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Abstract 

CFD Vision 2030 has identified the prediction of viscous turbulent flows with transition and separation as a 
critical pacing item for CFD simulation capability. To address the requirements for transition modeling 
integrated with CFD, NASA Langley Research Center has adopted a dual strategy that seeks to enhance the 
robustness of automated stability computations coupled with RANS solvers as well as improving the accuracy 
and range of applicability of transition models based on auxiliary transport equations. This paper outlines the 
implementation and evaluation of both approaches in NASA flow solvers. The assessment includes 2D and 
3D boundary layers with various pressure gradients, edge Mach numbers, and multiple instability mechanisms 
that may lead to transition, either in isolation or in concert with one another. Furthermore, the development of 
machine-learning-based stability models as an effective surrogate for direct computation of instability 
characteristics is outlined. Several shortcomings of current transport-equation-based models have been 
identified. These include inadequate physics to capture the effects of disturbance growth history, 
compressibility effects at high subsonic through hypersonic speeds, limitations of roughness-sensitized 
crossflow models, and the failure to account for the effects of local geometric perturbations like step 
excrescences.  The paper suggests improvements to address some of these challenges and highlights recent 
advances in transition model verification and design optimization for laminar flow technology. 
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1. Introduction 
According to the CFD Vision 2030 [1], a major challenge in computational fluid dynamics (CFD) 
simulations pertains to the accurate prediction of viscous flows with laminar-turbulent transition and 
flow separation. Modeling (rather than resolving) transition has also been identified as an enabler to 
substantial reductions in cost for eddy-resolved simulations of high Reynolds flows such as those over 
transport aircraft wings. A majority of stationary CFD computations assume fully turbulent flow, which 
allows one to use the computationally efficient and generally robust framework of Reynolds-averaged 
Navier-Stokes (RANS)-based turbulence models throughout the flowfield. However, neglect of 
transition can lead to significant errors in predicting the performance metrics in a number of 
applications, including aerodynamic designs with natural laminar flow (NLF) technology, high-lift 
configurations, rotorcraft flows, and unmanned aerial vehicles. Different turbulence models have their 
own intrinsic transition behavior, but they cannot fully capture the complex physics of the actual 
transition process.  

Semiempirical transition correlations based on linear stability theory (LST), such as the eN or 
the N-factor method introduced by Smith and Gamberoni [2] and van Ingen [3], are widely used for 
predicting the onset of transition. Even though the N-factor approach does not explicitly model the 
intricate details of the receptivity process or the nonlinear stages of transition, it has been found to 
provide reasonable predictions of transition locations and/or associated trends in a broad class of 
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boundary layer flows across the speed regime. However, automated direct computations of stability 
characteristics tend to suffer from a lack of robustness and often require significant user expertise. 
This shortcoming can be alleviated via surrogate models for N-factor computation [4–8]. However, 
stability-based transition modeling intrinsically relies upon multiple forms of nonlocal flow information 
and requires supplementary models for the transition zone. These limitations reduce their appeal in 
the context of parallel CFD computations, especially with unstructured grids.  

The alternate approach of supplementing the turbulence model equations in RANS CFD with 
additional transport equations can predict both the onset of transition and the ensuing evolution of 
intermittency. A notable advance in this area was Menter’s introduction of the local correlation-based 
transition models (LCTMs) [9] that combine local flow variables and empirical correlations to predict 
the transition region. Designed to couple with Menter’s shear stress transport (SST) turbulence model 
[10], the two-equation Langtry-Menter 𝛾 − 𝑅𝑒ఏ௧  model (LM2009) [11] can predict selected transition 
mechanisms in quasi-2D flows by solving transport equations for the intermittency 𝛾 and a transition 
criterion 𝑅𝑒ఏ௧.  The latter is based on the momentum thickness Reynolds number 𝑅𝑒ఏ, which is 
estimated using a local vorticity-based Reynolds number. Other notable models based on transport 
equations include Menter et al.’s single-equation 𝛾 model [12], the k-kl - model that includes an 
equation for the pre-transitional laminar kinetic energy kl to predict transition without using empirical 
transition-onset correlations [13] and the Spalart-Allmaras (SA) [14] based amplification factor 
transport (AFT) model by Coder and Maughmer [15] that incorporates the instability mechanisms 
underlying transition in a low disturbance environment by modeling the N-factor evolution via a 
transport equation. Since then, several extensions of these models have been proposed in an attempt 
to improve accuracy and extend their generality, e.g., to predict crossflow transition in swept-wing 
boundary layers [16] and second-mode transition in high-speed flows [18–21].  

Following the Transition Prediction Workshop in 2017 by NASA,1 a significant expansion of the 
transition modeling capabilities in selected NASA flow solvers was undertaken to address the needs 
highlighted by the CFD Vision 2030 study. This paper presents an overview of this research effort, 
outlines the key lessons learned, and offers an assessment of the current transition modeling 
capabilities in the OVERFLOW [22] and FUN3D [23] codes. Recently, key elements of this capability 
have also been ported to the VULCAN-CFD code [24]. The paper is structured as follows. Section 2 
outlines the overall research strategy. Sections 3 and 4 present selected case studies pertinent to the 
demonstration and assessment of this capability. Section 5 provides concluding remarks. While this 
overview paper focuses on the work performed at NASA Langley, transition modeling has been an 
active area of research worldwide [25,26] and numerous related references can be found in the 
papers cited herein. 

2. Overview of Transition Modeling Capabilities 
This section describes the research strategy we have adopted for transition model development, 
which is followed by an overview of the current capabilities implemented in NASA’s OVERFLOW and 
FUN3D codes.  

2.1 Research Strategy 
Transition represents the response of a deterministic, large degree-of-freedom system to forcing from 
external disturbances that may be either deterministic and/or stochastic in nature.  Whereas 
turbulence denotes the statistically robust and path-insensitive attractor that denotes the final outcome 
of this response, transition is all about the myriad pathways through which the flow may reach that 
outcome.  So, an intrinsic challenge in engineering predictions is to account for the diversity of 
transition mechanisms and their sensitivity to the specific details of the external disturbances. A telltale 
example of this sensitivity is the experiments by Saric’s group [27] at the Texas A&M University, which 
showed how polishing a painted leading edge of the swept wing pushed back the onset of crossflow 
transition from 30% to 80% chord. Similarly, transition on hypersonic reentry vehicles is often caused 
by surface roughness, which may be created (and also modified) in the course of flight. Ground-to-
flight extrapolation is often constrained by the large variations in transition associated with unsteady 
tunnel disturbances. Incorporating such dependencies via a practical set of input parameters is a 
challenge for both classes of transition models. In contrast, the external disturbances can often be 
considered as secondary in turbulence modeling.  

 
1 https://turbmodels.larc.nasa.gov/transition_workshop2017.html 
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Desirable attributes of transition models for modern and general purpose CFD solvers include 
accuracy, efficiency, robustness, as well as the ability to work with unstructured grid codes and various 
turbulence models. CFD Vision 2030 [1] has emphasized physics-based predictive modeling and a 
higher degree of automation in all steps of the CFD analysis process. This requires transition analysis 
that is integrated into the CFD solvers, ranging from the steady RANS approach to various forms of 
eddy-resolving methods. The CFD Vision 2030 Study report also emphasized the need for rigorous 
verification and validation (V&V) and uncertainty quantification (UQ) practices in the broader context of 
CFD simulations. This also applies in the specific context of transition modeling, given the complex, 
multiscale, and sensitive nature of the transition process. With that backdrop, an eventual goal would 
be to achieve more reliable transition modeling for aerospace applications — across the speed regime, 
vehicle classes, and their operational envelopes. To facilitate that mission, we have pursued a dual 
transition modeling strategy based on both stability-based and transport-equations-based paradigms 
(see Fig. 1). A hierarchy of models with different fidelities is included within each model category to 
allow users to tackle a broad spectrum of aerospace applications, spanning varying degrees of 
transition significance to the metrics of interest and the particular goals of CFD analysis. The dual 
approach expands the coverage of the 2D parameter space shown in Fig. 1 while also enabling the 
use of stability-based models to guide the assessment and improvement of the LCTMs. The eventual 
aim is to cross-pollinate between the two classes of models to help incorporate the several attributes 
mentioned earlier.   
 

Figure 1 - Dual strategy for CFD integrated transition modeling in NASA flow solvers OVERFLOW 
and FUN3D. 
 
2.2 Stability-Based Transition Modeling 
The modular framework for CFD-integrated transition modeling in Fig. 2 enhances portability across 
multiple flow solvers as well as a hierarchy of models for N-factor computation. The three main 
components include: the CFD process (i.e., flow solver and auxiliary tools for pre- and post-
processing), a stability solver (stability code or a surrogate model with utilities for N-factor 
computations along integration trajectories spanning the model surface), and a solver independent 
module that handles the generic tasks related to the communication between the CFD process and 
the stability solver. 

To ensure a flexible capability that is compatible with multiple flow solvers, we have focused on 
both a structured, overset grid flow solver (OVERFLOW v. 2.3) and the FUN3D suite (FUN3D, v. 14) 
that can be used with several mesh formats, including mixed-element unstructured grids and 
structured multiblock grids with one-to-one interfaces or overset grid systems.   
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Figure 2 – Computational framework for stability-based transition modeling. 

 
Direct computation of the stability characteristics utilizes the suite of LAngley Stability and 

TRansition Analysis Codes (LASTRAC) [28,29]. Significant progress has recently been made in 
improving the automation of stability-based transition modeling [30], including the development of 
surrogate models derived from deep learning algorithms [31–33]. A majority of this work has been 
carried out in support of NASA’s Transformational Tools and Technologies project, while a significant 
portion of the model development for high-speed flows has been in support of the Hypersonic 
Technology project. 

