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Abstract

Propeller-wing interaction has been a topic of investigation since the dawn of aviation. Surprisingly, however,
there are few published studies showing how changing a tractor propeller’s vertical offset affects a trailing wing’s
lift and drag distributions. In this work, we investigate this for a rectangular wing with an inboard propeller using
steady Reynolds-averaged Navier—Stokes computational fluid dynamics and an actuator-disk approach. We
present results for two angles of attack and a range of propeller-wing vertical offsets for both inboard-up and
outboard-up propeller rotation. We include plots for spanwise sectional lift and drag coefficient distributions,
integrated lift and drag coefficients, lift-to-drag ratios, and chordwise sectional pressure-coefficient distributions.
The results show that changing the propeller-wing vertical offset can significantly change a trailing wing’s lift
and drag distributions, which strongly depend on the direction of the vertical offset.
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Nomenclature

u = Dynamic viscosity

\% Rotation rate

P Density

b = Wing span

Cp = Integrated drag coefficient of the wing
C, = Sectional drag coefficient

C. = |Integrated lift coefficient of the wing
C; = Sectional lift coefficient

C, = Pressure coefficient

D = Drag

Dy = Propeller diameter

F = Propeller-model force parameter

fr = Axial force per unit radius

fo = Tangential force per unit radius

J = Propeller advance ratio, V../(vD )

L = Lift
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n = Propeller-model shape parameter
P = Propeller pitch

R = Propeller radius

r Radial coordinate

7 = Normalized radius, (r—rin)/(R —rin)
rmn = Innerradius

T = Thrust
Tc = Thrust coefficient, T/(pV2D%)
V.. = Freestream velocity

1. Introduction

Propeller-wing interaction has been a topic of interest and investigation since the early days of avia-
tion [1-4]. Recently, the interest in developing electric vertical or short takeoff and landing (eV/STOL)
aircraft has led to a resurgence of interest in understanding and accurately capturing propeller-wing
interaction effects using computational tools [5-16].

When a propeller is located near a wing, the flow induced by the propeller affects both the lift and
the drag of the wing. The nature of the influence depends on the propeller’s location and rotation
direction [1,17H21]. When located directly in front of the wing, the propeller’s axial and tangential
induced-velocity components create spanwise variations in the wing’s local angles of attack and
effective freestream speeds. Additionally, when a propeller is vertically offset relative to a wing, the
pressure and velocity distributions associated with streamtube contraction also affect the lift and drag
of the wing, even when the slipstream does not impinge directly on the wing [1,120]. This paper
investigates the effect of propeller-wing vertical offset on a trailing wing’s lift and drag distributions.
There is a lack of literature showing computational or experimental results for this.

Prandtl [1] and Veldhuis [20] investigated the effect of propeller-wing vertical offset on a trailing wing’s
lift and drag using experimental methods. They presented integrated lift and drag coefficient (C, and
Cp) results for a range of positive and negative vertical offsets, and they attributed the non-monotonic
trends to two primary factors. The first factor is a combination of the non-uniform radial distribution of
dynamic pressure in a propeller’s streamtube and the varying extent of the wing inside the propeller’s
streamtube. The second factor is the pressure and velocity distributions associated with streamtube
contraction. The second factor is responsible for their observations that when the propeller is located
close to the wing but not close enough for the wing to be inside the streamtube, the lift is greater for
a positive vertical offset (above the wing) than for a negative vertical offset. Their results are limited
to integrated lift and drag coefficients and do not include results showing the effect of propeller-wing
vertical offset on spanwise lift and drag distributions.

There are many approaches of varying complexity and fidelity that can be used to model propeller-
wing interaction [7,/8,(10,/11},[13H16,/18-20.,22-38]. These include vortex-lattice approaches [20}23,
24,31-34] and computational fluid dynamics (CFD) approaches [7,/11,/13,/14,(16,120, 22,2629, 35—
39]. The vortex-lattice approaches have limitations related to viscous effects, thickness effects, and
streamtube modification. The CFD approaches can capture those effects more directly but have
significantly higher computational costs.

