divided into functional requirements, which
define the necessary system functions and non-functional requirements, which define quality
characteristics such as performance, reliability and usability.

2. Functions: The identification of the functions that the system must perform to meet the defined
requirements is a detailed specification of the system’s functionality.

3. Logical System Architecture: The logical system architecture abstractly describes the struc-
ture of the system by defining the logical elements and their interactions. It determines how the
functions of the system are distributed among the different elements.

4. Physical System Architecture: In contrast, the physical system architecture describes the
actual implementation of the system and refers to the physical distribution of components.

If a solution element is too complex, it is treated as a subsystem and divided into subordinate el-
ements. Verification and Validation monitors that the properties of the system are continuously
checked. This ensures that the developed system meets the requirements and satisfies the needs of
the stakeholders.

Figure 2 – RFLP Concept within the V-Model,
adapted from [7]

Figure 3 – V-Model for general aircraft
development, adapted from [18]

For model-based aircraft development, the V-model of the RFLP approach has been extended by
Dollinger et al. [19] as well as Esdras and Liscouët-Hanke [18] to meet the requirements of aircraft
design. Due to the complexity of an aircraft, it is divided into smaller subsystems. At each stage
of development, the methodology goes through the four RFLP steps. The approach of Esdras and

4



AIRCRAFT SYSTEM DESIGN: A MODEL-BASED AND COLLABORATIVE APPROACH

Liscouët-Hanke [18] emphasizes the step-by-step definition of solutions, starting with functions, which
are then realized through logical and finally physical solution elements. New requirements may arise
at the next system level as the physical architecture evolves.

Furthermore, the V-model is very well known in the document-centered approach in the aviation in-
dustry. The CS-25 [20] refers several times to ARP 4754B [21] in the development of safety-critical
aircraft systems. The guideline is also based on a V-model, which shows the integration of devel-
opment and safety. This V-model is relatively similar to the concepts already presented, but not
completely congruent [22]. The ARP approach has also not yet been fully implemented on a “model-
based“ basis. As we are concentrating on model-based development in this paper, we will only deal
with the RFLP approach and leave the ARP process out of this paper.

3. Scientific Problem and Research Question
In this chapter, the research problems are explained and the scientific questions will be formulated.
There are two separate problems, which will be independently addressed in Section 3.1 and Sec-
tion 3.2.

3.1 Tool Adaptation - Customizing the Connections
The Cameo Systems Modeler tool from Dassault Systèmes was used for model-based development
in this paper. This tool is one of the most prominent and widely used on the market and has the
advantage of being flexible and offering a great deal of freedom. During the model-based develop-
ment of a new system according to the RFLP concept, we found that the traceability between the
various elements (requirements, functions, logical and physical elements) is lost most of the time. In
a final system architecture, it is difficult to trace which requirement, function or logical element led to
which component in the system architecture. It was often not possible to understand why a particular
component has been selected in the final system architecture. The reason for this is that Cameo, like
most other tools, is based on the SysML language. This language consists of a limited number of
standard connections that can be set between elements such as requirements, etc. So-called "trace"
connections are often used to indicate the origin of an element. However, by using only one type of
connection, information that is important for traceability is lost. To prevent this, the connections in the
Cameo tool must be adjusted. By adjusting the relationships between the elements, a higher level of
granularity is achieved. This allows a more precise assignment of requirements, functions and log-
ical elements to the corresponding components. By implementing these enhancements, we aim to
improve the traceability and transparency of the modeling process, thereby increasing the efficiency
and quality of aircraft development.

The customization of the connections not only makes the origin information transparent, but also
makes it possible to make automated queries to the model. For example, it is possible to check
whether all requirements are assigned to at least one element. This automation helps to ensure the
completeness and consistency of the model. Given the potential benefits of automation and improved
modeling efficiency, the following scientific question arises: How can the Cameo tool be adapted
to effectively implement the RFLP approach in practice? Section 4 covers this topic in detail.

3.2 Assignment Process
When examining the RFLP concept in the literature, it was found that this concept is typically only
demonstrated on monolithic systems. A system is called monolithic if it is considered as a unit without
a clear division into individual modules and levels. However, such a simplified view is not sufficient
in the aviation industry, where complex systems with multiple hierarchical levels are common. This
means that different teams work in parallel on the design and implementation of different subsystems
that together form the overall system (aircraft). These parallel activities save time and speed up the
development process, but also require careful coordination and integration to ensure that all systems
interact smoothly. These challenges are not limited to the aerospace industry, but can also be found
in other industries where complex systems are developed by different teams. It is therefore obvious
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that a methodological extension of RFLP concepts is needed to meet the challenges of multi-level
systems, especially in contexts such as aircraft development.