The LASTRAC stability solver offers a hierarchy of models that predict disturbance growth 
based on varying degrees of physical approximations. The LST equations, derived from the linearized 
Navier-Stokes equations, track the growth of small-amplitude, fixed-frequency disturbances assuming 
locally parallel mean flow. The Parabolized Stability Equations (PSE) [34] involve fewer assumptions 
and can account for weakly nonparallel basic state effects, surface geometry curvatures, and a large 
subset of nonlinear modal interactions. However, only the linear form of PSE has been used for CFD 
integrated transition modeling described in this paper. Both LST and PSE can model the amplification 
of primary instabilities on aircraft wings, such as Tollmien-Schlichting (TS) waves and crossflow (CF) 
vortices. Surface curvature can exert a stronger effect on the disturbance growth of CF instability, and 
the stabilizing influence of convex curvature on aircraft wings is frequently offset by comparable 
destabilization due to nonparallel effects. Thus, low-fidelity stability prediction based on the classical, 
quasiparallel LST often provides sufficiently accurate N-factor predictions. However, for certain 
configurations, especially designed for natural laminar flow on the wings of subsonic transports, the 
effects of surface curvature can be significant [35]. In such cases, PSE analysis is required to  
accurately estimate the contributions of both surface curvature and the nonparallel mean flow. The 
work by Halila et al. [36] is noteworthy for demonstrating the CFD integration of PSE into a high-order 
discontinuous Galerkin flow solver for 2D flows. The LASTRAC-based CFD integration, however, is 
more versatile, and applies to both 2D and fully 3D flows. Nonetheless, the LASTRAC applications 
described herein are limited to line-marching PSE solutions along specified integration trajectories. 
Mean-flow inhomogeneities such as streamwise elongated streaks in hypersonic flow configurations 
require plane-marching PSE for stability predictions. The integration of line- and plane-marching PSE 
for composite N-factor predictions was considered by Li et al. [37]. 

The inclusion of stability-based predictions of transition onset alone into RANS or other 
simulations can sometimes provide adequate estimates of overall flow metrics such as the drag or 
total heat load. However, accounting for the details of the transition zone may also be necessary to 
minimize the upstream influence due to abrupt transition associated with binary intermittency in the 
numerical model, and to reduce the error in integrated loads when the breakdown region is 
significantly long. As a result, variable fidelity modeling also becomes desirable for the prediction of 
intermittency evolution across the transition zone. The solver independent module includes different 
options for intermittency evolution ranging from abrupt transition (binary switch) to algebraic models 
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based on empirical correlations for a finite length transition zone. This module is comprised of the 
PyLASTRAC suite of Python codes and a partial description of those codes is provided in Ref. [30].  
 

2.3 Transport-Equations-Based Transition Modeling 
 The OVERFLOW and FUN3D capabilities for transport-equations-based transition modeling have 
been augmented via the inclusion of several additional models. As mentioned previously, transport-
based models are less general. Therefore the broader range of models adds robustness and also 
provides an element of uncertainty quantification. Additional benefits of these enhancements include 
models with Galilean invariance, models that are compatible with additional turbulence models, 
particularly SA, models with a reduced number of user inputs in some cases, compressibility 
corrections to improve accuracy at O(1) Mach numbers and above, and the ability to handle a wider 
range of transition scenarios including second-mode and crossflow transition in hypersonic flows. 
Table 1 presents a summary of the transition models currently implemented in the OVERFLOW and 
FUN3D codes.    

Table 1. Transport-Equations-Based Transition Models in OVERFLOW and FUN3D 
(Turbulence model SST2003 refers to Menter’s shear stress transport model [10] and SA denotes the 
Spalart-Allmaras turbulence model [14]. The presence of a check mark in the OVERFLOW and 
FUN3D columns indicates the availability of a given transition model in that code.) 

Turbulence 
Model 

Transition 
Model 

Model 
Order 
(Turb-
Trans) 

OVERFLOW FUN3D Remark 

SST2003 LM2009 2-2 ✓ ✓ 

Transition due to TS waves , 
separation bubble, and 
bypass due to high-amplitude 
freestream turbulence 

SST2003 LM2015 2-2 ✓ ✓ 
Includes crossflow, sensitized 
to surface roughness 

SST2003 
LM2009-
compressibility 
corrected 

2-2 ✓  
Stability-based 
compressibility correction for 
subsonic and transonic flows 

SST2003 CFHE 2-2 ✓ ✓ 
Includes crossflow,  
no roughness sensitivity 

SST2003 Menter 𝜸   ✓ ✓ Galilean invariant 

SST2003 Liu et al. 𝜸  ✓  
Hypersonic flows, 1st- and 2nd-
mode transition and crossflow 

SST2003 Qiao et al. 𝜸 − ν𝑳  ✓  
Hypersonic flows, 1st- and 2nd-
mode transition and crossflow 

SA Medida-Baeder  ✓   

SA AFT2014 1-1  ✓  

SA AFT2017a 1-1  ✓  

SA AFT2017b 1-2 ✓ ✓ Galilean invariant 

SA AFT2019 1-2 ✓ ✓  

SA  LM2015 1-2 ✓   

 

3. Case Studies: Stability-Based Transition Modeling 
This section outlines the application of stability-coupled transition models from the OVERFLOW and 
FUN3D solvers to selected flow configurations with prior experimental data.  The first two cases 
(sections 3.1 and 3.2) correspond to swept wing configurations for which attachment line instability 
does not play a role, but both TS waves and CF instabilities can have appreciable N-factors. In these 
cases, transition onset is correlated with a front in the two-dimensional space of TS and stationary 
crossflow N-factors, denoted herein as 𝑁்ௌ  and 𝑁஼ி, respectively. The shape of this transition 
boundary in the 𝑁்ௌ − 𝑁஼ி space is typically determined through correlation with measurements. For 
limited consistency, both cases use the same dual N-factor criterion given by: 
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where the subscript 𝑐 refers to the critical value, and the exponents 𝑎்ௌ and 𝑎஼ி control the level of 
interaction between the two types of instability waves. 

 
3.1 Swept-wing configurations: NASA Juncture Flow Model 
The Juncture Flow experiment [38] in the NASA Langley 14- by 22-Foot Subsonic Tunnel provided a 
valuable opportunity to assess and refine both classes of transition models by augmenting the 
relatively sparse body of transition measurements for swept wing boundary layers. This experiment 
employed a top-down symmetric, full-span swept wing configuration based on the NACA-0015 airfoil. 
It provided mean surface pressure measurements along multiple spanwise stations, along with 
infrared (IR)-imaging-based transition front measurements on the starboard and port side wings along 
with the fuselage.  As described by Leidy et al. [38], the IR-based transition data on the wing surfaces 
was consistent with additional transition data derived from mean Cp measurements. The freestream 
turbulence intensity near the wing leading edge is estimated to be in the range of 0.070% to 0.096%. 
Additionally, the surface roughness on the painted wings was measured both before and during the 
experiment. 

Figure 3 illustrates the comparison between the predicted Cp distributions along four selected 
cuts and the corresponding measured data from [38] at two different angles of attack ( = 0° and  = 
5°). The close agreement between the two sets of results boosts confidence that the computed 
laminar flow mimics the boundary layer evolution in the experiment, a crucial requirement for 
successful transition prediction based on stability theory.   

 

 
  

(a)Rows of static 
pressure ports 

(b) = 0° (c)  = 5° 

Figure 3 - Chordwise Cp distribution along static pressure rows on NASA Juncture Flow Model at M 
= 0.189, Rec = 2.4 ✕ 106, and T = 288.84 K for two selected angles of attack. Color coding for the Cp 
plots is aligned with the spanwise cuts from part (a). 

        The change in upper surface pressure distribution from  = 0° to  = 5° illustrates two main 
effects: an advancing suction peak and an increasingly adverse pressure gradient downstream of this 
peak. Consistent with the adverse pressure gradient, the pre-test stability computations from [39] had 
shown that for  > 0°, the disturbance growth over the upper surface is dominated by the TS 
instabilities. The corresponding N-factor envelopes remained approximately parallel to the leading 
edge. A substantial reduction in the laminar flow extent was predicted from up to nearly mid-chord for 
 = 0° to only a short distance downstream of the attachment line for  = 7.5°. For negative angles of 
attack, an appreciable amplification of stationary crossflow (CF) instabilities was predicted over the 
upper surface from  = -4° to  = -7.5°, reducing the laminar flow extent within the inboard region of 
the wings.  

       Figure 4 (a) displays the predicted N-factors at various points along the measured transition fronts 
at 𝛼 = 0° (blue symbols) and 𝛼 = -4° (magenta symbols). Based on the data for these two angles of 
attack, the parameters for the dual N-factor criterion were chosen as 𝑁்ௌ,௖ = 10, 𝑁஼ி,௖ = 6.2, 𝑎்ௌ = 3, 
and 𝑎஼ி = 3. The resulting front for I(𝑁்ௌ , 𝑁஼ி) = 1 within the dual N-factor space is indicated in Fig. 4 
(a). 
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(a) Dual N-factor calibration (b) 𝛼 = −2.5° (c) 𝛼 = −6° 

Figure 4 - Transition predictions based on a single iteration of the Stability-based approach for 
Juncture Flow Model at M = 0.189 and Rec = 2.4 ✕ 106. 

 

          Figures 4(b) and 4(c) display contours of the indicator function I(𝑁்ௌ , 𝑁஼ி) based on the above 
criterion for 𝛼 = −2.5° and 𝛼 = −6°, respectively. The good overall agreement with the measured 
transition fronts indicates that satisfactory transition predictions can be obtained even when a small 
subset of the overall data from the same experiment is used to calibrate the dual N-factor criterion. 
While this demonstrates limited generalizability, it does not provide any clues regarding the accuracy 
of this calibration for other flow configurations within the same wind tunnel. In essence, such 
uncertainty is indicative of certain postdictive elements within such predictions. The relatively high 
value of 𝑁்ௌ,௖ = 10 (larger than the estimate from Mack’s correlation and measured Tu) is also 
intriguing and warrants further investigation. In principle, the predictive capabilities of the current set 
of stability-based transition models can be improved via more general criteria that incorporate the 
major sensitivities of the transition processes. However, this challenging endeavor will not be feasible 
without a major expansion of higher fidelity datasets (both experiments and simulations) that include 
a significant range of major parameters associated with the external disturbance environment.   
 