The approach of using steady CFD with an actuator disk has been shown to provide accurate time-
averaged predictions for a wing located behind a propeller [16,20,26,29.[35]. This approach provides
a tractable balance of fidelity and cost that is suitable for design studies requiring large numbers of
simulations. Therefore, we use an actuator-disk CFD approach for this work.

In this paper, we present CFD results for a rectangular wing with an inboard tractor propeller using
steady Reynolds-averaged Navier—Stokes (RANS) CFD and an actuator-disk approach. We present
results for two angles of attack and a range of propeller-wing vertical offsets for both inboard-up
and outboard-up propeller rotation. We include plots for spanwise sectional lift and drag coefficient
distributions, integrated lift and drag coefficients, lift-to-drag ratios, and chordwise sectional pressure-
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coefficient distributions.

2. Computational Tools

For this work, we use open-source modules of the MDO of Aircraft Configurations with High Fidelity
(MACH) framework [40] [}

2.1 Flow Solver

For this study, we use the open-source CFD solver ADflow [41,42] modified to implement an actuator-
disk propeller model [11,16]. ADflow is a second-order-accurate finite-volume CFD solver that solves
the flow equations on structured multiblock meshes, and it supports overset meshes using implicit
hole cutting [43-45]. ADflow has options to solve the Euler, laminar Navier—Stokes, and RANS equa-
tions. For this work, we solve the steady RANS equations with the Spalart—Allmaras (SA) turbulence
model [46]. The SA implementation used here is the SA-noft2 variant described in the NASA Turbu-
lence Modeling Resource , and the production term is computed using strain.

We use the Jameson—Schmidt—Turkel scheme with scalar dissipation [47] for inviscid fluxes, and the
viscous flux gradients are calculated using the Green—Gauss approach. A pseudo-transient continua-
tion (PTC) strategy is used to converge the flow equations, and multiple algorithms are available. For
this work, we use the approximate Newton—Krylov (ANK) solver [41] and converge the total residual
norm by eight orders of magnitude.

The simulations for this work were performed on a laptop with an Intel i9-12900H processor and 32
GB of RAM, and the mean wall time per simulation is 20 minutes using ten processors.

2.2 Mesh Generation

For this study, we use MACH’s pySpIineE] and pyGedz_f] modules to generate the wing surface geometry.
We generate the wing surface mesh and the propeller-region volume mesh using the commercial
package ICEM-CFD.

To generate the wing volume mesh and the background volume mesh, we use MACH’s pyHypﬂ (48]
module. The pyHyp module uses a hyperbolic mesh marching method [49] to produce high-quality
volume meshes by extruding structured surface meshes. The primary user-defined parameters are
the height of the first layer of cells, the extrusion distance, and the number of layers. These vol-
ume meshes are structured multiblock meshes, and we combine them using the open-source tool
cgnsUtiIitiesE] to obtain an overset mesh. We also use cgnsUltilities to change the location of the
propeller-region volume mesh for the different propeller locations studied in this work. This overset
approach allows for the effortless generation of new meshes for these propeller locations.

2.3 Propeller Model

We model the propeller using an actuator-disk approach in which terms corresponding to propeller
forces are added to the momentum and energy equations in the manner of body forces [16,22].
We use the following model [50] for the distributions of the axial and tangential loading. The radial
distribution of the axial force is given by

fo=Fr(1=#)", (1)

1www.github.com/mdolab/MACH—Aero

2https://turbmodels.larc.nasa.gov/spalart.html
3https://github.com/mdolab/pyspline
4nhttps://github.com/mdolab/pygeo
Snttps://github.com/mdolab/pyhyp
Shttps://github.com/mdolab/cgnsutilities
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where f, is the axial force per unit radius, # is defined by Eq. (2), n is a parameter that controls the
shape of the distribution, and F is a value computed by integrating this expression over the radius
and equating it to the total thrust 7. The normalized radius 7 is defined as
r'—Tin
_— 2
o (2)
where r is the radial distance from the axis of rotation, ri, is the inner radius of the propeller, and R is
the outer radius of the propeller. The radial distribution of the tangential force is given by
P/Dgy
= f, , 3

=) ©

where fy is the tangential force per unit radius, and P/D 4 is the propeller pitch-to-diameter ratio.