The extension of the RFLP concept to the requirements of multi-level systems is accompanied by an
allocation of elements between different systems and/or development teams. Assignment is critical
because the complexity of the systems and the multinational organizational structures of the compa-
nies involved require a clear and seamless transfer of elements for a consistent development process.
The assignment of elements is therefore a crucial key point for effective collaboration and integration
in the development of highly integrated systems.

Against this background, the following scientific question arises: How can an effective assignment
of elements (requirements, functions, logical and physical elements) between different sys-
tems in model-based aircraft development be defined and implemented to ensure a smooth
workflow, clear responsibilities and improved coordination? This question is thoroughly ad-
dressed in Section 5.

4. Tool Adaptation
This chapter deals with the first scientific question formulated in the previous chapter. It elaborates
the customizations within the Cameo tool to address the challenge outlined in Section 3.1.

4.1 Method
As explained in detail in Section 2.3, the development of a (sub)system requires various elements
such as requirements, functions, logical and technical elements. These elements often arise during
the development process due to various reasons. In order to be able to understand which source led
to the creation of the individual elements, connections are made between the elements. To answer
the first scientific question, the following section first evaluates what connections are needed between
the various elements. It then explains how to integrate the new connections into the Cameo model.

4.1.1 Types of elements and their relations
The development of a new system (level n) usually starts with a list of requirements. The require-
ments can either be derived from a superordinate system (level n-1), from a system at the same
level (level n) or a subordinated system (level n+1). Different reasons can lead to a requirement, see
Figure 4. They can be:

1. describe a customer need (use case),

2. describe an intended system behavior or its performance

3. describe a functionality required for the operation of a specific system element

4. reflect a design constraint or guideline imposed by regulations, standards or design guidelines
(Regulation)

5. reflect the result of a safety analysis (see "Safety Analysis"), or

6. specify another requirement (see "Requirement").

Tool support is essential to make the exact origin of requirements transparent during development.
Requirements are never created out of the blue, but are always derived from one of the above causes.
Therefore, the origin of each requirement must be clearly stored in the tool. As most requirements
are derived from one of the above causes, the "derived" link between the origin and the requirement
is set in the system model. The only exception is when a requirement specifies or refines another
requirement. In this case, the "refines" relationship is used. Relationships are always set from the
requirement to its origin, see Figure 4. By setting the relationship from the requirement to its origin,
traceability is facilitated and the question of "why" is stored in the model.
Requirements can in turn be fulfilled directly via functions, see Figure 5. A function describes a sys-
tem task in an abstract and solution-neutral way. In addition to the direct fulfillment of a requirement,
functions can also be created indirectly.
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Figure 4 – Possible reasons that lead to a requirement

They can be either

1. decompose another function, or

2. be derived from a logical or technical element.

In order to trace the origin of a function in the model, different relationships can be used depending
on the origin. If a function directly fulfills a requirement, the "implements" connection is selected, see
Figure 5. However, if an abstract function is further decomposed, the "decomposition" connection
is used and if the function is derived from a logical or technical element, the "derived" connection is
used as with the requirements. A function derived from a logical or technical element always occurs
when a design decision has been made. For example, the decision that a fuel cell system (logical
element) will provide the necessary electrical power in future aircraft can lead to a function called
"Manage Fuel Cell Membrane Temperature" being derived.

Figure 5 – Possible reasons that lead to a function

Logical Elements describe the system components in an abstract and conceptual way and can
be combined to form a logical system architecture that represents the structure of the system to
be developed. This architecture consists of an arrangement of logical elements that perform the
functions of the system.
As shown in Figure 6, logical elements can occur in many ways:

1. They can fulfill a requirement directly,

2. can be allocated from a function, or

3. can be derived from another logical element.

