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Abstract

Composite materials replaced metals even in aircrafts primary structures but they can be affected by hidden
damages hardly detectable. An SHM system based on sensorised structures and deep neural networks signal
analysis methodologies is presented in this paper with the scope of detect and localise delaminations into
composites plates.
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1. Introduction

The latest developments push the modern aerospace industry towards improving manufacturing,
automation, and flight efficiency, leading to a significant increment in the usage of composite
materials. One reason is their potential in strength-to-weight ratio and automatized production
processes. They allow lower weights and obtain easily more complex shapes, but due to their
peculiar composition and fabrication methods, they are affected by delaminations and defects. So,
every aircraft component is subject to time-scheduled maintenance sessions even when there is no
clear evidence of repairs. It becomes an expensive and time-consuming process.

In this field, the availability of SHM systems [1,2,3,4], based on networks of distributed sensors
embedded or secondary bonded throughout the whole structure under investigation, could be
conveniently used for real-time health monitoring and/or as a data acquisition tool. Structural data,
however, may constitute an enormous amount of information that, in most cases, is difficult to
classify. Furthermore, since time is an essential factor, the automation of the analysis process could
be a significant advantage in this field. From this point of view, intelligent algorithms that can
autonomously reduce human participation, like Deep Neural Networks (DNNs), may be helpful in
overcoming this impasse.

Structural data can be analyzed with specific DNNs designed and trained to classify and identify
significant parameters [5,6,7,8]. The DNNs, based on strategic engineering criteria, may represent
an effective and efficient analysis tool to promote faster data analysis and classification. In the field
of aircraft maintenance, this approach may lead, for example, to a faster awareness of a component's
health situation or predict failures. Neural Networks typically require a relevant amount of data to be
trained and to acquire the necessary reliability in classifying and recognizing the occurrence of the
selected event. However, once trained, they can be extremely effective and low time-consuming in
analyzing every single scenario to be classified. Deep-learning networks can automatically extract
high-level features from signals and capture differences in waveforms without the requirement of any
prior knowledge. As a consequence, deep-learning networks have been often used in combination
with guided waves for intelligent damage detection, including artificial neural networks, deep neural
networks, recurrent neural networks, autoencoder networks and convolutional neural networks
(CNN). In this work, the potentialities of deep learning with high-frequency Lamb waves propagation-
based SHM methodologies are investigated, also employing explicit finite element simulations to
augment numerical propagation signals due to impact damages on a composite plate [6].
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This work will concentrate on the approaches developed by the authors within the framework of
convolutional neural networks aimed at supervised learning methodologies for damage detection
and localisation in composite aerospace structural components. Unsupervised learning approaches
present the undoubtful advantage of permitting to train the networks only by pristine (or healthy)
configuration signals, being that the networks themselves can detect anomalies in test signals when
acquired on a perturbed structural scenario (with a certain threshold of uncertainty); this
methodology, as cons, cannot permit to classify the typology, severity or location of the damage.
These latter features can be in principles categorized by a supervised learning approach, where a
network able to classify signals coming from many damage scenarios can be trained, provided that
enough data (and their experimental variability) can be available for each class to be recognized,; it
is clear how this requirement implies the availability of data from many damaged structural items
both "physical" or "virtual" (i.e., simulated by a mathematical model previously validated by
experiments); lately many works on how to employ machine learning techniques for generating
“synthetic training data” for ultrasonic NDE have been published demonstrating that ML can also be
employed to enrich propagation signals data-bases [6] . The paper will present examples of CNN
employ for supervised structural damage detection; the presented results are based on strain-guided
waves analysis and represent the latest achievements after some years of previous works in which
the authors developed, collaborating with other international research groups, different machine
learning based approach for structural health monitoring.

2. Description of methodologies
2.1 Convolutional Neural Networks

The Convolutional Neural Networks (CNN) represent a group of highly successful deep neural
network architectures adopted in computer vision applications and in applications that process media
such as audio and video. The most popular application of convolutional neural network is to identify,
by a computer and with a certain probability, what an image represents. Such networks are built to
analyze images included within certain datasets and classify objects in the images within them. The
basic structure of a convolutional neural network consists of a convolutional layer, a nonlinear
activation function, a pooling layer, and a fully connected layer. A convolutional process applied to an
image is equivalent to applying a filter to that image. Convolution is defined by an array called the
kernel, which is generally smaller than the image, and is applied by translating the kernel to it. The
result of the convolutional filter depends on the numerical content of the kernel matrix. Varying the
convolutional kernels, it is possible to obtain an infinity of filters, which can highlight some
characteristics of the image and hide others. Generally, a convolutional layer manages several
kernels that are all applied to the same input image, so that it is possible to have many different filters.