F=

3. Problem Description
3.1 Geometry and Specifications

The baseline configuration, shown in Fig. (1} is a rectangular wing with a tractor propeller located at
47% b/2, where b/2 is the half-span. The wing is not swept, twisted, or tapered, and the propeller
axis is aligned with the wing section’s chord line and has no vertical offset relative to it. The wing
airfoil is NACA 64,-A015, and we use coordinates from the online UIUC database [51]. We do not
model the nacelle, nor do we round the leading edge of the wingtip.
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Figure 1 — Original geometry of the baseline configuration (half-wing planform area is 0.15 m?;
aspect ratio is 5.3; reproduced with permission from Veldhuis [20])

The Reynolds number and freestream dynamic pressure reported for the experimental cases are
0.8-108 and 1500 Pa, respectively [20]. For the fluid properties, we use standard sea-level values.
The propeller operates at an advance ratio of J = V../(vD ) = 0.85 and a thrust coefficient of 7o =
T/(pVO%D?Z) = 0.168 [20]. Here, V., is the freestream velocity, v is the rotation rate, D is the propeller
diameter, p is the freestream density, and T is the propeller thrust.

We previously presented validation and mesh refinement results in an earlier paper [16] using this
configuration and the same baseline meshes and propeller model used here. For the validation study,
we compared our results with experimental results for 0 and 4 deg angle-of-attack (AoA) cases [16].
For this work, we use the same two angles of attack. We change the angle of attack in these simula-
tions by changing the direction of the freestream velocity. This maintains the relative orientations of
the actuator disk and the wing.
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3.2 CFD Volume Meshes

Each case’s mesh consists of a wing volume mesh, a cylindrical volume mesh for the propeller region,
and a background volume mesh. The outlines of the blocks of these meshes are shown in Fig. 23]
for the baseline configuration. Force terms are applied to the cells in the cylindrical volume mesh
that lie inside a user-specified disk surface (visualized in Fig. [2b] for the baseline configuration). The
wing surface mesh is generated using the commercial package ICEM-CFD. The wing volume mesh
is generated by extruding the wing surface mesh using MACH’s pyHyp module.

(a) Wing and propeller-region volume meshes overset (b) Disk surface used to specify the actuator zone
with a background volume mesh

Figure 2 — Baseline configuration surfaces and volume meshes

Each background mesh consists of a Cartesian volume mesh encapsulating the wing and propeller-
region meshes. The outer surfaces of these Cartesian meshes are extruded by 45 chord lengths,
resulting in hemispherical domains. We use far-field boundary conditions for the outer hemispherical
surface of the domain and symmetry boundary conditions for the plane coincident with the root of the
wing. The propeller-region volume mesh is larger than the disk of cells to which the actuator forces
are applied, in order to allow it to be overset with the background mesh. ADflow uses an implicit
hole-cutting method for connecting the overset meshes [43H45].

To change the vertical offset of the propeller for this study, we reposition the propeller-region volume
mesh and regenerate the background mesh as shown in Fig. [3] Figure [4] shows the corresponding
disk surfaces for specifying the actuator zone. The midplanes of the cells that are selected for the
actuator zones are located 0.2 m in front of the wing. The radius of the actuator zone is the propeller
radius of 0.12m, and its thickness is 9 mm (one layer of cells).

We generate the wing volume mesh by extruding the wing surface mesh by 0.4 chord lengths using
pyHyp. The wing volume mesh has 40 layers of cells, and the maximum growth ratios of these layers
in the off-wall directions range from 1.2 to 1.3. The cell thickness of the first off-wall layer is set to a
flat-plate y+ value of 1.