Depending on the origin of a logical element, different links are used. If the element directly im-
plements a requirement, the "implements" association is used. If the logical element is intended to
perform a specific function, the "allocate" link is used. However, if the element is derived from another
logical element, the "decompose" link is taken, same as for functions.
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Figure 6 – Possible reasons that lead to a logical element

Technical Elements represent the actual components of the system. The elements are used to
develop the physical architecture of the system. The architecture in turn influences the underlying
layer. The elements can occur in two different ways. Either

1. they arise directly from a requirement, or

2. they realize a logical element

Depending on the cause of a technical element, different links are used. If a requirement is directly
satisfied by a technical element, the "implements" link is used. If, on the other hand, a technical
element realizes a logical element, the "realizes" relationship is used.

Figure 7 – Possible reasons that lead to a technical element

4.1.2 Possible paths from a requirement to a technical element
As just described in detail, there are several ways that can lead to a component. The different ways
can be seen schematically in Figure 8. A basic distinction can be made between the following:

• Option 1: Describes the "ideal" path from requirements definition through functional derivation
to logical and then physical element development.

• Option 2: A requirement can be implemented directly through a logical element. This is done
by setting the "implements" relationship.

• Option 3: A requirement can be implemented directly through a technical element. As with
option 2, this is done by setting the "implements" relationship.

• Option 4: A requirement can lead to a technical element through several intermediate steps.
For example, further functions can be derived from logical elements, which in turn refer to a
logical element.

• Option 5: A requirement can be further specified by a new requirement using the "refines" link.

• Option 6: A function is decomposed into at least one further sub-function, which in turn is
assigned to a logical element

• Option 7: A logical element is divided into at least one other logical element
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Figure 8 – Possible paths from a requirement to a technical element

In addition to the options described above, there are numerous other possibilities resulting from the
various combinations. The matrix shown in Figure 9 provides a clear overview of how the various
elements can be combined. The matrix can be read as follows: The source element is shown in the
rows and the target element in the columns. The connections point from the source element to the
target element. For example, a requirement (column) can be refined and derived from other logical
elements, processes, regulations, safety analyses and use cases (row), as shown in Figure 4 and 9.
This flexibility in the relationship allows for a wide range of potential development paths.

Figure 9 – Matrix with the possible connections between the different elements

4.1.3 Adaptations to SysML
In order to improve the comprehensibility and usability of the tool, specific adaptations to SysML have
been made as part of this work. For example, both element stereotypes and connection stereotypes
have been renamed to more clearly define their respective functions. These changes can be found
in Table 1, which shows the different element types as well as the different connections and their
definitions.
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Table 1 – Terminology

Terminology Definition

Element Types
Requirement Requirements are formal, structured specifications that clearly

describe what the system to be developed must be able to do,
which boundary conditions apply and which system properties
are desired [7]

Function Describe the purpose of the system in an abstract and solution-
neutral way

Logical Element Describe the components of the system in an abstract way
Technical Element Represent the actual components of the system

Connection Types
Implements Refers from a requirement to an element that fulfills this require-

ment
Allocate Refers from a function to a logical element
Realizes Refers from a technical to a logical element
Decomposition Breaks an element down into sub-elements
Derived Refers from a requirement to its origin
Refines Refines a requirement
Assign Describes the assignment of an element from one system to an-

other
Accept Accepting the assignment of an element
Reject Rejecting the assignment of an element

A potential disadvantage of this adaptation could be the large number of new connections. The more
options, the more difficult it becomes to manage them. It is also possible that unwanted connections
are inserted. To prevent this, the tool has been modified in a way that only allowed connections
between two elements can be set.
As mentioned in Section 3.1, another benefit of this clear naming is the ability to generate automated
queries directly in the model. The specific naming of links makes it possible to search for specific
relationships between elements. For example, requirements can have only "derived" or "refines"
connections to show the origin of the requirement. This unambiguous mapping makes it possible to
formulate queries that search the entire model and check whether each requirement has at least one
"derived" or "refines" relationship. If this is not the case, the affected requirements can be automat-
ically displayed in a table. The new element types can also be used to create specific tables that
display, for example, all the functions in the model. This automation significantly reduces the system
architect’s workload, as potential errors or inconsistencies can be quickly identified and resolved.
This not only contributes to modeling efficiency, but also increases the reliability and quality of the
overall system.

