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Abstract 

Composite materials replaced metals even in aircrafts primary structures but they can be affected by hidden 
damages hardly detectable. An SHM system based on sensorised structures and deep neural networks signal 
analysis methodologies is presented in this paper with the scope of detect and localise delaminations into 
composites plates. 
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1. Introduction 
The latest developments push the modern aerospace industry towards improving manufacturing, 

automation, and flight efficiency, leading to a significant increment in the usage of composite 

materials. One reason is their potential in strength-to-weight ratio and automatized production 

processes. They allow lower weights and obtain easily more complex shapes, but due to their 

peculiar composition and fabrication methods, they are affected by delaminations and defects. So, 

every aircraft component is subject to time-scheduled maintenance sessions even when there is no 

clear evidence of repairs. It becomes an expensive and time-consuming process.  

In this field, the availability of SHM systems [1,2,3,4], based on networks of distributed sensors 

embedded or secondary bonded throughout the whole structure under investigation, could be 

conveniently used for real-time health monitoring and/or as a data acquisition tool. Structural data, 

however, may constitute an enormous amount of information that, in most cases, is difficult to 

classify. Furthermore, since time is an essential factor, the automation of the analysis process could 

be a significant advantage in this field. From this point of view, intelligent algorithms that can 

autonomously reduce human participation, like Deep Neural Networks (DNNs), may be helpful in 

overcoming this impasse.   

Structural data can be analyzed with specific DNNs designed and trained to classify and identify 

significant parameters [5,6,7,8]. The DNNs, based on strategic engineering criteria, may represent 

an effective and efficient analysis tool to promote faster data analysis and classification. In the field 

of aircraft maintenance, this approach may lead, for example, to a faster awareness of a component's 

health situation or predict failures. Neural Networks typically require a relevant amount of data to be 

trained and to acquire the necessary reliability in classifying and recognizing the occurrence of the 

selected event. However, once trained, they can be extremely effective and low time-consuming in 

analyzing every single scenario to be classified. Deep-learning networks can automatically extract 

high-level features from signals and capture differences in waveforms without the requirement of any 

prior knowledge. As a consequence, deep-learning networks have been often used in combination 

with guided waves for intelligent damage detection, including artificial neural networks, deep neural 

networks, recurrent neural networks, autoencoder networks and convolutional neural networks 

(CNN). In this work, the potentialities of deep learning with high-frequency Lamb waves propagation-

based SHM methodologies are investigated, also employing explicit finite element simulations to 

augment numerical propagation signals due to impact damages on a composite plate [6]. 
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This work will concentrate on the approaches developed by the authors within the framework of 

convolutional neural networks aimed at supervised learning methodologies for damage detection 

and localisation in composite aerospace structural components. Unsupervised learning approaches 

present the undoubtful advantage of permitting to train the networks only by pristine (or healthy) 

configuration signals, being that the networks themselves can detect anomalies in test signals when 

acquired on a perturbed structural scenario (with a certain threshold of uncertainty); this 

methodology, as cons, cannot permit to classify the typology, severity or location of the damage. 

These latter features can be in principles categorized by a supervised learning approach, where a 

network able to classify signals coming from many damage scenarios can be trained, provided that 

enough data (and their experimental variability) can be available for each class to be recognized; it 

is clear how this requirement implies the availability of data from many damaged structural items 

both "physical" or "virtual" (i.e., simulated by a mathematical model previously validated by 

experiments); lately many works on how to employ machine learning techniques for generating 

“synthetic training data” for ultrasonic NDE have been published demonstrating that ML can also be 

employed to enrich propagation signals data-bases [6] . The paper will present examples of CNN 

employ for supervised structural damage detection; the presented results are based on strain-guided 

waves analysis and represent the latest achievements after some years of previous works in which 

the authors developed, collaborating with other international research groups, different machine 

learning based approach for structural health monitoring. 

2. Description of methodologies  

2.1 Convolutional Neural Networks  

The Convolutional Neural Networks (CNN) represent a group of highly successful deep neural 
network architectures adopted in computer vision applications and in applications that process media 
such as audio and video. The most popular application of convolutional neural network is to identify, 
by a computer and with a certain probability, what an image represents. Such networks are built to 
analyze images included within certain datasets and classify objects in the images within them. The 
basic structure of a convolutional neural network consists of a convolutional layer, a nonlinear 
activation function, a pooling layer, and a fully connected layer. A convolutional process applied to an 
image is equivalent to applying a filter to that image. Convolution is defined by an array called the 
kernel, which is generally smaller than the image, and is applied by translating the kernel to it. The 
result of the convolutional filter depends on the numerical content of the kernel matrix. Varying the 
convolutional kernels, it is possible to obtain an infinity of filters, which can highlight some 
characteristics of the image and hide others. Generally, a convolutional layer manages several 
kernels that are all applied to the same input image, so that it is possible to have many different filters. 