We previously presented validation and mesh refinement results using this configuration in an earlier
paper [16], and this work re-uses the Level-2 meshes from that work.
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(a) Vertical offset of +1.5R

(b) Baseline propeller location
(vertical offset = 0)

(c) Vertical offset of —1.5R

Figure 3 — Side views of the overset meshes for the baseline and extreme propeller locations

3.3 Propeller Model Inputs

For the experimental configuration’s propeller, P/D ranges from 0.9 at r/R = 0.45to 1.1 at r/R =
0.95 . For the propeller model, we use P/D g = 1.05, which corresponds to the 0.75R location.
The tangential-loading model (Eq. (3)) is based on the assumptions that the propeller has a radially
constant pitch and that the forces on the blade are locally perpendicular to the blade chords, which
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(a) Vertical offset of +1.5R (b) Baseline propeller location (c) Vertical offset of —1.5R
(vertical offset = 0)

Figure 4 — Side views of the wing and disk surfaces for the baseline and extreme propeller locations

are approximations.

CFD simulations by Stokkermans [35] for this propeller show that the blade root (r = 0.35R to r =
0.15R) generates negative thrust due to thick profiles and flow separation. Therefore, we use ri, =
0.35R in the axial-loading model (Eq. (1)), which results in negative values between r = 0.35R and
r = 0.15R. Additionally, for this root portion, we multiply the axial forces from Eq. by 0.25, as
the results of Stokkermans [35] show a reduction in slope after the axial force becomes zero at
approximately » = 0.35R. This root portion also roughly coincides with the cross-section of the nacelle
(r=0.3R). For the spinner portion (r < 0.15R), we set the axial forces to zero. For the adjustable
parameter n, we use n = 0.2, which gives a thrust distribution with the peak near the tip.

For the tangential force distribution, we use Eq. (3) between r = R and r = 0.35R and set the forces
to zero for r < 0.35R. The parameter F is set to a calculated value that makes the total axial force
applied to the region outside ri, equal to the specified thrust. We use the region outside r, for this
calculation because Veldhuis [20] noted that the thrust coefficients were computed using a book-
keeping approach and pressure measurements. We consider these thrust coefficients to most likely
represent the thrust generated by the propeller portion outside the nacelle radius of r = 0.3R.

4. Results
4.1 Angle of Attack = 0 deg

Figures[5]and 6] show the wing sectionall lift coefficient (C;) and sectional drag coefficient (C,) distribu-
tions, respectively, for the 0 deg AoA cases with inboard-up propeller rotation. Figures|/|and[8|show
the same for outboard-up propeller rotation. For this wing, the shapes of the C; and C, distributions
are also the shapes of the wing'’s lift and drag distributions, respectively, because the chord lengths
are constant across the span. Figures [5 and [6] also include experimental results from Veldhuis [20]
(zero vertical offset), and they match well with the corresponding CFD results.

When the propeller is moved up or down 0.5R relative to the baseline configuration, there is a similar
change in the C; distributions. In both cases, there is still a peak and a trough due to the swirl, but
of lesser amplitude than when there is no offset. However, the C; values are greater across the span
for +0.5R than for —0.5R. On the other hand, the corresponding C, distributions are more obviously
dissimilar and have more striking changes relative to the baseline configuration. What we observe
here can be attributed to the combination of three primary factors. The first factor (Factor 1) is a com-
bination of the varying magnitude of the upwash and downwash components of the propeller swirl
velocities and the varying extent of the wing inside the propeller's streamtube with respect to vertical
offset. The second factor (Factor 2) is the pressure and velocity distributions associated with stream-
tube contraction, which create upwash (for positive vertical offset) or downwash (for negative vertical
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(a) Positive vertical offset (b) Negative vertical offset

Figure 5 — Wing C; distributions for 0 deg AoA with inboard-up propeller rotation (with experimental
results from Veldhuis [20])
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Figure 6 — Wing C, distributions for 0 deg AoA with inboard-up propeller rotation
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Figure 7 — Wing C; distributions for 0 deg AoA with outboard-up propeller rotation
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Figure 8 — Wing C;, distributions for 0 deg AoA with outboard-up propeller rotation

offset) effects. The third factor (Factor 3) is a combination of the non-uniform radial distribution of
dynamic pressure in a propeller’s streamtube and the varying extent of the wing inside the propeller’s
streamtube with respect to vertical offset.