4.2 Example of application
To illustrate the benefits of the tool adaptation, this chapter presents an example of a possible devel-
opment path. The thermal management system (TMS) of a fuel cell system (FuCS) is used as an
example. Assuming that the FuCS provides the electrical power for the propulsion in future aircraft, it
is part of the thrust generation system (TGS). A schematic representation of the FuCS can be found
in Figure 10.
Polymer electrolyte membrane (PEM) fuel cells have proven ideal for mobile applications. These
cells efficiently convert chemical energy from hydrogen and oxygen into electrical energy and heat
without producing pollutants or noise [23]. The functionality of a PEM fuel cell is described in detail
in [24, 25]. In order to provide sufficient electrical power to the systems on board an airliner, voltages
in excess of 200 V are required. Since a fuel cell generates voltages between 0.6 - 0.7 V on average
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Figure 10 – Schematic structure of the FuCS

[25], the cells are connected in series, whereby the individual voltages add up and the total output
increases [26, 27]. These cells are called a fuel cell stack.
In addition to the fuel cell stack itself, other subsystems are required to generate power, collectively
referred to as the FuCS, see Figure 10. These include the hydrogen and oxygen supply, the water
module, the cooling system and the power electronics. To better understand the complex decision
and the resulting requirements and functions, an example from the development of a TGS for a future
aircraft is considered below. Let us assume that there is a requirement for thrust generation to be CO2
and N2O free. This requirement could then lead to the decision to use a PEM fuel cell to generate
the electrical power, see Figure 11.

Figure 11 – Example that shows how a requirement is derived into a technical element (option 6)
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The choice of a PEM fuel cell places additional requirements on the TMS. For example, excessive
conductivity of the coolant would cause a short circuit within the fuel cell stack. Therefore, there are
requirements to limit the conductivity of the coolant. This leads to the implementation of a specific
function, such as "Limit Coolant Conductivity at Fuel Cell Inlets". This function, in turn, may require
the assignment of a logical element, such as a deionisation (DI) filter, to ensure that the requirements
are met. This illustrates the complex interweaving of requirements, decisions and functions in the
development process of a highly integrated system.

5. Assignment Process
Another central problem, which was described in Section 3.2 is the missing assignment of elements
within the development process. Since no approach to this process has yet been described in the
literature, this chapter presents a possible approach. This approach must meet several requirements.
These include a seamless and unambiguous exchange of elements between systems/development
departments to ensure a consistent development flow from one development phase to the next. In
addition, the approach should include the need for traceability to ensure smooth interaction between
(sub)systems. Avoiding information loss throughout the design process is critical to achieving a highly
integrated and efficient aircraft architecture. The goal is to allow the different teams to work separately
on their respective (sub)systems, but to develop in a single model. This comprehensive approach is
designed to improve collaboration between different interdisciplinary teams to meet the complexity of
the aerospace industry.

5.1 Method
Due to the complexity of the overall aircraft system, the methodology includes a hierarchical sub-
division into different levels, each level contributing to the development of the overall system. An
advantage of this hierarchical structuring is that it provides a comprehensive framework for systemat-
ically dealing with the complexity of the overall system, thus promoting a more detailed and structured
approach to system development. The hierarchical structure shown in Figure 12 illustrates the re-
lationships between the different levels and shows the general development process along the left
branch of the V-model.

Figure 12 – RFLP specific V-Model for multi-level system development

5.1.1 Hierarchy Levels
The number of levels may vary from project to project. One option is the following structure:

• Level 0 (Aircraft Level): Represents the highest level, which includes the entire aircraft.

• Level 1 (System Level): Represents a system within the airplane.
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• Level 2 (Subsystem Level): Represents an individual subsystem within the system.

• Level 3 (Equipment): Represents the equipment systems or individual components within a
specific subsystem.

In this subdivision, level 0 is the top level and represents the entire aircraft. A decision made at
this level has a significant impact on subsequent levels. The aircraft systems defined in the physical
architecture are developed in parallel at the next level (level 1). This implies that the various devel-
opment steps, such as requirements analysis, functional development and derivation of the logical
and physical system architectures, are repeated according to the number of systems. From this level
on, the V-model expands into the third dimension, see Figure 12. Many of these systems also have
different interfaces to each other.
If a system is too complex, it can be broken down into further subsystems. A concrete example is
the TGS with the assumption that it is the level n system, see Figure 13. Assuming that a FuCS
provides the electrical power for the propulsion in future aircraft, the following levels result. The
FuCS is assigned to level n+1 (level (n+1).1) and provides electrical power to an electric motor (level
(n+1).2). This in turn drives a propeller (level (n+1).3). Due to its complexity, the FuCS (level (n+1).1)
is divided into further subsystems (level (n+2).1.j). These include the fuel cell stack (level (n+2).1.1),
the air supply system (ASP) (level (n+2).1.2), the hydrogen supply system (level (n+2).1.3), etc.