 

 

Example of convolution 

Convolution layer filters provide denser information, highlighting some features and eliminating others 
that would constitute noise. So, a pooling operation is applied to decrease the size of the input image, 
maintaining the main characteristics of the same. 

The input image is scanned with the pooling matrix obtaining a submatrix containing the maximum 
value (Max pooling) and the average value (Average pooling) of all input elements. The result is not 
a simple resizing of the image because the maximum or average information is maintained.  

SHM algorithm implementation  
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The goal of the work is to develop a neural network capable of detecting damage and its position in a 
composite panel exploiting Lamb waves. For this purpose, a numerical model was used to simulate 
the propagation of Lamb waves in a flat composite panel in order to enrich the experimental data 
available. Then, a Matlab algorithm has been created to transform the detected signals into images 
that the adopted neural network classifies as damaged or intact. 

2.2 Numerical model and signal analysis  

The composite panel considered consists of 12 plies of three different pre-preg types oriented 
according to multiple directions. Plies material characteristics are summarized in Table 1. 

 

 

 

Table 1 – material properties 

The lamination sequence can be written as: 
 

 

Where 5H ("5harness") is a particular biaxial fabric characterized by the overlapping of one warp 
thread every five weft (Fig. 1), “B” stands for biaxial, “U” for uniaxial.  The PZT sensors, utilized for 
lamb waves generation and acquisition, are applied on the panel according to the geometry in  Fig. 
1b.  

The "pitch-catch" technique has been adopted for signals acquisition and damage detection, that is, 
a transducer behaves as an actuator, while the remaining sensors detect the signal that has been 
released inside the panel. Four different positions were considered for impact damage simulation (Fig. 
2 and Fig. 3).  

 

      
(a)                                             (b) 

Fig. 1. a) 5-Harness Satin Weave Layer; b) composite panel sensors configuration 

 

               
       (a)                                                  (b) 

Fig. 2. a) damage position 1; b) damage position 2 

The signals obtained will be affected by the influence of damage every time it is present. Of course, 
since wave propagation in composites is a complex mechanism, it is more convenient to compare the 
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signals acquired with the ones from the undamaged model (Fig. 4). 

 

          
(a)                                            (b) 

Fig. 3. a) damage position 3; b) damage position 4 

A key point is the data analysis from rough signals to get a proper identification system. Features 
(time of flight, group velocity, signal transmission factor, wave energy) are extracted with an 
appropriate signal processing technique obtaining a diagnosis that presents location and/or severity 
of the damage.  

 

 

Fig. 4. Signals comparison between pristine and damaged model (path 20_46)                           

So, if “f“ is the particular propagation feature considered, it is possible to define a damage index 
according to the following formulation:  

DI =
(𝑓𝑑−𝑓𝑏)∙(𝑓𝑑−𝑓𝑏)

𝑓𝑏∙𝑓𝑏
            

Where fd is the value obtained by the signal of the panel as it is at the analysis time, while fb is the one 
extracted by the baseline propagation. This approach is called "multi-path analysis".    

 

2.3 RGB images generation 

To implement the convolutional approach, the acquired signals are transformed into RGB images 

exploiting a MATLAB code [10]. RGB (Red Green Blue) is an additive color model, that is, an abstract 

mathematical model that allows to represent colors in numerical form, using the red, green, and blue 

color components. These colors together determine a color space that can be defined as a cube 

aligned with the Cartesian axes of a three-dimensional space, where the amount of red color is 

represented along the X-axis, the amount of green along the Y-axis, and the amount of blue along 

the Z-axis.  

 

 

Fig. 5. RGB model 
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Each image obtained concerns a specific actuator-sensor path and consists of the overlap between 

the signal detected in the intact panel and that detected in the damaged panel.  Going from top to 

bottom, the signals overlap consists, for this first part of the presented analyses, of 10 intact signals, 

10 signals in which a damaged and an intact alternate, and finally 10 damaged signals. Once the 

image of the aligned signals has been obtained, the absolute maximum “M” is calculated. Then the 

RGB components (Red, Green, Blue) are calculated, making sure to associate with M the maximum 

intensity of white if positive or the maximum intensity of black if negative, while all the other values 

are obtained linearly from these two (Fig. 6). The result is an array in which each value is between 0 

and 1. In this way, each pixel corresponds to a trio of (x, y, z) values, to which a specific color is 

associated, according to the position assumed in the color space of the RGB model.  So, a total of 

624 images have been obtained (156 for each damage), each one characterized by its own DI. 
 

 
                                             a)                                                                                        b) 

Fig. 6. RGB transformed signal: a) healthy path – b) damaged path.  