When the propeller is moved up or down 1.0R relative to the baseline configuration, we no longer
obtain both a peak and a trough in the C; distributions but only a peak or a trough of lesser amplitude.
There is only a peak for +1.0R and only a trough for —1.0R. Therefore, Factor 2 dominates here. For
+1.0R, the peak is slightly more inboard for inboard-up rotation than for outboard-up rotation. For
—1.0R, the trough is slightly more inboard for outboard-up rotation than for inboard-up rotation. The
corresponding C; distributions for both inboard-up and outboard-up rotations have a primary peak
of similar amplitude to the baseline cases but only a slight trough. The trough is inboard for +1.0R
with inboard-up rotation and for —1.0R with outboard-up rotation. This asymmetry and the greater
amplitude of the peak than the trough for both propeller rotation directions and both positive and
negative offsets show that there is still an interplay here between Factors 1, 2, and 3.

When the propeller is moved up or down 1.5R relative to the baseline configuration, the propeller
effects almost vanish. The C; across the span is slightly above zero for +1.5R and slightly below zero
for —1.5R.

0.10 0.020
—— Inboard-up —— |nboard-up
--¢- Qutboard-up 0.0184 "% Outboard-up
0.051
0.016
€L 000 Co
0.014+
—0.051
0.0124
-0.10 " " " 0.010 " " "
-2 -1 0 1 2 -2 -1 0 1 2
Vertical offset (in multiples of radius) Vertical offset (in multiples of radius)
(a) Wing Cr, (b) Wing Cp

Figure 9 — ADflow CFD results for wing C; and Cp at 0 deg AoA for both inboard-up and outboard-up
propeller rotation
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Figures [9a] and [9b] show the integrated lift coefficients (C;) and drag coefficients (Cp) of the wing as
a function of the vertical offset for both inboard-up and outboard-up propeller rotation for the 0deg
AoA cases. These show non-monotonic anti-symmetric (for C;) and symmetric (for Cp) trends with
respect to vertical offset, consistent with the results presented by Veldhuis [20].

Figuresto in the Appendix show the pressure coefficient (C,) distributions at three wing sections
for the 0 deg AoA cases. These provide a more detailed picture of how Factors 1 and 2 affect the
pressure distributions.

4.2 Angle of Attack = 4 deg

Figures [10[and |11| show the wing C; and C, distributions, respectively, for the 4 deg AoA cases with
inboard-up propeller rotation. Figures |12| and |13 show the same for outboard-up propeller rotation.
Figures|10]and|11]also include experimental results from Veldhuis [20] (zero vertical offset), and they
match reasonably well with the corresponding CFD results.
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Figure 10 — Wing C; distributions for 4 deg AoA with inboard-up propeller rotation (with experimental
results from Veldhuis [20])
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Figure 11 — Wing C, distributions for 4 deg AoA with inboard-up propeller rotation

When the propeller is moved up or down 0.5R relative to the baseline configuration, there are more
noticeably different changes in the C; distributions here than for the 0 deg cases. For —0.5R, the
C; distribution is almost unchanged. However, for +0.5R, there is only a peak that is wider and of
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Figure 12 — Wing C; distributions for 4 deg AoA with outboard-up propeller rotation
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Figure 13 — Wing C, distributions for 4 deg AoA with outboard-up propeller rotation

lesser amplitude. The corresponding C, distributions are also clearly dissimilar. For +0.5R, there
is one peak, and for —0.5R, there are two peaks. What we observe here can be attributed to the
combination of Factors 1, 2, and 3.