1 Thrust Generation System1 Thrust Generation System[Package] bdd  ][ 

Power Supply and Distribution

«system»

Thermal Management System

«system»

Thrust Generation System

«system»

Hydrogen Supply System

«system»

Air Supply System

«system»

Power Electronics

«system»

Fuel Cell System

«system»

Fuel Cell Stack

«system»

Water System

«system»

E-Motor

«system»

A/C Systems

«system»

Aircraft

«system»

Propeller

«system»

Figure 13 – Schematic structure of the aircraft

5.1.2 Assignment Process
As explained in Section 4.1.2, during the development of (sub)systems, new functions or require-
ments may arise, often as a result of design decisions. If these cannot be fulfilled by the (sub)system
under consideration, they can be assigned to other (sub)systems or components. The same applies
to requirements that are placed on a system to be developed. These come either from the higher-
level system (level n-1), from a system at the same level (level n) or a subsystem (level n+1). For the
purpose of clarity, the process is explained using a function assignment. However, it also applies to
the assignment of requirements.

The development of a system (level n) begins with a set of functions that are assigned to the system.
These functions are called "Assigned Functions" (see Figure 14) and are reviewed by the respon-
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Figure 14 – General assignment process of a function

sible system architect. If a function is accepted and/or refined, it automatically becomes a "System
Function" of system n. All these system functions must be considered and fulfilled during the system
design phase. During system development, new functions may also be derived, often as a result of
design decisions ("Derived Functions"). If these functions cannot be performed by the system un-
der consideration, they can be assigned to other (sub)systems or components ("Assigned Function").

To illustrate this, we assume that a function of a subsystem (level n) is to be assigned to another
(sub)system, see Figure 15. The assignment can be done in different ways, depending on the func-
tion and the system structure:

• Direct assignment to a lower level (level n → level n+1)
If an assigned function describes the function of a lower level (n+1), it can be assigned directly,
see Figure 14.

Figure 15 – Extended assignment process
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• Preliminary assignment to the overall system (level n → level n-1)
If the function is to be performed by another subsystem within the same system, but it is not
yet clear which subsystem this will be, the function can be provisionally assigned to the overall
system (level n-1), see Figure 15. In the initial phase, it is up to the system architect to determine
which subsystem should fulfill the function. This preliminary assignment allows flexibility in
decision making before a final assignment is made.

• Assignment to another system (level n → level n-1)
If the function is to be performed by another system, the function can be assigned directly to that
system. Cross-system assignment allows a clear definition of responsibilities between different
systems, as shown in Figure 15.

Figure 16 – Assigning a function to a logical element

The assignment process is implemented in the Cameo tool as follows. If a function is to be assigned
to another system, the first step is to set up an "assign" relationship between the function and the
logical element of the assigned (sub)system, see Figure 16. Using a table automatically generated
in Cameo, the assigned function is displayed to the system architectures of the assigned system (L1
system A). The system architect can now decide whether to accept the function, making it a product
function, or reject it. The rejected function, together with a reason for the rejection, is displayed to the
system architect of the original system via a table, see Figure 17.

Figure 17 – Function assignment overview for the system architect

5.2 Example of Application
In order to better illustrate the assignment process and to deepen the understanding, the assignment
process is explained in the following chapter using an example. The assignment of functions within
the FuCS to be integrated into the aircraft architecture of future aircraft is used as an example. The
schematic structure can be taken from Figure 10 or Figure 13.
The oxygen supply on the cathode side is considered below as an example of function assignment.
A compressor is used to compress the ambient air to the required pressure level. Since the increase
in pressure is accompanied by an increase in temperature, the air must be cooled after compression
[28].

