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Abstract

Condition monitoring plays an important role in the safety and reliability of aero-engine. In this paper, a novel
deep multimodal information fusion (MIF) method is proposed, which integrates information from the physical-
based model and the data-driven model. Two deep Boltzmann machines are constructed for feature extraction
from sensor data and model simulation data, respectively. Whereby information from these two modalities is
mapped into a high-dimensional space and forms a joint representation, and then combined with a multi-layer
feedforward neural network to form the MIF model for real-time performance simulation and prediction.
Compared with the traditional single-modality method, the proposed method fuses the information of two key
modalities. The experimental results indicate that proposed method improves the accuracy of engine
parameters prediction.
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1. Introduction

Aero-engine is the core mechanical system that operates in harsh environment and extreme
conditions. Throughout the service life, aero-engine will inevitably degradation, leading to
abnormalities and unexpected failures, which seriously threaten its reliability [1-3]. Therefore, the
construction of a high-accuracy model is essential for operational safety and is the basis for further
development of engine health management system [4-5].

Modern civil aircraft will collect thousands of flight parameters in real time and some of them even
have a sampling frequency of 32Hz. For civil aero-engine, on-board parameters mainly include inlet
environmental parameters, thermodynamic parameters of gas components, mechanical vibration
parameters and oil system parameters. Due to the complex flight environment and the inherent
limitations of sensors, on-board measured data may be affected by sensor failures and acquisition
errors. Moreover, dynamic performance models, an important tool for engine simulation, are often
simplified, which leads to different characteristic errors at different flight phases. Thus, the traditional
model-based methods (MBMs) are difficult to meet the high-accuracy requirements, and it is prone
to the model-engine mismatch.

In recent years, artificial intelligence has gradually become a research hotspot in the field of aero-
engine performance prediction. The development of artificial intelligence has experienced early
artificial intelligence represented by expert systems, to machine learning represented by various
intelligent algorithms, and then to deep learning represented by deep neural networks. Where
machine learning achieves the combination of algorithms and data, the effectiveness of the model
depends not only on the correct choice of algorithms, but also on the quality and efficient
representation of the data. It is generally believed that data and feature representation determine the
upper limit of machine learning, and good models and algorithms only approximate this upper limit.
In machine learning, feature extraction is mainly carried out by relying on artificial experience and
prior knowledge, also known as feature engineering, which is suitable for situations with small
amounts of data. When entering the era of deep learning with big data as a prominent feature and
subsequent artificial intelligence, feature engineering has been difficult to meet the demand for
efficient feature extraction of large amounts of data. At the first ICLR meeting in 2013, representation
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learning was proposed, which does not rely on manual experience, can automatically simplify
massive and complex original data, eliminate invalid, redundant and even harmful information, and
refine effective information to form features. Further combined with tasks such as classification or
regression of artificial intelligence algorithms to achieve better model effects.

With the development of advanced sensor technology and intelligent algorithms, data-driven
methods (DDMs) have gained more attention, such as artificial neural network (ANN), support vector
machine (SVM) and deep learning, which do not require detailed mechanism knowledge of the
engine [6-10]. Lu et al [3]. proposed a kernel extreme learning machine for engine fault diagnosis.
Wang et al [11]. proposed a data-driven strategy for aero-engine degradation prognostic. The
significant advantage of the DDM is that it can learn information from raw big data about the current
state of the engine. However, noisy data and redundant information will inevitably interfere with the
performance of the DDM. In addition, the DDM ignores the physical meaning of the data, resulting
in insufficient generalization performance [12].

In this paper, a novel deep multimodal information fusion (MIF) method is proposed by combining
the advantages of MBM and DDM, which is applied to the real-time performance simulation and
prediction of civil aero-engines.

2. Methodology

The structure of the proposed Deep multimodal information fusion (MIF) model is shown in figure 1,
which consists of two (deep Boltzmann machine) DBM networks and an multilayer feedforward neural
network (MFNN). Compared with traditional neural networks, DBM is a deep learning model with
strong representation learning and classification ability. DBM 1 represents the DDM, which learns and
extracts features from the original noisy sensor data of the engine. And the input information of DBM
2 is the simulation results of PBM. We expect to jointly represent PBM information and original data
information in a high-dimensional space by combining DBM 1 and DBM 2. Then, the MFNN network
is used to learn and classify the joint representation information, so as to realize the detection and
isolation of engine faults.
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Figure 1 The graphical model of the MIF model for two modalities.

DBM is composed of multiple restricted Boltzmann machines (RBMs), where each layer captures the
complex and higher-order correlations between hidden features in the layer below. RBM is a
generative stochastic neural network proposed by Hinton and Sejnowski in 1986. An RBM is an
undirected graphical model with one visible unit layer vRD and one hidden unit layer hRF. Each visible
unit is connected with each hidden unit, and the units in the layer are independent of each other.
There is no edge connection between visible and hidden elements, and both visible and hidden
variables are binary variables with state {0,1}. The Contrast Divergence (CD) algorithm was used to
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estimate the parameters and determine the weight and bias vector.

Hidden

Figure 2 RBM network structure diagram.