When the propeller is moved up or down 1.0R relative to the baseline configuration, the propeller
effects in the C; distributions are significantly diminished but still visible. There is only a peak of
small amplitude for +1.0R and a slight peak and a slight trough for —1.0R. The corresponding C,
distributions all have a peak, with the peaks for —1.0R having significantly greater amplitude. Here,
we again observe the interplay of Factors 1, 2, and 3.

When the propeller is moved up or down 1.5R relative to the baseline configuration, the propeller
effects almost vanish. The C; values for the inboard half of the wing are slightly lower for 1.5R than
for —1.5R.

Figures and show the C; and Cp of the wing as a function of the vertical offset for both
inboard-up and outboard-up propeller rotation for the 4deg AoA cases. Both the C, and the Cp
are highest for 0.5R. The corresponding lift-to-drag ratios (L/D) plotted in Fig. show that the
lowest and highest L/D are obtained when the vertical offset is —1.0R and 1.0R, respectively. These
non-monotonic and asymmetric trends with respect to vertical offset are consistent with the results
presented by Veldhuis [20].
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Figure 14 — ADflow CFD results for wing C;, Cp, and L/D at 4 deg AoA for both inboard-up and
outboard-up propeller rotation

Figures [T9]to [22]in the Appendix show the C, distributions at three wing sections for the 4 deg AoA
cases. These provide a more detailed picture of how Factors 1 and 2 affect the pressure distributions.

5. Conclusions

In this paper, we present simulation results for a rectangular wing with an inboard tractor propeller
using steady RANS CFD and an actuator-disk approach. These results are for 0 and 4 deg AoA
and propeller-wing vertical offsets ranging from —1.5R to +1.5R, for both inboard-up and outboard-up

propeller rotation.

The results show that changing the propeller-wing

vertical offset can significantly change a trailing

wing’s lift and drag distributions, and these distributions have a strong dependence on the direction
of the vertical offset. The results also show an interplay of three primary factors:

1. Factor 1 is a combination of the varying magnitude of the upwash and downwash components of
the propeller swirl velocities and the varying extent of the wing inside the propeller’s streamtube

with respect to vertical offset.

2. Factor 2 is the pressure and velocity distributions associated with streamtube contraction, which
create upwash (for positive vertical offset) or downwash (for negative vertical offset) effects.

12
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3. Factor 3 is a combination of the non-uniform radial distribution of dynamic pressure in a pro-
peller's streamtube and the varying extent of the wing inside the propeller’s streamtube with
respect to vertical offset.

The interplay of these factors results in trends that are non-monotonic and asymmetric with respect
to propeller-wing vertical offset.
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Appendix A: Pressure Coefficient Distributions

Figurestoshow the C,, distributions for three wing sections for the 0 deg AoA cases. Figures
to[22/show the C, distributions for the same sections for the 4 deg AoA cases. The three wing sections
are at an inboard location behind the propeller (35% b/2), the propeller axis location (47% b/2), and an
outboard location behind the propeller (62% b/2). The relevant plots also include experimental results
from Veldhuis [20] for the baseline configuration at 4 deg AoA with inboard-up propeller rotation.
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Figure 15 — C,, distributions for the 0 deg AoA cases with inboard-up propeller rotation and positive
vertical offsets
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Figure 16 — C,, distributions for the 0 deg AoA cases with inboard-up propeller rotation and negative
vertical offsets
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Figure 17 — C,, distributions for the 0 deg AoA cases with outboard-up propeller rotation and positive
vertical offsets
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Figure 18 — C, distributions for the 0 deg AoA cases with outboard-up propeller rotation and negative
vertical offsets
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Figure 19 — C,, distributions for the 4 deg AoA cases with inboard-up propeller rotation and positive
vertical offsets (with experimental results from Veldhuis [20])
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Figure 20 — C,, distributions for the 4 deg AoA cases with inboard-up propeller rotation and negative
vertical offsets (with experimental results from Veldhuis [20])
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Figure 21 — C,, distributions for the 4 deg AoA cases with outboard-up propeller rotation and positive
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Figure 22 — C, distributions for the 4 deg AoA cases with outboard-up propeller rotation and negative

vertical offsets
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