Example of convolution

Convolution layer filters provide denser information, highlighting some features and eliminating others
that would constitute noise. So, a pooling operation is applied to decrease the size of the input image,
maintaining the main characteristics of the same.

The input image is scanned with the pooling matrix obtaining a submatrix containing the maximum
value (Max pooling) and the average value (Average pooling) of all input elements. The result is not
a simple resizing of the image because the maximum or average information is maintained.

SHM algorithm implementation
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The goal of the work is to develop a neural network capable of detecting damage and its position in a
composite panel exploiting Lamb waves. For this purpose, a numerical model was used to simulate
the propagation of Lamb waves in a flat composite panel in order to enrich the experimental data
available. Then, a Matlab algorithm has been created to transform the detected signals into images
that the adopted neural network classifies as damaged or intact.

2.2 Numerical model and signal analysis

The composite panel considered consists of 12 plies of three different pre-preg types oriented
according to multiple directions. Plies material characteristics are summarized in Table 1.

Material p E, E, E4 Gia = Gaz = Gq
Sharness 1.77gem™ 65000 MPa 65000 MPa 8800 M Pa 3600 M Pa
Biarial 1.79gem™ 81000 MPa 81000 MPa 8800 MPa 4100 M Pa
Uniazial 1.79gem=* 152000 M Pa 8300 MPa 8800 M Pa 4100 M Pa

Table 1 — material properties
The lamination sequence can be written as:
[5H (0°/90°), B(+45°/ — 45°), U(0F /90°), U (0°/90%), B(+45°/ — 45°), B(0°/90°)]s

Where 5H ("5harness”) is a particular biaxial fabric characterized by the overlapping of one warp
thread every five weft (Fig. 1), “B” stands for biaxial, “U” for uniaxial. The PZT sensors, utilized for

lamb waves generation and acquisition, are applied on the panel according to the geometry in Fig.
1b.

The "pitch-catch” technigque has been adopted for signals acquisition and damage detection, that is,
a transducer behaves as an actuator, while the remaining sensors detect the signal that has been
released inside the panel. Four different positions were considered for impact damage simulation (Fig.

2 and Fig. 3).
l|| I||
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Fig. 1. a) 5-Harness Satin Weave Layer; b) composite panel sensors configuration
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Fig. 2. a) damage position 1; b) damage position 2

The signals obtained will be affected by the influence of damage every time it is present. Of course,
since wave propagation in composites is a complex mechanism, it is more convenient to compare the
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signals acquired with the ones from the undamaged model (Fig. 4).
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Fig. 3. a) damage position 3; b) damage position 4

A key point is the data analysis from rough signals to get a proper identification system. Features
(time of flight, group velocity, signal transmission factor, wave energy) are extracted with an
appropriate signal processing technique obtaining a diagnosis that presents location and/or severity
of the damage.

0 05 1 15 2 25
time [s] <107

Fig. 4. Signals comparison between pristine and damaged model (path 20_46)

So, if “f* is the particular propagation feature considered, it is possible to define a damage index

according to the following formulation:
_ Ga—fp)>GFa—fb)
DI = —————=
fofp

Where fyis the value obtained by the signal of the panel as it is at the analysis time, while fy is the one
extracted by the baseline propagation. This approach is called "multi-path analysis".

2.3 RGB images generation

To implement the convolutional approach, the acquired signals are transformed into RGB images
exploiting a MATLAB code [10]. RGB (Red Green Blue) is an additive color model, that is, an abstract
mathematical model that allows to represent colors in numerical form, using the red, green, and blue
color components. These colors together determine a color space that can be defined as a cube
aligned with the Cartesian axes of a three-dimensional space, where the amount of red color is
represented along the X-axis, the amount of green along the Y-axis, and the amount of blue along
the Z-axis.

Fig. 5. RGB model
4



CONVOLUTIONAL NEURAL NETWORKS FOR AIRCRAFTS PANELS SHM

Each image obtained concerns a specific actuator-sensor path and consists of the overlap between
the signal detected in the intact panel and that detected in the damaged panel. Going from top to
bottom, the signals overlap consists, for this first part of the presented analyses, of 10 intact signals,
10 signals in which a damaged and an intact alternate, and finally 10 damaged signals. Once the
image of the aligned signals has been obtained, the absolute maximum “M” is calculated. Then the
RGB components (Red, Green, Blue) are calculated, making sure to associate with M the maximum
intensity of white if positive or the maximum intensity of black if negative, while all the other values
are obtained linearly from these two (Fig. 6). The result is an array in which each value is between 0
and 1. In this way, each pixel corresponds to a trio of (X, y, z) values, to which a specific color is
associated, according to the position assumed in the color space of the RGB model. So, a total of
624 images have been obtained (156 for each damage), each one characterized by its own DI.

a) b)

Fig. 6. RGB transformed signal: a) healthy path — b) damaged path.