RBM was originally developed for binary-valued data, the model defines the energy function E as
follows:

D F D F
E(v.h)==2av, -2 bjh =3 > viwh,
C T (1)
Where a; and b; are the biases of the visible unit vi and the hidden unit hj respectively. Wij is the
weight matrix of vi and h.
Considering that the Gaussian RBM model is more appropriate to modeling real-valued sensor
data, and its energy function is as follows:
D V. —a. 2 F D F i
E(v.h)= ‘Z#‘ijhj ‘ZZV_'Wijhj
T 20 j i O 2)
Where o; is the standard deviation of the Gaussian noise at the input node i. The joint probability
distribution p (v, h) of v and h is defined as:

p(v,h):%exp(—E(v,h))

3
Where Z =% vnhexp (-E (v, h)) is the partition function.
The conditional probability of the visible layer and hidden layer is:
D
p(h; =1)v) = sigmoid [bi + Ziwij ]
o (@)
p(vi |h): N(ai+aihjwij,cri) 5)

Where sigmoid = 1/(1+exp (-x)), N(x.¢*) denotes Gaussian distribution with mean 4 and variance o 2.
The model parameters are updated as’follows:

Aw; = E(Epdata (ivihj j_ ED ocel (ivihj D
o, o,
(6)
1 1
Agy; = E(Epdata [?Vi j ~ EDpocer (?Vi J]
] 1 (7)

Abij = E(Epdata (hj )_ ED o (hj )) )
Where ¢is the learning rate, Epdata(-) represents the expectation of p(h|v) given the input data, and

Epmodel(-) represents the expectation of p(v,h) given the model.

3. Proposed model structure

Based on the proposed deep multimodal information fusion (MIF) method, this paper fuses airborne
data and simulation data to achieve key parameter prediction in engine health diagnosis. Figure 3
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shows the logical relationship of the research content, which mainly includes flight data
preprocessing, multimodal information fusion model construction and error comparison analysis.
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Figure 3 The framework for information fusion simulation system.

4. Experimental study

The copyright statement is included in the template and must appear in your final pdf document in
the position, style and font size shown below. If you do not include this in your paper, ICAS is not
allowed and will not publish it.

4.1 Error analysis of flight simulation data

Before the error analysis, this study conducted the detection of duplicate data on the original data
based on the Sorted Neighborhood Method (SNM). The research idea is as follows: First, the key
values used in data set sorting are determined according to the knowledge and experience of experts
in the data field. In this paper, since the flight data is time series data and there are no other attribute
values, the data at a certain moment is randomly selected as the key values. Secondly, traverse the
data set and generate sorting key values for each record; Then, the records are sorted according to
the key values of the records, so that different duplicate records are theoretically located near each
other after sorting. Finally, a fixed size sliding window is used for repeated detection of the data set.
The principle of sliding window is shown in the following figure. The original flight data in this paper
includes environment and engine related information, a total of 68 parameters are derived, and the
sliding window size is set to 12 in the SNM.

Current window

- 12 >

-t 12 |
Next window

Figure 4 Sliding window mode.

Generally speaking, the dynamic performance model of aero-engine is provided to the user together
with the engine, but this kind of performance simulation model can not fully match the actual engine
to some extent. On the one hand, the model is built on the basis of many idealized assumptions,
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such as the gas is regarded as a complete gas and treated in one dimension, ignoring complex
combustion and heat transfer models. On the other hand, the engine will deteriorate during use,
causing the performance to deviate from the ideal design state. Therefore, there are complex errors
between the dynamic performance model and the actual data.

The simulation error of the model is closely related to the engine working state, which usually
corresponds to the different flight phases in the flight cycle, that is, including Taxi out/Take off, Climb,
Cruise, Descent, Landing/Taxi in. Therefore, it is necessary to study the division rules first, and divide
the flight phases of the original flight data. Civil airliners have their own flight phase division standards
according to different aircraft types, it is necessary to divide flight stages. The general principle is to
delineate the flight phase according to the parameter values such as pressure altitude (PA), airspeed
and their conversion values, in order to facilitate the program to automatically divide the flight phases
of all flight data files in batches, the quantitative division criteria are required, according to a large
number of tests and reference related data, the quantitative classification criteria determined in this
paper are mainly based on the barometric altitude and its first derivative, airspeed and its first
derivative. The flight phases divided in are shown in Figure 5.
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Figure 5 Flight phase division and flight cycle parameter change. (The parameters are normalized).

How to deal with the inevitable simulation error of dynamic performance model is a difficult point in
the current flight, and the error always has different characteristics at different flight states. In general,
the deviation in steady-state operation is constant, while the error in dynamic-state operation has a
hysteresis, and the change of bleed air state will also cause obvious effects.

In this paper, data during a flight cycle was selected, and the error analysis was carried out for five
key parameters: NL, NH, Ps3, EGT and Fuel Flow. Data for five parameters selected was
standardized, and are shown in figure 6. All parameters were named in the same manner as other
sections in this paper.
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Figure 6 Simulation error analysis of five key engine parameters during a flight cycle.