3.2 Swept-wing configurations: NASA CRM-NLF Configuration 

 Application of natural laminar flow (NLF) to swept wing configurations on commercial transports 
offers a valuable test case for CFD-integrated transition models.  This case is valuable due to its 
significance in aerospace applications and the technical challenges it presents, including the presence 
of shocks, accompanying viscous-inviscid interactions, and the coexistence of TS and CF instabilities. 
To extend and refine the iterative approach for stability-based transition modeling to 3D transonic 
wings, we have used the common research model with natural laminar flow (CRM-NLF) aircraft 
configuration [40]. Transition measurements for the CRM-NLF configuration had been obtained during 
wind tunnel tests in the National Transonic Facility at NASA Langley Research Center [41 – 43].  

 Computations by Paredes et al. [44] focused on the suction surface of the CRM-NLF wing, 
including four different angles of attack (𝛼 =1.45°, 1.98°, 2.46°, and 2.94°) at a Reynolds number of 
𝑅𝑒ெ஺஼ = 15106, where MAC denotes the mean aerodynamic chord. Flow over the CRM-NLF wing 
includes a dual shock system and results presented below will show that the measured transition front 
is aligned with the shock front in the outboard region of the wing. For the cases of interest, TS 
amplification was always significant throughout the wing.  Although stationary crossflow N-factors 
were smaller on certain parts of the wing, appreciable crossflow amplification was predicted in certain 
spanwise regions (in a narrow region around the break and in the outboard regions of the wing 
approaching the wing tip for 𝛼 =1.45° and 𝛼 =1.98°). Therefore, similar to the Juncture Flow Model, 
transition over the CRM-NLF configuration was modeled with the dual N-factor method that accounts 
for both TS waves and the stationary CF instability. Results presented below are based on 𝑁்ௌ,௖ = 6, 
𝑁஼ி,௖ = 6, 𝑎்ௌ = 3, and 𝑎஼ி = 3. The critical N-factor for TS waves was chosen on the basis of previous 
work by Crouch et al. [45]. The remaining two parameters from the dual N-factor criteria (namely, 
𝑎்ௌ and 𝑎஼ி) are related to the effects of interaction between the two modes of instability and were 
determined by trial and error [46]. Observe that the latter two parameters are identical for both the 
Juncture Flow Model and CRM-NLF experiments, despite significant differences between the two 
wind tunnels and the flow conditions of both experiments. This coincidence is encouraging, as it 
suggests that the calibration parameters associated with the TS-CF interaction do not vary greatly, at 
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least between these two cases. Earlier computations in Ref. [44] revealed that, with an imposed 
transition (IT) front along the measured locations on the suction surface of the CRM-NLF wing, the 
predicted shock locations on the suction surface were noticeably downstream of the shock locations 
from a fully turbulent solution. To ensure a consistent predictive procedure for the iterative transition 
analysis, the computations described here began with an initial transition front derived from the most 
upstream shock locations from a fully turbulent solution and iteratively updated the transition front 
using the predictions of the dual N-factor criterion. 

 Figure 5 illustrates the predicted transition fronts for 𝛼 = 1.45° and 𝛼 = 1.98° obtained with the 
dual N-factor method after three iterations of the coupled analysis, overlaid with TSP images and the 
inferred transition front from the experiment [43], along with the shock front predicted by the fully 
turbulent computations. The TSP images show a number of turbulent wedges emanating close to the 
leading edge. These wedges lead to uncertainty in the transition front, which may have contributed to 
the jaggedness of the transition fronts inferred from the TSP images. For both conditions shown in 
Fig. 5, the predicted transition front is upstream of the inferred front from the experiment in the region 
immediately inboard of the break, possibly because the TS and CF N-factors were comparable in this 
section. In general, the differences between the predicted and measured transition fronts are modest. 
The proximity of the transition front with the shock fronts from the underlying solution also underlines 
the coupling between the transition front and the shock system as mentioned earlier.  
 

  
(a) 𝛼 = 1.45° (b) 𝛼 = 1.98° 

Figure 5 - CRM-NLF transition fronts predicted by the dual N-factor criterion, overlaid on TSP images 
obtained from the CRM-NLF experiment, along with the transition fronts inferred from those images 
[43] and the shock front from fully turbulent computations for two different angles of attack at 𝑀 =
0.856 and 𝑅𝑒ெ஺஼ = 15 × 10଺. 

 Figure 6 shows the comparison of predicted surface pressure coefficients based on the 
transition model with the measured data along selected rows of pressure ports for 𝛼 = 1.45°. While 
the predicted pressure coefficients at the wingspan stations from the measurements (indicated by 
solid red curves) are fairly close to the measured values (marked by symbols), computations 
consistently indicate a downstream shift in the shock location compared to the experimental data. The 
measured shock locations agree better with the fully turbulent solutions (indicated by broken lines in 
blue). This shift highlights the sensitivity of the transonic wing flow to viscous-inviscid interaction 
effects, as well as revealing that the pressure ports likely tripped the experimental flow along those 
spanwise stations [42].  The latter may explain the better agreement of the measured values with the 
fully turbulent results. 

 There are still a few important lingering questions regarding the extraction of a transition front 
from the TSP images and the potential roles of both aeroelastic effects and surface roughness 
associated with tunnel particulates during the transition process over the CRM-NLF. However, 
irrespective of those issues, transition analysis for the CRM-NLF has been invaluable to our 
development of a CFD-integrated transition modeling framework. To our knowledge, this was also the 
first application demonstrating the feasibility of PSE-based integrated transition analysis for a transport 
wing. 
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(a) Schematic of pressure port rows 

   
(b) Row A (c) Row C (c) Row F 

Figure 6 - Experimental and predicted Cp distributions at selected sections of CRM-NLF wing for 1.45° 
(𝑀 = 0.856 and 𝑅𝑒ெ஺஼ = 15 × 10଺).    

 
3.3 High-Lift Configurations: 30P30N Multi-Element Airfoil Configuration 

 Flight experiments have revealed significant laminar flow regions on subsonic transport aircraft, 
even under "dirty" high-lift conditions with the leading-edge slat and trailing-edge flap(s) in a deployed 
setting [47]. These findings highlight the significance of transition modeling for high-lift predictions. 
Accurate prediction of transition to turbulence may also play a role in maximum-lift prediction, which 
is necessary for the certification of new commercial aircraft using CFD analysis methods. 

 The McDonnell Douglas 30P30N three-element airfoil is a well-known test case with high 
quality transition data for 2D high-lift configurations. It originated from the High-Lift Workshop/ CFD 
Challenge organized by the NASA Langley Research Center [48] and has also been used for the AIAA 
workshops related to airframe noise [49]. Transition over 3D high-lift configurations at flight-relevant 
Reynolds numbers may involve a plethora of transition mechanisms including attachment line 
transition, TS and crossflow instabilities, flow separation, wake-boundary layer interactions, and 
bypass transition due to surface imperfections. Additionally, relaminarization (and subsequent 
retransition) may occur due to the combined effects of pressure gradient, surface curvature, and 
Reynolds number. Furthermore, the convection of unsteady structures from one or more upstream 
regions of flow separation, combined with the acoustic noise generated via the interaction between 
those structures and the solid surfaces, can significantly modify the freestream disturbance 
environment encountered by the boundary layers.  

 Besides the aforementioned physical complexities, high-lift configurations also introduce 
implementation challenges for stability-based transition modeling. First of all, boundary layers develop 
on both sides of the different elements of the high-lift configuration and interact with the wakes from 
the upstream elements. Thus, the transition model implementation must isolate the various laminar 
portions of the viscous flow and then account for the differences in transition mechanisms associated 
with each portion. Additionally, when overset grids are used to simplify the grid generation process, 
accurate extraction of boundary layer profiles over the downstream elements involves extra 
challenges due to multiple overlapping grids. In that regard, a purely unstructured grid computation of 
the 30P30N configuration presents a simpler case with a limited subset of the above challenges, 
enabling comparisons with measurement data for a range of flow conditions.  

 As an illustration of the FUN3D capability, transition over the suction surface of the 30P30N 
slat at 𝛼 = 8° with M = 0.2 and a stowed-chord Reynolds number of Rec = 9 million is considered here. 
Slat transition is important because of its relevance to the slat wake, which also interacts with the main 
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element and the flap, potentially impacting the overall aerodynamics. The selected flow condition has 
been extensively analyzed over the years, both for fully turbulent computations [50] and those 
including transition [51,52,11]. It also corresponds to one of the few conditions where transition does 
not involve a laminar separation bubble.  Preliminary results for slat transition at the 𝛼 = 8° condition 
are shown in Fig. 7. These computations were performed using a grid that was designed for RANS 
predictions rather than for stability computations. Nonetheless, they are sufficient to illustrate the 
feasibility of performing automated PSE-based stability analysis for multi-element airfoils using the 
LASTRAC-FUN3D integration. More detailed transition analysis for the 30P30N configuration is 
currently under way and the results of that analysis will be described in an upcoming paper [53]. 

The predicted transition onset location over the slat is marked in Fig. 7(a) with an open triangle; 
the slat contour is colored by the N-factor values and N-factors of 7, 8, 9, and 10 are marked with 
parallel lines interacting the slat contour at the corresponding surface locations. The N-factor 
correlation of Ntr = 9 was chosen on the basis of the earlier work by Malik and Lin [51], which also 
used PSE-based transition prediction. The flight-like N-factor is also consistent with the low levels of 
freestream turbulence in the Low Turbulence Pressure Tunnel (LTPT). The computational result in 
Fig. 7(a) indicates a significantly delayed onset of transition relative to the reported measurement of 
transition onset location (indicated by the upstream hollow circle on the plot). However, a scrutiny of 
the overall body of measured transition data [54] reveals that the measured locations of the start and 
end of slat transition at this particular condition are outliers relative to the remaining data. When the 
transition onset location at the condition of interest is interpolated from the neighboring conditions, a 
monotonic variation with respect to the flow parameters is found.  The predicted transition location 
indicates improved agreement with the interpolated transition onset location, which is indicated by a 
star in Fig. 7(a) that overlaps with the open triangle.  