2.4 Image analysis

Convolutional Neural Networks (CNNs) are Deep Neural Networks (DNNs) made by heterogeneous
layers originally designed to process data in the form of multiple arrays. The architecture of a
classical CNN consists of three main layers typologies: input layer, hidden layers and output layer
(Figure 1). In detail, the hidden layers structure is what characterise the CNNs from many other
classical feed forward networks, since it is characterized by two main sublayers called convolution
and pooling. In the convolutional layer, data are re-arranged in metrics maps whose elements are
the result of a local weighted sum. Each of them is connected to local patches in the feature maps
of the previous layer through a set of weights called filter (or kernel) bank. There is one filter for each
feature map, and so, different feature maps have a different filter. A bias matrix is then summed to
the feature map and then followed by a nonlinear operation, such as the popular ReLU. Thus, the
role of the convolutional layer is of extracting high-level features and, simultaneously, of reducing
the dimensionality of the provided input into a form that is easier to be further processed by the
following layers. Similarly to the convolutional layer, the pooling layer is responsible for reducing the
spatial size of the convolved data. The weights value in each filter bank is the result of the training
process allowing the CNN to learn the input—output relationship. As training methodologies the most
commonly used is back-propagating gradient through the CNN, resulting as simple as for a regular
deep network. Many effective CNN architectures have been created during the last years with
different purposes (image recognition, object detection, characters recognition), like, for example,
GoogleNet, AlexNet or VGG.

For images analysis within this work the Google Net neural network [12], already presentin MATLAB,
was used. It is a deep convolutional neural network architecture codenamed Inception that achieves
the new state of the art for classification and detection in the ImageNet Large-Scale Visual
Recognition Challenge 2014 (ILSVRC14); is a convolutional network consisting of 144 layers, which
requires an image as input and returns its classification in output (Fig. 7).
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Fig. 7. Google Net CNN

The network training phase was carried out using MATLAB's Deep Network Designer, a tool that
5
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allows to graphically train a neural network, entering the appropriate training parameters such as
learning speed, validation frequency and number of epochs.

3. Confusion matrix and results

The confusion matrix allows the evaluation of the quality of a classification method comparing the
“correct” result with the “predicted” one. Every cell of the matrix is associated to a real and to a
calculated classification and reports the number or the percentage of instances in which the same
situation repeats. Usually, rows and columns are ordered in such a way, that cells for which the two
values coincide are on the diagonal. In the case of the classification matrices presented in this work,
the top left cell reports the number of well-recognized undamaged signals, the bottom right one
indicates the instances of damaged propagations correctly classified; on the top-right space it is
indicated the number of times that a “pristine signal” is predicted to be damaged (false alarms), while
in the bottom left one the instances of damaged propagations classified as “pristine”.

The network was first trained and tested only using numerical signals, obtaining very promising results
as shown in Fig. 8

undamaged

Real
Classification

damaged

undamaged damaged

Predicted
Classification

Fig. 8. Confusion matrix of images with calibrated DI threshold values

Once the effectiveness in signal classification was proofed for the chosen network, the real intent of
the work was to verify the possibility of training the net by a hybrid combination of experimental and
numerical data to classify experimental signals. In this case the numerical data would permit to
“‘expand” the experimental data set, for example including more damage locations than the
experimental damage scenario available (avoiding the damaging of more test articles in many
locations). For these purposes the experimental signals data base presented in [6] has been
combined to the previous numerical one: they both referred to the same test article sensorised with
the same sensors networks. In detail the numerical wave propagation signals where obtained after
validating and correlating the numerical model with the experimental data (See the activities
presented in [6] for more details).

It was attempted the training of three different networks, one only by numerical signals, one only by
experimental ones and finally a “hybrid” network that was trained by mixing numerical and
experimental ones. Surprising results were provided by the hybrid network, trained with mixed
signals. In fact, overall, it is the network that has shown a higher recognition rate. These results
confirmed the high potential that characterizes the hybrid training obtained by combining validated
experimental and numerical data.