As can be seen from the above figure, there is a large deviation at the starting point, which is due to
the incomplete initialization of the simulation model. In the early stage of the flight cycle, the bleed
air state changes drastically, the simulation error of each parameter is also very large, and the
changing trend between the two is basically the same. In the middle stage, an approximate constant
deviation occurs. During this period, the error degree of each parameter is different, and the error of
Ps3 and EGT is the most obvious. In the late flight phase, the operating condition of engine changes
at a very high frequency, and the simulation error also changes synchronously.

Generally, cruise status accounts for more than 65% of the entire flight cycle, and it is a critical flight
period. So, in this paper, cruise status with normal bleed air (1 state) was selected as the subject,
and conducts a comparative analysis of the error of the data at this stage, as shown in Figure 7.
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Figure 7 Simulation error comparison of flight parameters in cruise phase.
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Table 1 shows the error of each parameter, including average relative error, MSE and MAE.

Table 1. Statistical results of flight parameter simulation error in cruising phase.

parameter NL NH Ps3 EGT Fuel Flow
Average relative error (%) -0.15 0.21 4.65 -8.71 -3.31
MSE 0.21 0.59 98.76 3322.09 6761.11
MAE 0.12 0.42 9.79 55.15 71.20

4.2 High-precision simulation based on MIF method

Based on big flight data, this paper constructs the deep multimodal information fusion (MIF)model,
and the data used for modeling and verification are detailed described in table 2.

Table 2. Sample description of flight data used for modeling and verification.

training sample test sample
Flight Flight Sampling Sampling Flight Flight Sampling
circle Time frequency point circle Time frequency
7 21.9h 32Hz 252 million 1 6.67h 32Hz

In order to validate the effects, four different data-driven models are used to compare. We set four
types of model architectures according to different data sources, as shown in table 3, and the model
architecture is shown in figure 8.

Table 3. Four modeling architectures based on multi-source data.

Data source Model architecture remark
1 DBM1+MLPRegressor
2 DBM2+MLPRegressor
3 DBM1+MLPRegressor
12 DBM1+DBM2+MLPRegressor The proposed MIF architecture

MFNN
60*40*5

DBM 1
10*20*30

DBM 2
10*20*30

Simulation Measurement
Data Data

Figure 8 Model architecture for key engine parameter prediction.

Model testing results MSE are given in table 4. Compared with original simulation error, model 1 and
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2 generally do not have a great improvement, which indicates that dynamic simulation data and flight
data contain different information, and neither can fully map the engine state. The prediction
accuracy of model 3 and model 12 has been significantly improved, and the effect of model 12 is
even better. The error of five parameters is reduced by more than 44.1%, especially the error of Ps3
and EGT is reduced by 93%, which reflects the obvious advantages of the proposed multimodal
information fusion method.

Table 4. Model testing error analysis (MSE).

Data source NL NH Ps3 EGT Fuel Flow
original simulation 0.21 0.59 98.76 3322.09 6761.11
1 0.26 0.17 4.49 374.79 7754.56

2 3.53 1.01 47.38 558.28 12142.51

3 0.32 0.12 6.49 278.13 2993.00

12 0.09 0.13 6.26 233.42 3781.70

decrease (12 vs

- 55.5% 77.5% 93.7% 93.0% 44.1%
original)

Table 5 shows the MAE values of the statistical prediction results, and the outlier error of MAE is
more robust than that of MSE. As can be seen from the table, the proposed No. 12 modeling scheme
has a good effect on the prediction of other parameters except NL, and the NL prediction error does
not decrease mainly because the original simulation error is small, which is difficult to further improve
on this basis.

Table 5. Model testing error analysis (MAE).

Data source NL NH Ps3 EGT Fuel Flow
original simulation 0.12 0.42 9.79 55.15 71.20
1 0.35 0.22 1.44 15.88 67.94
2 0.57 0.41 4.36 17.40 50.28
3 0.52 0.29 2.07 14.20 41.91
12 0.19 0.29 2.20 13.93 51.08

decrease (12 vs

o -51% 30% 77% 75% 28%
original)

Furthermore, the flight data of cruising phase, the original dynamic simulation data and the prediction
data of the proposed model 12 are contrasted, as shown in figure 9. As can be seen in this figure,
the proposed multimodal information fusion model has higher accuracy than the original dynamic
model during the whole flight phase, and it greatly improves the effect of engine parameter prediction.
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Figure 9 Validation test comparison

5. Conclusion

In this paper, a novel deep multimodal information fusion (MIF) method is proposed, which can be
applied to the error correction of civil flight big data. Paper mainly focuses on error analysis and
information fusion model construction. The main research results are as follows:

(1) The simulation error varies in different flight phases and different operating states. A procedure
for automatic division of flight phases was developed, which is based on characteristic parameters
such as pressure altitude and flight speed. The error analysis between simulation data and flight
data was carried out for five key engine parameters: NL, NH, Ps3, EGT and Fuel Flow. This provides
a basis for the data selection of multimodal information fusion model.

(2) High-precision regression prediction of NL, NH, Ps3, EGT and Fuel Flow was carried out based
on the deep multimodal information fusion model and its basic architecture. This study compares
four models from different data sources, and the final results show that the proposed method is
superior.
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