Thus, at least for the 𝛼 = 8° case, the stability model seems to provide reasonable prediction 
of transition over the slat suction surface at the relatively low freestream turbulence intensity of less 
than 0.1%. In contrast, previously published work [52] using the phenomenological LM2009 model 
was not able to capture the slat transition behavior at this angle of attack until the freestream 
turbulence was increased to 0.8%. Although not shown in Fig. 7, the FUN3D transition model is 
capable of applying stability-based transition prediction to multiple elements of the high-lift 
configuration including the main wing and the flap. For instance, rather low values of N-factor were 
predicted along the lower flap surface, which is consistent with the laminar behavior inferred from the 
experimental measurements [55]. 

 
  

(a) Transition onset location on 
slat suction surface (Ntr = 9): 
comparison with experiment 

(b) Skin-friction coefficient 
along slat surface (symbols 
indicate measured data) 

(c) Skin-friction coefficient 
along main element 

Figure 7 - Stability-based transition predictions for 30P30N multi-element airfoil at M = 0.2, 𝛼 = 8°, 
and Rec = 9 ✕ 106. 

 

3.4 Hypersonic Flows 
The prediction of laminar-turbulent transition in high-speed flows is critical to designing flight systems  
because of its importance in determining the heat load. However, this prediction faces challenges due 
to compressible flow phenomena, combined with an increased variety of transition mechanisms. 
Despite these challenges, advancement of transition modeling for high-speed flows remains an 
essential need as described by the CFD 2030 Vision study [1]. To address that need, NASA Langley 
Research Center has undertaken research to integrate stability-based transition models for high-
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speed flows with CFD solvers and to enhance the maturity of transport-equations-based transition 
models that can be applied in high-speed flows. Recent progress in stability-based modeling is 
summarized in this section. 

Illustrative results for transition in canonical supersonic and hypersonic flows are shown in Fig. 
8. Here, the line and surface plots represent the predictions of the coupled transition analysis, while 
the solid squares represent the experimental data from Refs. [56] and [57] for subfigures 8(a) and 
8(b), respectively. The initial implementation of coupled stability analysis for supersonic and 
hypersonic flows is described in Ref. [58]. However, the transition N-factor estimation and 
intermittency prescription described in that work have since been superseded by further 
enhancements as outlined below.  
            Stability-based transition prediction requires the user to specify the transition N-factor, Ntr, 
which varies considerably across high-speed applications depending on the dominant instability 
mechanism and the relevant disturbance environment. This uncertainty underscores the need for 
more general criteria based on easily input parameters, which would reduce the post-dictive element 
of the N-factor methodology and enhance its predictive capabilities. 

 
 

(a) Skin friction coefficient predicted after 3 
iterations of CFD-LASTRAC analysis for 5-
degree half angle cone at Mach 2, 2˚ angle-
of-attack, Ntr = 7 (symbols denote measured 
data from Tokugawa et al. [57]) 

(b) Axial distribution of predicted (red line) and 
measured (symbols) nondimensional heat 
transfer coefficient for 5-degree half angle cone 
with blunted tip at Mach 6, 0˚ angle-of-attack, Ntr 
= 5.5 (experiment by Horvath et al.[56]) 
 

Figure 8 - Illustration of coupled OVERFLOW-LASTRAC analysis for two straight-cone configurations 
in supersonic and hypersonic flows, respectively. Figures reproduced from [58]. 
 

To provide an engineering solution for determining Ntr for experiments in conventional 
hypersonic wind tunnels, Vogel and Choudhari [59] developed a correlation based on 45 hypersonic 
ground test cases of canonical geometries.  This correlation expands the existing correlations for 
straight circular cones with a narrow range of half angles to a broader array of second-mode-
dominant axisymmetric configurations without requiring an extensive amount of configuration-specific 
data. The input arguments for this correlation include easily available quantities such as the 
freestream disturbance intensity, Mach number, and body-based slenderness Reynolds number.  

The details of the above correlation can be found in [59]; however, its two main components 
correspond to the disturbance amplitude at the onset of transition (related to the saturation amplitude 
Amax for Mack’s second mode instabilities) and the receptivity coefficient CR that relates the initial 
instability amplitude to freestream disturbance intensity. Figures 9(a) and 9(b) compare the correlated 
values of these parameters with those estimated for the experimental configurations used as the 
training data. Figure 9(c) displays the comparison between the N-factors computed at the measured 
transition locations and those predicted by this correlation. Future work will focus on a more in-depth 
evaluation of this correlation and on enhancing its generalizability. 
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(a) Critical Amplitude (b) Receptivity Coefficient (c) Transition N-Factor 

Figure 9 - Illustration of the curve fits from [59] for two main components of the empirical correlation 
involving the transition N-factor (Ntr) related to 2nd mode dominated transition in conventional ground 
test tunnels. Symbols indicate the values of each component correlation based on the training cases. 
Part (c) indicates the overall accuracy of the correlation. 
 

The locations of transition onset correspond to the dominant source of transition-related 
uncertainty in predicting the aerothermodynamic environment of hypersonic vehicles. However, the 
extent of the transition zone can also impact the total heat load, especially when the transition zone 
has a significant extent. The peak local heat transfer is also a crucial metric that depends on the 
details of the transition zone and the potential overshoot in heat transfer distribution. To help address 
the need for transition zone modeling, current work is focused on developing a correlation for the 
intermittency distribution that will be coupled with the SA turbulence model. Figure 10 presents 
preliminary predictions of the forthcoming correlation and compares them with the measured data and 
also with a baseline intermittency model from [58]. We note that neither of the cases shown in this 
figure were used in the development of the correlation. Although this figure represents ongoing work, 
the present correlation shows encouraging agreement with the experimental heat transfer coefficients 
in spite of being derived from a small pool of training cases. Further results based on this intermittency 
model will be presented in a forthcoming paper.  
 

   
(a) Mach 6.1 Flat Plate 
experiment, Re = 4.9 × 106/m  

(b) VKI 7˚ half-angle cone with 
a 0.05 mm nose radius,  M = 
6.0 and Re = 22.8 × 106/m  

(c) Same as part (b), but  Re = 
18.0 × 106/m  
 

Figure 10 - Demonstration of the intermittency correlation for CFD-stability coupled transition 
prediction. Curves labeled “Baseline” denote the predictions of a simple model used in earlier results 
[58] whereas the curves labeled “Correlation” utilize the preliminary correlation mentioned in the text. 
Experimental data is indicated by symbols. 

 
3.5 Surrogate Stability Models Based on Deep Learning 

Traditional surrogates for linear-stability based transition models are derived from existing databases 
of precomputed stability characteristics. The surrogates create an analytical or numerical response 
surface model in terms of a small number of scalar input parameters that represent a combination of 
global flow parameters, selected attributes of boundary layer profiles, and relevant disturbance 
characteristics such as frequency and wave-number parameters. However, these traditional methods 
face limitations when applied to flow configurations where the transition process depends on a large 
set of factors such as surface temperature, suction/blowing, roughness, edge Mach number, non-
equilibrium phenomena in high enthalpy flows, etc.  
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In contrast, neural network methods are able to accommodate higher dimensional input 
features to be considered without compromising the efficiency and accuracy compared to the traditional 
data driven models. This capability allows for more comprehensive analysis of complex flow 
configurations. However, neural network-based surrogate models often face challenges related to 
generalizability and interpretability. To investigate the potential of neural networks in transition 
prediction and help address the associated challenges, we have experimented with several 
architectures, including convolutional neural networks (CNN) [32], recurrent neural networks (RNN) 
[31], and simpler fully connected networks (FCN) [30]. The CNN and RNN models integrated a 
convolutional encoder with an FCN-based predictor of the local slope of an N-factor curve. The 
dominant latent feature identified by the encoder strongly correlated with the shape factor of the local 
velocity profile, providing some interpretability to the CNN model [32].  While both the CNN and the 
FCN architectures modeled the N-factor curve for a single disturbance entity (i.e., a fixed combination 
of frequency and spanwise wavenumber), the RNN focused on directly modeling the N-factor envelope 
for a given flow. In recent work, we have used the proper orthogonal decomposition coefficients of the 
velocity profiles to reduce the input space dimensionality for FCN models and obtained similar results 
as the earlier CNN model [32]. 

Figure 11 taken from [33] demonstrates the application of the CNN model to second mode 
amplification on a 7-degree half-angle cone with 2.5 mm nose radius during ascent phase of the 
HiFIRE-1 flight experiment [60].  The results compare the direct stability computations using Linear 
Stability Theory (LST) with two surrogate models: (i) A model trained on self-similar, sharp-cone 
boundary layer profiles (a common approach in surrogate model development) with edge values and 
boundary-layer thickness as correlating parameters, both with and without local pressure gradient 
effects, and (ii) a CNN model based on Navier-Stokes basic state solutions for a 7-degree half-angle 
cone with 2.5 mm nose radius and various freestream conditions and surface temperature ratios. The 
growth rate predictions based on the equivalent self-similar profiles were consistently larger than for 
those calculated with the Navier-Stokes basic state, resulting in approximately 39% underprediction of 
the transition onset location. This discrepancy is attributed to the modified boundary layer profiles due 
to entropy layer effects, which are not adequately captured by the local boundary-layer edge properties 
and thickness.   
 

  

(a) Comparison of N-factor envelopes 
predicted by LST for various mean-flow 
approximations: Navier-Stokes (NS), 
locally self-similar profiles based on Taylor-
Maccoll (TM) post-shock conditions and 
self-similar approximations based on local 
edge conditions (LE) with zero or nonzero 
Hartree pressure gradient parameter 𝛽ு. 

(b) Comparison of N-factor curves for 
constant frequency instability modes 
predicted by LST and its 
(convolutional) neural network (NN) 
surrogate. The vertical arrow 
indicates the measured transition 
location. 

Figure 11 - Application of surrogate models to predict amplification characteristics of axisymmetric 
Mack-mode disturbances over the HIFiRE-1 flight vehicle at a flight ascent time of t = 21.5 sec.   
 