_ undamaged 1 1 7 5

Classification

— | 204

undamaged damaged

Predicted
Classification

Fig. 9. Results obtained by the Net trained on “hybrid” results
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3.1 Multi-class analysis aimed at localization of damages

Finally, the latest and newest results that will be presented in this work are related to an extension
of the network for the classification of more classes, each one of them associated to a specific area
of the investigated plate, in order to identify and locate simultaneously the imposed delamination. If
the Google Net network has already proven to be very reliable for the binary classification of
numerical signals into the "intact" and "damaged" categories, the localization of the damage using
the same network deserves further investigation. First of all, it is necessary to clarify that the
numerical simulations carried out on the panel in question constitute a problem of a linear nature,
therefore Betti's reciprocity theorem applies, which states: "The deflection in a point J due to a load
P applied in a point | is equal to the deflection that would occur at point | if the same load P were
applied at J.” We must therefore expect that both in the intact panel and in the damaged panel, for
symmetric positions of the damage, the two signals obtained by alternately exchanging the actuator
and sensor of the same path are practically indistinguishable (see Fig. 1b). Under these hypotheses,
symmetries are created that work against us: if we imagined that the damage in position 1 was in a
symmetrical position with respect to the horizontal axis of symmetry of the panel, by Betti's theorem
we would obtain two signals (and therefore two images ) identical, generating confusion during their
classification. To overcome the symmetry problem, it was decided to divide the panel into 4 areas
that are not perfectly rectangular so that each contains 3 transducers (Fig. 10) and to generate
images that have different characteristics depending on the position of the receiving sensors inside
the aforementioned areas. With this particular geometric division we will have transducers 21, 22
and 24 belonging to zone |, transducers 25, 42 and 43 belonging to zone Il and so on up to zone IV.

310 mm

265 mm

533 mm

Fig. 10. Panel's zones definitions

This approach should help differentiate the signals, eliminating any symmetries. At this point the
final step is to locate the damage via the neural network. In this regard, a statistical approach was
followed: all the damaged or intact images relating to a single simulation (e.g. damage in position 1)
were provided to the network and it was asked to classify them; if the damage is localized near one
of the four zones, it is reasonable to expect that the number of damaged actuator-sensor paths (and
therefore images) will be higher in correspondence with the aforementioned zone; should the case
arise of damage positioned on the boundary between two areas, the difference in the number of
damaged images between the two areas is rather low.

The methodology to transform the wave propagation signals for each path into RGB images has also
been modified for the scopes of damages localization: comparing to the approach described in
paragraph 2.3, this time the band of alternating Damaged/Healthy signals has been shifted
depending on the area of the panel where the sensors are located. Following pictures, from Fig.11
to Fig. 15, present examples of RGB images obtained for a healthy path (belonging to any of the four
zones) as well as to damaged path acquired by sensors lying in one of the four zones. It can be
easily noticed how the area in which damaged and healthy signals alternate is located at varying
height in the pictures depending from the zone at which the receiving sensors belong.

Fig. 11. RGB transformed signal: healthy path
7
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Fig. 12. RGB transformed signal: damaged path — Zone 1

Fig. 13. RGB transformed signal: damaged path — Zone 2

Fig. 14. RGB transformed signal: damaged path — Zone 3

Fig. 15. RGB transformed signal: damaged path — Zone 4

The results, case by case, were illustrated through graphs. Each graph represents the geometry of
the panel, the location of the damage and sensors, and the four zones. The areas were colored
differently depending on the quantity of damaged routes detected within them, the color hierarchy is
as follows: no. damaged routes red zone > no. damaged routes orange zone > no. damaged routes
yellow zone > no. damaged paths green area. An example of the obtained results is shown below.

Damage location 4. Healthy path: 85
T T T

Fig. 16. Example of damaged area classification

4. Conclusions

The present work is part of a research project under development and participated by the authors in
collaboration with other research groups aimed at implementing innovative Structural Health
Monitoring approaches based on machine learning in general and on CNN for wave propagation
signals more in detail [12]. The authors are not expert in machine learning algorithms development
but their scope is to implement SHM approaches based on algorithms already available within the
increasing number of libraries of ML algorithms available in almost all the main coding languages.
The choice in this case was to test the capabilities of a well known CNN (the GoogleNet) typically
employed for image recognition and analysis in classifying propagation signals obtained both
experimentally and numerically for a healthy and damaged carbon-fiber reinforced plate. Opinion of
8
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the authors, in fact, is that duty of the structural engineers should be the choice of the best pre-
processing of signals to feed the chosen CNN algorithms in order to permit the networks to carry on
the desired classification, as well as the preliminary design of the classes number and typology and
finally the choice of the best training strategy in order to achieve the best possible results with the
available data. The presented work goes in this direction and the effectiveness of a well-known and
tested network has been proved for the scopes of identification of delamination damages into the
selected composite plates as well as the localisation of the delaminated area. The results have been
encouraging both using experimental as well as hybrid (numerica/experimental) propagation signals.
Further activities will consist in comparing other signal pre-processing approaches as well as other
typologies of networks capabilities, even combining CNN with Autoencoders to accomplish the
necessary compensation of environmental influences on propagation signals typical of real world
applications. Furthermore the opportunity to obtain more information about the influence of each
networks parameter on the classification results will be investigated by the use of Explainable Neural
Networks in order to permit a better selection of the data sets.
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