2.4 Image analysis 

Convolutional Neural Networks (CNNs) are Deep Neural Networks (DNNs) made by heterogeneous 

layers originally designed to process data in the form of multiple arrays. The architecture of a 

classical CNN consists of three main layers typologies: input layer, hidden layers and output layer 

(Figure 1). In detail, the hidden layers structure is what characterise the CNNs from many other 

classical feed forward networks, since it is characterized by two main sublayers called convolution 

and pooling. In the convolutional layer, data are re-arranged in metrics maps whose elements are 

the result of a local weighted sum. Each of them is connected to local patches in the feature maps 

of the previous layer through a set of weights called filter (or kernel) bank. There is one filter for each 

feature map, and so, different feature maps have a different filter. A bias matrix is then summed to 

the feature map and then followed by a nonlinear operation, such as the popular ReLU. Thus, the 

role of the convolutional layer is of extracting high-level features and, simultaneously, of reducing 

the dimensionality of the provided input into a form that is easier to be further processed by the 

following layers. Similarly to the convolutional layer, the pooling layer is responsible for reducing the 

spatial size of the convolved data. The weights value in each filter bank is the result of the training 

process allowing the CNN to learn the input–output relationship. As training methodologies the most 

commonly used is back-propagating gradient through the CNN, resulting as simple as for a regular 

deep network. Many effective CNN architectures have been created during the last years with 

different purposes (image recognition, object detection, characters recognition), like, for example, 

GoogleNet, AlexNet or VGG. 

For images analysis within this work the Google Net neural network [12], already present in MATLAB, 

was used. It is a deep convolutional neural network architecture codenamed Inception that achieves 

the new state of the art for classification and detection in the ImageNet Large-Scale Visual 

Recognition Challenge 2014 (ILSVRC14); is a convolutional network consisting of 144 layers, which 

requires an image as input and returns its classification in output (Fig. 7). 

 

Fig. 7. Google Net CNN 

The network training phase was carried out using MATLAB's Deep Network Designer, a tool that 
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allows to graphically train a neural network, entering the appropriate training parameters such as 

learning speed, validation frequency and number of epochs.        

3. Confusion matrix and results 
The confusion matrix allows the evaluation of the quality of a classification method comparing the 
“correct” result with the “predicted” one. Every cell of the matrix is associated to a real and to a 
calculated classification and reports the number or the percentage of instances in which the same 
situation repeats. Usually, rows and columns are ordered in such a way, that cells for which the two 
values coincide are on the diagonal. In the case of the classification matrices presented in this work, 
the top left cell reports the number of well-recognized undamaged signals, the bottom right one 
indicates the instances of damaged propagations correctly classified; on the top-right space it is 
indicated the number of times that a “pristine signal” is predicted to be damaged (false alarms), while 
in the bottom left one the instances of damaged propagations classified as “pristine”. 
 
The network was first trained and tested only using numerical signals, obtaining very promising results 
as shown in Fig. 8 
 

 

Fig. 8. Confusion matrix of images with calibrated DI threshold values 

Once the effectiveness in signal classification was proofed for the chosen network, the real intent of 

the work was to verify the possibility of training the net by a hybrid combination of experimental and 

numerical data to classify experimental signals. In this case the numerical data would permit to 

“expand” the experimental data set, for example including more damage locations than the 

experimental damage scenario available (avoiding the damaging of more test articles in many 

locations). For these purposes the experimental signals data base presented in [6] has been 

combined to the previous numerical one: they both referred to the same test article sensorised with 

the same sensors networks. In detail the numerical wave propagation signals where obtained after 

validating and correlating the numerical model with the experimental data (See the activities 

presented in [6] for more details). 

It was attempted the training of three different networks, one only by numerical signals, one only by 

experimental ones and finally a “hybrid” network that was trained by mixing numerical and 

experimental ones. Surprising results were provided by the hybrid network, trained with mixed 

signals. In fact, overall, it is the network that has shown a higher recognition rate. These results 

confirmed the high potential that characterizes the hybrid training obtained by combining validated 

experimental and numerical data. 