Figure 11(b) demonstrates the accuracy of the CNN predictions, indicating excellent 
agreement with the LST data. The CNN model also exhibited moderate generalizability beyond its 



Transition Modeling in Support of CFD Vision 2030 

14 

 

 

training data, successfully predicting second mode amplification for test cases involving cones with 
nonuniform surface temperature distributions, a 5-degree cone despite being trained on 7-degree 
cases, and even freestream conditions that amounted to an extrapolation beyond the training space. 
Additionally, it showed some robustness to under-resolved basic states. However, further 
generalization of the model to a broader range of flow configurations remains to be investigated.  

An important means of enhancing the generalizability of a neural network model is to increase 
the breadth of the training data. To that end, a large database comprised of the linear growth 
characteristics of over 35,000 boundary-layer flows over 56 airfoils at varying Reynolds numbers and 
angles of attack has been used to enable the training and testing of surrogate models for transition due 
to TS instabilities. Computationally, it’s much more expedient to use a boundary-layer code to generate 
the mean boundary layer profiles for generating a large database of this type. On the other hand, the 
target application space for CFD integrated transition modeling  involves mean profiles extracted from 
Navier-Stokes solutions, which do not asymptote to a uniform behavior beyond the boundary layer 
edge (Fig. 12(a)). Thus, in order to apply the surrogate model to CFD-integrated transition prediction, 
it is essential to determine how to align the two classes of profiles. Our approach to this challenge has 
been to transform the N-S profiles into profiles that asymptotically approach uniform behavior in the 
freestream, analogous to those obtained via boundary-layer codes. This mapping was accomplished 
using a physical interpretation of the boundary-layer integral thickness parameters. This mapping 
enables one to easily determine the edge of the boundary layer, and hence, to estimate the flow 
quantities at the edge of the boundary layer and the integral parameters of the boundary layer profiles 
(displacement thickness 𝛿∗, momentum thickness 𝜃 and shape factor 𝐻). A seamless integration of the 
neural net models into the framework from Fig. 2 could be accomplished via Python utilities with the 
same input-output interface as the LASTRAC stability code. 

Figure 12(b) illustrates the application of the neural network model for TS instabilities to natural 
transition in a fully attached boundary layer over a NLF-0416 Airfoil at 0-degree angle of attack, and 
chord Reynolds number of Rec = 9106, indicating the good agreement with the LST data across a 
broad range of frequencies. 

                                

  

(a) ML Model Integration with PyLASTRAC 
(b) ML Model Integration with 
PyLASTRAC: NLF-0416 Airfoil, 0-

degree angle of attack, 𝑅𝑒௖ = 9106 
Figure 12 - Neural network model for TS wave amplification in low-speed boundary layers 

 
In summary, neural network based surrogate models for stability characteristics offer a promising 

alternative to direct stability computations. These models are more robust and user-friendly, making 
them well suited for CFD users who may not have extensive expertise in stability theory. Coupled with 
the models’ capability to generate satisfactory transition predictions with high efficiency, they could 
be leveraged during the conceptual design phase as a useful means of conducting trajectory 
assessments. In addition to the surrogate models for stability, an ongoing model augmentation effort 
aims to use data-driven techniques based on field inversion and machine learning to improve the 
predictions for the transport-equations-based transition models such as the Langtry-Menter [9] and 
AFT [15] models using available higher-fidelity data for flows where compressibility and/or surface 
roughness can significantly influence the transition locations. 
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3.6 Design Optimization 
As described in Section 1, the development of CFD integrated transition modeling methodologies is 
crucial for the development of future aircraft with substantially reduced environmental impact. NASA's 
aeronautics plan and ICAO aim to reduce the aviation CO2 emissions by 50% (relative to 2005 levels) 
by 2050. Aircraft drag reduction via both natural laminar flow (NLF) and hybrid laminar flow control 
(HLFC), which combines NLF with suction near the leading edge, offers considerable potential for 
improved aircraft efficiency and reduced emissions of greenhouse gases. The N+3 and N+4 concepts 
for future aircraft proposed under NASA sponsored research rely on NLF to achieve the drag 
reduction benefit provided by laminar flow, but any uncertainties in transition modeling can 
significantly offset the projected benefits of NLF. Our ongoing effort as described in Section 2 has 
targeted improved transition models that should help reduce these uncertainties. Yet, developing 
better transition models alone is not sufficient. To fully realize the potential of laminar flow technology, 
the enhanced transition modeling capability must also be integrated into aerodynamic design tools 
that would enable engineers to create designs that can achieve the projected benefits of NLF and 
HLFC in practice.   

In recent years, knowledge-based NLF design practices have been successfully used to develop 
novel swept-wing configurations that may provide significant reductions in overall drag [61]. Adjoint-
based design approaches offer a complementary approach with several attractive features. 
Specifically, it provides scalability to a large number of design variables, comprehensive sensitivity 
information, ability to satisfy multiple objectives/constraints including off-design performance, and 
amenability to automation and fast design iterations. A number of prior studies have presented 
adjoint-based NLF design using transport equations for transition prediction (e.g., Ref. [62]) and 
data-driven surrogates [63,64] to stability models.  However, the CFD integration of transition models 
that utilize direct stability computations opens up the possibility of using higher-fidelity transition 
prediction within the adjoint-based design framework. Design capability based on the direct 
computation of stability characteristics as described in the earlier sections has recently been 
implemented in NASA’s FUN3D flow solver. Figure 13 depicts a schematic of this algorithm and the 
reader is deferred to a forthcoming paper [65] for additional details.  

 

 

Figure 13 - Computational framework for stability-based design optimization. Figure reproduced 
from [65]. LSA denotes linear stability analysis. 

 

4. Transport-Equations-based Transition Models 

4.1 Low Reynolds Number Flows with 3D Separation Bubbles: Pazy Wing Configuration 
The Pazy wing from the AIAA 3rd Aeroelastic Prediction Workshop [66] is a highly flexible wing 
designed to study large deformations and nonlinear phenomena at low Reynolds numbers (𝑅𝑒௖ = 
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1.2 × 10ହ). The unique structural design of this wing features a spanwise array of thirteen ribs that 
leads to quasi-periodic sagging between the ribs. This sagging results in a spanwise varying sectional 
geometry that provides an interesting case for investigating the performance of transport-equations-
based transition models.  

Venkatachari et al. [67] reported steady-state computations of the Pazy wing at two different 
chord Reynolds numbers (𝑅𝑒௖ = 1.2 × 10ହ and 𝑅𝑒௖ = 3.42 × 10ହ) and several angles of attack. 
Different variants of the Langtry-Menter transition model, both with and without crossflow effects, were 
applied to the sagged Pazy wing. Results indicated that crossflow is unimportant for this configuration 
and that the primary transition mechanism is related to the presence of laminar separation bubbles 
(LSBs). Thus, additional computations were performed for 2D airfoils with cross sections representing 
the rib section and the center plane of the sagging regions, respectively. The rib section was modeled 
as the NACA-0018 airfoil, since it forms the basis for the unsagged Pazy wing and also has additional 
data available in the literature [68]. Ref. [67] compared their predictions for the Pazy wing  based on 
two-equation transition models with those of Ritter et al. [69], who used the single-equation  transition 
model from DLR. To align with [69], computations in [67] used Tu = 0.3%, slightly below the reported 
value of Tu = 0.5% in the wind tunnel. Despite this difference, comparisons with the wind tunnel 
measurements should offer useful insights into the transition model behavior of the Pazy wing. 
Nonetheless, the influence of this discrepancy should be considered when interpreting the following 
results that were obtained via the helicity-based crossflow extension [17] to the LM2009 model  
(denoted here as the LM-CFHE model) and the AFT2017b Model [70] (henceforth referred to as 
simply the AFT model). 

The transition location in 2D LSBs correlates with the end of the plateau in the chordwise Cp 
distribution near the LSB [68, 71]. Given the minimal effects of crossflow as mentioned before, the 
observed correlation from Refs. [68, 71] was used to estimate the computational transition locations 
along the rib section and the sagged sections of the wing. A comparison of the IR-based experimental 
transition locations [72] with the predictions of the LM-CFHE is shown in Fig.14(a), whereas similar 
results for the AFT model are plotted in Fig. 14(b). Transition predictions for the 2D sections at 𝑅𝑒௖ = 
1.2 × 10ହ are also included for comparison. At 𝛼 = 0° and 𝛼 = 2°, the observed transition is aft of x/c 
= 0.65 in both rib (solid blue curve) and sagged regions (solid red curve), with similar transition 
locations within those regions. For 𝛼 = 0°, the measured transition location is bracketed by the LM-
CFHE predictions at 𝑅𝑒௖ = 1.2 × 10ହ (dashed curves in Fig.14) and 𝑅𝑒௖ = 3.42 × 10ହ (dash-dot 
curves). At higher angles of attack, both measured and predicted transition locations along the rib 
indicate a smooth upstream trend. In contrast, measurements in the sagged region reveal an abrupt 
upstream shift to x/c < 0.1 when 𝛼 is increased from 2° to 4°, and the transition location remains 
relatively unchanged for 𝛼 >  4°. In comparison, 2D computations for the sagged section at 𝑅𝑒௖ = 
1.2 × 10ହ (indicated by right-facing triangles in Fig.14) predict transition closer to the leading edge for 
all angles of attack studied here, i.e., including the 𝛼 = 0° and 𝛼 = 2° cases. 

It may be observed that both LM-CFHE and AFT models capture the shift to upstream transition 
locations for 𝛼 >  4° and, in fact, agree rather well with the measured data. At these angles, the 
corresponding predictions at 𝑅𝑒௖ = 3.42 × 10ହ are noticeably more upstream than the transition 
locations at 𝑅𝑒௖ = 1.2 × 10ହ. Computed results at 𝛼 = 2° for 𝑅𝑒௖ = 1.2 × 10ହ are not yet available but 
would provide a more thorough assessment of the models. An examination of skin friction contours 
over the suction surface provides further insight into the above trends as described below. 