During the system design of the oxygen supply system, the system architects discuss and decide
with the FuCS architects that the temperature of the oxygen mass flow will be limited. The "Limit Air
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Flow Temperature" function is created. In this example, it is assumed that the architects decide to
use a liquid-cooled heat exchanger to cool the air mass flow. Based on this decision, other functions
are required. On the one hand, the coolant must be both supplied to and removed from the heat
exchanger ("Supply Coolant to Air Supply" and "Remove Coolant from Air Supply"). On the other
hand, the solution includes the limitation of the minimum cooling mass flow and the maximum inlet
temperature ("Limit Coolant Mass Flow" and "Limit Coolant Temperature at Air Supply Inlet"), see
Figure 18.

Figure 18 – Decomposition of the function "Limit Air Supply Temperature"

Due to the existence of a specialized subsystem, the TMS, within the fuel cell system, the oxygen
system architects decide not to develop these subfunctions themselves, but to hand them over to the
TMS team.

To do this, the functions described are assigned to the higher-level system, the FuCS. There, the
FuCS architect decides whether the functions should be forwarded to the TMS. This step ensures
that the responsible system architect at level n-1 remains informed about which functions are as-
signed to which subsystem. This procedure prevents the overall system architect from losing the
overview.

Once the functions have been assigned to the TMS team, it is up to the responsible TMS architect to
decide whether to accept or reject the functions. To make this process transparent, a table like the
one in Figure 19 can be used. By setting the relationship to "Accept", the TMS Architect accepts the
feature and is responsible for its implementation and fulfillment. As you can see in Figure 19 most
of the functions are accepted. Only the "Supply Coolant to Air Supply" function has not yet been
accepted. It is currently assigned to the TMS system, therefore its status is set to "Proposed". The
table also shows the original system in the "Origin" column. This allows the TMS system architect to
immediately see where the function originally came from.

Figure 19 – Example of a possible table in Cameo with all the details
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6. Summary and Conclusion
The aerospace industry is faced with the challenge of developing complex systems. These systems
consist of a large number of interacting elements developed by different departments. Coordinated
collaboration is therefore essential to ensure the smooth interaction and coordination of the numer-
ous interfaces. MBSE has proven to be a promising approach by using a central system model that
minimizes documentation effort and increases consistency. The development is carried out according
to the RFLP concept.

During the model-based development of a new system using this concept within the Cameo Systems
Modeler tool, it was found that traceability between the various elements (requirements, functions,
logical and physical elements) can be lost. It is often not possible to trace which requirement, func-
tion or logical element led to which component in the system architecture. This is probably due to the
fact that the tool is based on the SysML language, which is based on a limited number of standard
connections. Since the same connection type was often chosen between the elements, the infor-
mation is lost in terms of traceability. For this reason, the standard connections have been adapted
in this work, which increases the granularity. This adaptation significantly improves traceability and
transparency within the development process, thereby increasing the efficiency and quality of aircraft
development. In addition, automated queries can be made to the model to detect potential errors and
inconsistencies.

We found that the RFLP concept is typically demonstrated only on monolithic systems, while com-
plex systems with multiple levels of hierarchy are common in aerospace development. Therefore,
a methodological extension of RFLP concepts is necessary to meet the challenges of multi-level
systems. In particular, the effective assignment of elements between different systems and/or devel-
opment teams is crucial for efficient collaboration and integration in the development of highly inte-
grated systems. The extension presented here therefore primarily enables the effective assignment
of elements between the different departments of the company. This increases transparency and
minimizes the risk of misunderstandings and miscommunication. In addition, the continuous transfer
of elements enables an efficient exchange of knowledge between the different project phases and
thus facilitates the development of solutions. By clearly assigning tasks, duplication and inconsisten-
cies are avoided, coordination is improved and responsibilities are clearly defined. This results in a
more efficient way of working, better collaboration and a smoother development process.

So far, the RFLP extension presented in this paper has proven to be very successful. In the future, our
approach could help optimize the development of complex aircraft systems in the aerospace industry
and the challenges of distributed systems development.

7. Outlook
In addition to the tool adaptations and assignment process described in this paper, the consideration
of design decisions is another important aspect of the development process that is often overlooked.
During development, many decisions are made that are not currently considered in the current meth-
ods, but which have a significant impact on the final system architecture. The integration of design
decisions into a suitable method offers a promising perspective for the future. This allows decisions
made during the development process to be anchored in the model and stored permanently. The
benefits of such integration are many: it improves the documentation and traceability of decisions,
promotes a better understanding of the system, and facilitates future changes. These aspects will be
discussed in detail in a forthcoming paper.
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