 

 

Fig. 9. Results obtained by the Net trained on “hybrid” results 
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3.1 Multi-class analysis aimed at localization of damages 

Finally, the latest and newest results that will be presented in this work are related to an extension 

of the network for the classification of more classes, each one of them associated to a specific area 

of the investigated plate, in order to identify and locate simultaneously the imposed delamination. If 

the Google Net network has already proven to be very reliable for the binary classification of 

numerical signals into the "intact" and "damaged" categories, the localization of the damage using 

the same network deserves further investigation. First of all, it is necessary to clarify that the 

numerical simulations carried out on the panel in question constitute a problem of a linear nature, 

therefore Betti's reciprocity theorem applies, which states: "The deflection in a point J due to a load 

P applied in a point I is equal to the deflection that would occur at point I if the same load P were 

applied at J.” We must therefore expect that both in the intact panel and in the damaged panel, for 

symmetric positions of the damage, the two signals obtained by alternately exchanging the actuator 

and sensor of the same path are practically indistinguishable (see Fig. 1b). Under these hypotheses, 

symmetries are created that work against us: if we imagined that the damage in position 1 was in a 

symmetrical position with respect to the horizontal axis of symmetry of the panel, by Betti's theorem 

we would obtain two signals (and therefore two images ) identical, generating confusion during their 

classification. To overcome the symmetry problem, it was decided to divide the panel into 4 areas 

that are not perfectly rectangular so that each contains 3 transducers (Fig. 10) and to generate 

images that have different characteristics depending on the position of the receiving sensors inside 

the aforementioned areas. With this particular geometric division we will have transducers 21, 22 

and 24 belonging to zone I, transducers 25, 42 and 43 belonging to zone II and so on up to zone IV. 

 

Fig. 10. Panel’s zones definitions 

This approach should help differentiate the signals, eliminating any symmetries.  At this point the 

final step is to locate the damage via the neural network. In this regard, a statistical approach was 

followed: all the damaged or intact images relating to a single simulation (e.g. damage in position 1) 

were provided to the network and it was asked to classify them; if the damage is localized near one 

of the four zones, it is reasonable to expect that the number of damaged actuator-sensor paths (and 

therefore images) will be higher in correspondence with the aforementioned zone; should the case 

arise of damage positioned on the boundary between two areas, the difference in the number of 

damaged images between the two areas is rather low. 

The methodology to transform the wave propagation signals for each path into RGB images has also 

been modified for the scopes of damages localization: comparing to the approach described in 

paragraph 2.3, this time the band of alternating Damaged/Healthy signals has been shifted 

depending on the area of the panel where the sensors are located. Following pictures, from Fig.11 

to Fig. 15, present examples of RGB images obtained for a healthy path (belonging to any of the four 

zones) as well as to damaged path acquired by sensors lying in one of the four zones. It can be 

easily noticed how the area in which damaged and healthy signals alternate is located at varying 

height in the pictures depending from the zone at which the receiving sensors belong. 

 

Fig. 11. RGB transformed signal: healthy path  
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Fig. 12. RGB transformed signal: damaged path – Zone 1  

 

Fig. 13. RGB transformed signal: damaged path – Zone 2  

 

Fig. 14. RGB transformed signal: damaged path – Zone 3 

  

Fig. 15. RGB transformed signal: damaged path – Zone 4 

The results, case by case, were illustrated through graphs. Each graph represents the geometry of 

the panel, the location of the damage and sensors, and the four zones. The areas were colored 

differently depending on the quantity of damaged routes detected within them, the color hierarchy is 

as follows: no. damaged routes red zone > no. damaged routes orange zone > no. damaged routes 

yellow zone > no. damaged paths green area. An example of the obtained results is shown below.  

 

Fig. 16. Example of damaged area classification 

4. Conclusions 

The present work is part of a research project under development and participated by the authors in 

collaboration with other research groups aimed at implementing innovative Structural Health 

Monitoring approaches based on machine learning in general and on CNN for wave propagation 

signals more in detail [12]. The authors are not expert in machine learning algorithms development 

but their scope is to implement SHM approaches based on algorithms already available within the 

increasing number of libraries of ML algorithms available in almost all the main coding languages. 

The choice in this case was to test the capabilities of a well known CNN (the GoogleNet) typically 

employed for image recognition and analysis in classifying propagation signals obtained both 

experimentally and numerically for a healthy and damaged carbon-fiber reinforced plate. Opinion of 
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the authors, in fact, is that duty of the structural engineers should be the choice of the best pre-

processing of signals to feed the chosen CNN algorithms in order to permit the networks to carry on 

the desired classification, as well as the preliminary design of the classes number and typology and 

finally the choice of the best training strategy in order to achieve the best possible results with the 

available data. The presented work goes in this direction and the effectiveness of a well-known and 

tested network has been proved for the scopes of identification of delamination damages into the 

selected composite plates as well as the localisation of the delaminated area. The results have been 

encouraging both using experimental as well as hybrid (numerica/experimental) propagation signals. 

Further activities will consist in comparing other signal pre-processing approaches as well as other 

typologies of networks capabilities, even combining CNN with Autoencoders to accomplish the 

necessary compensation of environmental influences on propagation signals typical of real world 

applications. Furthermore the opportunity to obtain more information about the influence of each 

networks parameter on the classification results will be investigated by the use of Explainable Neural 

Networks in order to permit a better selection of the data sets.     
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