Skin friction contours for 𝛼 = 0° are presented in Fig. 15(a). Figure 15(b) shows analogous 
results for 𝛼 = 6°, which will be discussed later. For 𝑅𝑒௖ = 3.42 × 10ହ, the 𝛼 = 0° solutions based on 
the LM-CFHE model (as well as the AFT results not shown here) indicate a short separation bubble 
just downstream of the wing leading edge within the sagged regions along the span. The term 
separation is used broadly in this 3D context, to denote the onset of flow reversal along the chordwise 
direction. The bubbles appear as light colored regions in the figure and are marked by black lines. 
The bubbles reattach without any transition as observed from Fig. 14(a). At 𝑅𝑒௖ = 1.2 × 10ହ, only a 
small number of sagged sections include the leading-edge LSBs in the LM-CFHE solution, indicating 
that the Pazy wing flow at 𝛼 = 0° may be on the threshold of separation inside the sagged portions of 
the leading-edge region. The IR images from the wind tunnel experiment (not shown here) do not 
present any evidence of leading edge LSBs. These findings partially corroborate the LM-CFHE 
predictions at the lower 𝑅𝑒௖, and the minor discrepancy in the computed results could be related to 
the lower value of Tu used in the computations.  
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(a) LM-CFHE model 
 

(b) AFT2017b model 

Figure 14 - Comparison of predicted and measured transition locations along the rib section (blue 
lines and symbols) and centerplane of the sagged section (red lines and symbols) for several angles 
of attack. Results are obtained by including sustaining terms for freestream turbulence. 
 
          At both Reynolds numbers, computed solutions at 𝛼 = 0° display an additional region of 
separation that begins aft of the mid-chord location and extends across the entire span of the wing. 
At the lower 𝑅𝑒௖, the LM-CFHE solution indicates a closed separation bubble with nearly uniform 
separation and reattachment fronts along the span. The corresponding AFT solution predicts delayed 
onset of separation in the vicinity of the rib section, resulting in prominent spanwise variations in the 
separation front. Additionally, the downstream bubble in the AFT solution remains open over most of 
the span. As the Reynolds number increases to 𝑅𝑒௖ = 3.42 × 10ହ, the bubble from the LM-CFHE 
solution also exhibits spanwise variations along the separation and reattachment boundaries, along 
with a downstream shift near the rib section. Furthermore, the onset of separation moves downstream 
with respect to the lower Reynolds number case and the chordwise length of the bubble is reduced.  

Figure 15(b) illustrates the flow behavior over the suction surface at 𝛼 = 6°. The 𝛼 = 6° solutions 
in Fig. 15(b) are representative of the higher angles of attack (𝛼 > 4°) until stall is reached. The 𝛼 = 
4° condition is more nuanced and will be discussed in detail in a forthcoming paper. The computed 
solutions in this range reveal two distinct changes with respect to the 𝛼 = 0° case. First, all three 
computational solutions in Fig. 15(b) indicate the leading-edge separation bubbles inside the sagged 
regions. As discussed in the context of Fig. 14, the more robust LSBs under these conditions induce 
transition prior to their reattachment, which accounts for the abrupt upstream shift in the measured 
transition. The stronger adverse pressure gradient over the suction surface also leads to an additional 
LSB centered on the rib section. The extent of the rib LSB is upstream in comparison with the 𝛼 = 0° 
case and the planform shape of this LSB includes narrow tails along its lateral boundaries that extend 
significantly downstream. Indeed, for the AFT model, the tails of the rib LSB even connect with the 
spanwise varying separation pockets in the trailing edge region.  

In summary, the Pazy wing transition analysis has extended the assessment of mainstream 
transition models by evaluating their predictive capabilities for a spanwise quasi-periodic configuration 
that exhibits an intricate pattern of 3D separation bubbles. Related findings from [67] have also shown 
a strong code-to-code comparison with FUN3D predictions obtained using more modest grid 
resolutions that are typical of more complex geometries encountered in practice. That comparison 
has paved the way for applying the FUN3D transition models to more complex applications with 
aeroelastic phenomena.    
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 LM-CFHE 

Lower 𝑅𝑒௖ 

AFT 

Lower 𝑅𝑒௖ 
LM-CFHE 
Higher 𝑅𝑒௖ 

LM-CFHE 

Lower 𝑅𝑒௖ 

AFT 

Lower 𝑅𝑒௖ 

LM-CFHE 
Higher 𝑅𝑒௖ 

 (a) 𝛼 = 0° (b) 𝛼 = 6° 
Figure 15 - Contours of skin friction coefficient Cf on the upper surface of sagged Pazy wing. Results 
are shown for both transition models at the lower 𝑅𝑒௖ = 1.20 × 10ହ and only for the LM-CFHE model 
at the higher 𝑅𝑒௖ = 3.42 × 10ହ. Flow direction is from left to right. Experimentally inferred transition 
fronts [72] at 𝑅𝑒௖ = 1.20 × 10ହ are shown as purple lines (yellow in rightmost plot for improved contrast 
to the underlying Cf contours). Black lines mark the locus of surface locations where the chordwise 
component of the skin-friction vector becomes zero. The blue and green horizontal lines indicate the 
rib- and sagged sections, respectively, corresponding to the 2D data in the previous figure.  

 

4.2 Swept-wing configurations: NASA Juncture Flow Model 
The Juncture Flow Model from Section 3.1 was also used to evaluate the predictions of three different 
variants of the LM transition model at flow conditions with significant potential interaction between TS 
and CF instabilities (𝛼 = −6°). As the LM2009 model does not include any CF effects, its predictions 
did not match the measured trends in transition (Fig. 16(a)). Despite the neglect of roughness effects 
that significantly influence the transition process at low levels of freestream unsteadiness, the 
predictions of the local-helicity-based LM-CFHE model (Fig.16(b)) were consistently in close 
agreement with the experimentally visualized transition front. In contrast, the roughness-sensitized 
LM2015 model predicted larger than measured laminar extent at the conditions examined during 
computations (Fig. 16(c)). Partial explanations for this discrepancy may be that (i) the limited 
measurements of surface roughness were not adequately representative of the roughness distribution 
across the entire span and/or that (ii) the effects of surface roughness cannot be captured by a single 
parameter in the form of the root-mean-square (rms) height, Rq. However, computations not shown 
here also indicated that the predicted transition front did not shift sufficiently upstream even when the 
input value of Rq was increased through a large range. Since crossflow effects were clearly significant 
in this case, the latter finding could be an indication that the original calibration of the LM2015 CF model 
[16], which was based on a rather sparse database, does not generalize well to the Juncture Flow 
Model experiment.  

The experimental data also included transition measurements over the fuselage of the Juncture 
Flow Model and the LM-CFHE model was again able to match the azimuthal variations in the measured 

Flow 
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transition front rather well, in addition to its excellent performance in predicting transition over both 
sides of the wing surface as seen from Fig. 17 for 𝛼 = −7.5°.   
 

   
(a) LM2009 (b) LM-CFHE 

 
(c) LM2015 

(hrms = 3.3 microns) 
Figure 16 - Predicted transition behavior as depicted via turbulence index contours for 𝛼 = −6° 
obtained using different transition models. Black lines indicate transition fronts inferred from 
measurements. The red contours are indicative of fully turbulent flow in the computed solution. 

 
 

 

   
(a) Lower surface (b) Upper surface (c) Fuselage nose 

Figure 17 - Predicted transition behavior as depicted via turbulence index contours for 𝛼 = −7.5° 
obtained with the LM-CFHE model. Black lines indicate transition fronts inferred from measurements. 
  

4.3 Compressibility Effects at Transonic Speeds 
The LM model [11]  is one of the most widely used models for predicting transition in RANS solvers. 
However, it relies on empirical correlations based on low-speed flows and does not account for the 
stabilizing influence of compressibility on the amplification of boundary layer instabilities [73]. As 
shown by Venkatachari et al. [74], this leads to significant underprediction of the laminar flow extent 
on two different wind tunnel configurations of particular significance: the NASA Common Research 
Model (CRM) and the CRM with Natural Laminar Flow (CRM-NLF) [40–43]. Based on those findings, 
a systematic evaluation of the predictive accuracy of the LM transition model for transonic boundary 
layers in low disturbance environments was performed. Results showed that the accuracy of the LM 
model was impacted mainly for near-zero to favorable pressure gradients, an important class of flows 
that is relevant to natural laminar flow wings. To address this issue, a straightforward modification 
was proposed to incorporate compressibility effects into the LM model. Correction factors based on 
the local value of edge Mach number modified a subset of relevant correlations from the LM model 
that are common to both the LM2009 version without crossflow and the LM2015 version with 
crossflow effects. The compressibility correction for 𝑅𝑒ఏ௧  has the form (𝑅𝑒ఏ௧)ே௘௪ = (𝑅𝑒ఏ௧)ை௥௜௚௜௡௔௟ ⋅

𝐹(𝑀௘) , where the correction term 𝐹(𝑀௘) is a function of the local edge Mach number and is 
evaluated via an analytical curve fit derived from the results of stability computations by Masad and 
Malik [75] and Masad and Abid [76].  

The performance of the compressibility-corrected LM model was evaluated for several 
canonical 2D and 3D configurations, including a flat plate, the RAE (NPL) 5212 and NLR 7301 
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supercritical airfoils, and the CRM-NLF wing. Figure 18(a) illustrates the increasing underprediction 
of the transition Reynolds number by the baseline LM model over an adiabatic flat plate as the 
freestream Mach number increases from 0.0 to 1.4. Figures 18(a) and 18(b) confirm that the above 
discrepancy is substantially reduced by the compressibility correction, resulting in improved 
predictions of transition onset up to the transonic regime. 

 

  

(a) Transition onset Reynolds number, Ret (b) Cf distribution at M = 1.2 
Figure 18 - Influence of Mach number on the transition onset Reynolds number, Ret for a flat plate, 
as predicted by stability analysis (Ncrit = 9) and the LM2009 model (Tu = 0.07%), respectively.  Skin-
friction evolution over a flat plate as predicted by the original LM2009 transition model and with 
corrections to account for compressibility effects. The vertical black lines mark the predicted transition 
location based on stability correlation. 
 

Surface pressure distributions for the supercritical RAE (NPL) 5212 airfoil for selected 
combinations of Mach number and angle of attack are shown in Fig. 19. The Cp distribution for M = 
0.5, 𝛼 = 0.0° (Fig. 19(a)) indicates a narrow region of stronger adverse gradient immediately behind 
the suction peak, followed by an extended region of milder adverse pressure gradient. A similar 
behavior is also noted for the case with M = 0.7 and 𝛼 = 1.35° in Fig. 19(b), indicating a potentially 
non-self-similar boundary layer in each of these cases. Despite the O(1) Mach numbers, the transition 
locations predicted by the baseline LM2009 model compare well with the stability-based CFD 
predictions including compressibility effects. In contrast, however, the baseline LM2009 model 
predicts significantly earlier transition than the PSE analysis for the case with M = 0.75 and 𝛼 = 0.0° 
(Fig. 19(c)), which includes an extended region of favorable pressure gradient. Including the 
compressibility correction (red curves) in the LM2009 results in a downstream transition location due 
to shock-induced separation, similar to the predictions of the stability theory.  

The CRM-NLF swept-wing configuration from Section 3.2 was also investigated to assess the 
performance of the LM family of models for a complex, 3D configuration. Figure 20 compares the 
transition fronts predicted by the original and compressibility-corrected versions of the LM2015 model 
with the inferred transition front from the TSP data [43]. The corrected model shows significantly better 
agreement with the experimental data in the mid-span region (0.6 m < y < 1.2 m), as well as shifting 
the transition front in the inboard region closer to the data inferred from the TSP image. 

In summary, for attached boundary layers without persistent adverse pressure gradients, the 
proposed compressibility correction based on linear stability theory led to significantly improved 
transition onset predictions in the high-subsonic to transonic regime. Its notable features include an 
automatic deactivation at low Mach numbers, which preserves the underlying calibration based on 
low-speed flows, and a local formulation for easy implementation in RANS-based flow solvers.  
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(a) M = 0.5 and 𝛼 = 0.0° 

(mildly adverse) 
(b) M = 0.7 and 𝛼 = 1.35° 

     (adverse) 
(c) M = 0.75 and 𝛼 = 0.0° 

       (favorable) 
Figure 19 - Predicted distribution of Cp and Cf

 
 on the upper surface of the RAE (NPL) 5212 airfoil for 

𝑅𝑒௖ = 7.5 × 10଺. Based on Mack’s correlation [73], Tu = 0.07% in all cases to be consistent with Ntr = 
9 for the PSE analysis. 

 

 
Figure 20 - Predicted transition fronts by original and compressibility-corrected LM2015 models with 
TSP image and inferred transition front for the CRM-NLF at 𝛼 = 1.44°,  𝑀 = 0.856, Tu = 0.12%, and 
𝑅𝑒ெ஺஼ = 15 × 10଺ (where MAC refers to mean aerodynamic chord). 
 
 
4.4 Maturation of Transport-Based Transition Models for Hypersonic Flows 
As mentioned in the previous section, the majority of transport-based transition models were initially 
developed for low-speed flows. Their adaptation to supersonic and hypersonic regimes began 
significantly later, causing the high-speed versions to be less mature at this point. Recently, a number 
of extensions for hypersonic flows have been suggested in the literature, such as those in Refs. [18] 
– [21]. However, most of these models have not been widely adopted beyond the groups that originally 
developed them. One exception to this trend is the SST-γ model of Liu et al. [20] that has been 
implemented by multiple research groups [77]. To a lesser extent, the SST-γ-L  model of Qiao et al. 
[19] has also received some scrutiny in our work [78]. Another obstacle to the broader adoption of 
transition models for high-speed flows is the increased physical complexity of both the high-speed 
mean flows and the associated transition processes. This complexity also necessitates a greater level 
of detail in the model specification. To facilitate the maturation of transport-based transition modeling 
for high-speed flows, the abovementioned SST-γ and SST-γ-L models have been selected for further 
study. Both models have been implemented in NASA’s OVERFLOW 2.3 RANS CFD solver [78] to 
enable further assessment. Their porting to the FUN3D solver is currently in progress.  

The grid convergence characteristics of each model for a 5-degree half-angle cone at flow 
conditions from the experiments by Horvath et al. [56] are illustrated in Figs. 21 and 22. Figures 21(a)-
21(c) display the integrated heat loads across the laminar, transitional, and fully turbulent regions, 
respectively. The spatial extents of all three regions are chosen to be the same for both models. For 
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this test case, the laminar region extends from the nose of the cone to an axial distance of 0.175 m, 
the transitional region encompasses the region x = [0.175 m, 0.4 m], and the turbulent region is 
comprised of the remaining portion of the cone downstream of x = 0.4 m. For each metric, the plots 
also indicate the asymptotic predictions in the limit of h  0 (where h = 𝑁௧௢௧

ିଵ/ଶ, 𝑁௧௢௧ being the total 
number of grid points in the 2D mesh), obtained through Richardson extrapolation. This study marks 
the first time in the literature that the formal grid convergence properties of transition models have 
been examined for hypersonic flows. All three scalar metrics indicate a satisfactory convergence to 
their asymptotic values. It’s also seen that the heat load across the transition zone converges rather 
quickly for the SST-γ-L model, whereas significantly finer meshes are necessary for the SST-γ 
solutions to approach their asymptotic limit. This trend is confirmed by the comparison of Stanton 
number distributions for multiple grid levels in Fig. 22. Figure 22(a) also reveals that the relatively rapid 
rise in heat transfer following the onset of transition is followed by an extended slow rise such that the 
peak turbulent heat transfer is not achieved for a considerable distance downstream of the transition 
onset location. This anomalous behavior of the SST–γ solution accounts for the lower value of heat 
load within the transitional region as seen from Fig.21(b). By contrast, the SST-γ-L model predicts 
lower values of surface heating in the fully turbulent region than the predictions of the SST turbulence 
model with no transition model, as seen in Fig. 21(c). This issue as well as other details of the two 
hypersonic transition model implementations are further discussed in Refs. [73] and [80]. 

 

(a) Laminar region (b) Transitional Region (c) Turbulent Region 
 

Figure 21 - Convergence of the surface heat transfer in the laminar, transitional, and turbulent 
regions for the LaRC 20-in Mach 6 test case (Re = 14.1 × 106/m) using the SST-γ and SST-γ-L 

models. In this figure, h = 𝑁௧௢௧
ିଵ/ଶ, where 𝑁௧௢௧ corresponds to the total number of grid points in the 

2D mesh. 

4.5  Verification of Transition Models 
Uncertainty quantification is particularly important for transition modeling, due to the sensitivity of the 
transition process to small variations in flow conditions, geometry, and surface roughness. In that 
regard, model verification is an essential component of transition modeling research, as it helps 
ensure that the implemented transition model equations are being solved accurately and consistently 
and that the solutions obtained using different solvers match in the limit of vanishing error due to 
discretization. Model verification is, therefore, a crucial pre-requisite to model validation. Given the 
increasing use of RANS-based transition models, recent workshops by AIAA (1st AIAA Transition 
Prediction and Modeling Workshop) and NATO (AVT-313 working group) have focused on community 
wide assessments of these models. An important finding from these workshops [81] was that, even 
for simple configurations, there was a significant scatter amongst the results computed using different 
flow solvers that purportedly used the same transition model. These discrepancies persisted even 
when the same grid family was utilized, and even as the grid was systematically refined within a given 
family. Such inconsistencies highlight the urgent need for transition model verification, as the lack 
thereof precludes the quantification of errors associated with a given model and, hence, its validation 
against the benchmark data.  
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(a) SST – γ Model (b) SST-γ-L Model 

Figure 22 - Convergence of the axial distributions of surface Stanton number Ch for the case from 
Fig. 19.  Mesh level 8 is the finest mesh considered and the resolution along each spatial direction 
doubles across every other level. For reference, each figure also indicates the predictions based on 
fully laminar and fully turbulent solutions. 
            
 

To help CFD code developers verify their implementations of the transition models, 
Venkatachari et al. [82] applied the SST2003-LM2009 model in OVERFLOW and FUN3D flow solvers 
to selected canonical configurations from the AIAA Workshop,2 namely, a flat-plate case (T3A) with 
bypass transition and the NLF(1)-0416 airfoil at conditions involving both natural and separation-
induced transition scenarios, along with an additional flat-plate case with natural transition on the flat 
plate. Cross-comparisons of surface distributions of pressure and skin-friction coefficients were made. 
Richardson extrapolation was used to estimate the grid converged values of several scalar metrics, 
including the drag coefficients (and lift coefficient for the airfoil case), along with point values of the 
skin-friction coefficient Cf at selected locations. With the exception of the Cf value in the transition 
zone in two cases, all scalar metrics predicted by the two codes were found to converge to nearly the 
same values, even with different numerical methods (finite volume vs finite difference) and different 
orders of discretization for the convective fluxes, etc. Because the underlying turbulence model (SST-
2003) in these solvers has already been verified in previous work, the above findings provide an 
encouraging prognosis for removing the dependence of transition model predictions on the flow 
solver, thus creating the foundation for meaningful code to code comparisons in future workshops, 
and also, for validating the transition models or specific aspects of those models. 
            Figure 23 from Ref. [82] illustrates the grid convergence of both global and local flow metrics 
for an NLF(1)-0416 airfoil at 𝛼 = 5° (M = 0.1, 𝑅𝑒௖ = 4106, Tu = 0.15%, and T = 300 K). Under these 
conditions, the upper surface boundary layer is fully attached and transitions due to TS instabilities. 
On the other hand, the lower surface flow exhibits a short separation bubble that transitions prior to 
reattachment.  

Figures 23(a) and 23(b) indicate that the lift and drag coefficients converge fairly rapidly as the 
grids are refined, with mesh 6 (denoted by the fifth square and circle from the left in each curve) 
enabling predictions that might be considered acceptable during practical calculations. However, the 
local skin-friction coefficient in the transition zone shows significantly slower convergence, which is 
primarily a result of the continued shift in transition onset location as the mesh gets refined. The grids 
provided by the organizers of the AIAA 1st CFD Transition Modeling Workshop were designed for 
general use, without any adaptation to specific conditions. As seen from the results in Fig. 23, this 
approach requires rather fine meshes (mesh counts of O(107) for level 10) to achieve code-
independent asymptotic predictions.  
 

 
2 https://transitionmodeling.larc.nasa.gov/workshop_i/ 
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(a) Lift coefficient CL (b)  Drag coefficient CD (c) Skin-friction coefficient at a 

selected chordwise location 
(x/c = 0.26) on the upper 
surface. 

Figure 23 - Grid convergence characteristics of both global and local flow metrics obtained using 
LM2009 implementations in the OVERFLOW and FUN3D solvers. The benchmark case corresponds 
to an NLF(1)-0416 airfoil at 𝛼 = 5° (M = 0.1, R𝑒௖ = 4 ✕ 106, Tu = 0.15%); Open diamond symbol: 
extrapolated solution obtained using mesh levels 7, 8, and 9; closed diamond symbol: extrapolated 
solution obtained using mesh levels 8, 9, and 10, the latter being the finest mesh level (i.e., leftmost 
square or circle in each plot). The cell count along each coordinate direction doubles every other level, 
with approximately 11 million grid points in the finest mesh (level 10). These results are based on 
using turbulence sustaining terms to prevent numerical decay of freestream turbulence. 
          

Even though satisfactory grid convergence could be achieved for the 2D canonical flows in 
[82], it required mesh counts that are substantially larger than those used in typical applications. Thus, 
further efforts are necessary to reduce the mesh sizes, particularly to enable similar computations for 
fully 3D configurations. As a first step, we have applied different structured and unstructured grid 
refinement strategies to better understand the accuracy, convergence, and performance of the 
Langtry-Menter 𝛾-𝑅𝑒ఏ೟

 model for 2D configurations with both natural and separation-induced 
transition [83]. These strategies include structured streamwise refinement near transition zones as 
opposed to expensive globally uniform refinement, metric-based unstructured grid adaptation, and 
adjoint-based grid adaptation.  
           The results of these computations suggest that streamwise refinement just within the transition 
zone (Fig. 24(a)) may yield significant savings in capturing the separation-bubble-induced transition, 
provided the wall-normal grid exceeds a certain threshold. Figure 24(b) shows that using a 
computational mesh with a wall-normal baseline level of 10 and a streamwise baseline level of 6 with 
zonal streamwise refinement that is locally equivalent to a level 10 baseline mesh is identical to the 
LSB solution obtained with a globally refined level 10 baseline mesh that is more than 3 times as 
large. 
           Two additional strategies were explored toward automated grid refinement for transition-model 
computations. Strategy 1 focused on metric-based unstructured grid adaptation via the refine library 
from the FUN3D solver. Although computations of natural and separation-induced transition on the 
NLF-0416 airfoil showed plateauing of both lift and drag coefficients at significantly lower mesh sizes, 
the apparently converged transition locations differed notably from the onset locations obtained using 
the globally refined structured grid family. We believe that this inaccuracy stems from the poor near-
wall resolution due to the use of the Mach number Hessian as the sole metric for grid adaptation and 
that addressing this shortcoming via improved adaptation metrics should significantly improve the 
overall efficacy of metric-based adaptation for transition computations based on transport equations. 
            Adjoint-based grid adaptation was also explored in Ref. [83].  Because the adjoint capability 
in the FUN3D solver does not yet include the transition models, the NLF-0416 airfoil case with 
imposed transition with the SA turbulence model was used to assess the efficacy of the adjoint grid 
adaptation to manage the flow field variations in a generic transitional flow. The adjoint-based strategy 
provided clear improvements in the near-wall resolution of the adapted grid and yielded predictions 
that were in closer agreement with the reference solution in comparison with a comparable size mesh 
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obtained via uniform refinement of a baseline unstructured grid. This highlights the need to extend the 
adjoint capabilities to include transition models.  
 

  
(a) Computational grid with zonal streamwise 

refinement in transition zones.  The red 
color indicates the refined zones 
equivalent to level 10, the blue color 
represents the buffer zones, and the black 
color is the baseline grid equivalent to 
level 6 from [82]. 

(b) Comparison between Cf distributions on 
a fine baseline grid and transition-zone 
refined grid from part (a).  

Figure 24 - Efficacy of zonal streamwise refinement in transition zones over an NLF-0416 airfoil at 
𝛼 = 5° (M = 0.1, 𝑅𝑒௖ = 4 ✕ 106, Tu = 0.15%). 

   
           Overall, this work on adaptive mesh solutions has emphasized the importance of grid design 
during model verification. It has contributed useful insights into the strengths and shortcomings of the 
existing mesh adaptation capabilities in FUN3D and highlighted the need for further development, 
particularly with respect to improved automated adaptation strategies for viscous flows. To that end, 
it would be useful to pursue hybrid, solution-adaptive grids that smoothly integrate near-surface 
prismatic layers with unstructured meshes away from the surface.  

4.6 Effect of Short-Scale Surface Nonuniformities on Transition Onset  
While transition correlations based on the local momentum thickness Reynolds number, 𝑅𝑒ఏ, can be 
easily integrated into the CFD process via the LCTM approach, they appear to encounter difficulties 
with problem classes where the cumulative effects of disturbance history are important. One example 
from our recent experience involves localized surface perturbations, such as steps, gaps, and 
protuberances, where the basic flow relaxes to the unperturbed flow behind the surface 
inhomogeneity, but the fluctuation amplitudes continue to carry the memory of disturbance history 
from the region of mean flow modification due to the excrescence. Accurate modeling of the 
excrescence effects is important for predicting laminar-turbulent transition on operational aerodynamic 
surfaces and, hence, to provide an optimal specification of manufacturing tolerances.  

In general, the localized excrescence does not alter the underlying transition mechanism unless 
the excrescence height becomes sufficiently large.  Until then, the main effect of the local perturbation 
is simply a forward movement of the transition onset location due to a net increase in disturbance 
amplification in the vicinity of the excrescence. Figure 25(a) from Hildebrand et al. [84] illustrates the 
comparison of LST-based transition onset prediction with experimental measurements by Wang and 
Gaster [85] for a backward facing step (BFS) of height h. Note that, in the current section, h denotes 
the step height and not the measure of average grid size as used in the previous section. There is 
good agreement between the predicted transition onset locations and the corresponding 
measurements over a broad range of wind tunnel speeds and BFS heights, collectively representing 
nondimensional steps heights up to about h/* < 1.5. The LST-based transition model directly 
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accounts for the changes in the laminar basic state due to the BFS and how those changes influence 
the transition process, while being easily amenable to CFD-integrated transition prediction as 
discussed earlier. Even though LST cannot capture the nonparallel effects associated with the 
stronger streamwise gradients near the BFS, a comparison with the disturbance growth predictions 
based on Harmonic Linearized Navier-Stokes Equations (HLNSE) indicates satisfactory agreement 
between the respective predictions of N-factor envelopes at various BFS heights (Fig. 25(b)).  Figure 
25(a) also reveals that the accuracy of LST-based transition predictions degrades at large 
nondimensional step heights (i.e., higher freestream speeds and/or larger values of h) that advance 
the onset of transition to the vicinity of the reattachment location behind the step.  

 

(a) Transition locations from LST with Ntr = 7.32 
(red open symbols/dashed lines) compared with 
the experimental measurements [85] (black 
closed symbols/solid lines) for U∞ = 20–34 m/s. 

(b) Comparison of N-factor envelopes based 
on LST (dashed lines) and PSE/HLNSE (solid 
lines) for U∞ = 34 m/s. 

Figure 25 - Effect of a backward facing step on the transition onset location and the disturbance growth 
in a flat plate boundary layer for step heights of h = 0–1 mm. Reproduced from Ref.  [84]. 
 

In stark contrast to the abovementioned findings from stability-based models, transport-
equations-based transition models, such as the LM2009 and AFT2019b, fail to accurately predict the 
shift in transition onset due to the BFS as seen from Figs. 26(a) and 26(b), respectively. Computations 
have indicated that the LM2009 model indicates virtually no effect of the BFS until the step height 
becomes rather large when transition onset flashes back to the step location. We believe that because 
this model relies on a local comparison of the surrogate momentum thickness with the critical 
momentum thickness, it is apparently unable to provide an adequate account of the history effects 
related to increased disturbance amplification near the BFS. When transition occurs far downstream 
of the BFS, the model does not retain the memory of the step-induced perturbation, leading to 
inaccurate predictions. The AFT2019b model attempts to account for the flow history effects by solving 
a transport equation for the amplification factor, but it was still unable to predict the measured shift in 
transition location as a function of BFS height. Similar to LM2009, the AFT2019b model predicted 
nearly the same transition locations over a significant change in BFS heights; in fact, the AFT-based 
transition locations for moderate step heights were downstream of the predicted transition onset for 
the no-step case (h = 0 mm). 

 

5. Concluding Remarks 
     Uncertainty in transition prediction leads to longer design cycles, resulting in suboptimal 

designs for energy efficient aircraft that lead to higher fuel burn.  According to the CFD Vision 2030 
report [1], improved transition modeling is also essential to unlocking the full potential of affordable, 
eddy-resolving WMLES simulations for aircraft analysis and design. Development of accurate, robust, 
and computationally efficient models is critical to reducing the reliance on costly direct simulations of 
the transition process. This paper has provided an overview of the recent effort in implementing CFD-
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integrated transition models in NASA’s OVERFLOW and FUN3D flow solvers. The implementation 
and assessment of both nonlocal, yet physics-based models rooted in the linear stability paradigm 
and local correlation-based transition models (LCTMs) encapsulated in auxiliary transport equations 
were discussed. While not a mature capability as yet, the flexible framework implemented in these 
solvers should prove valuable to the CFD users. 

 

 
 

 
 

(a) LM2009 Model (b) AFT2019b Model 

Figure 26 - Transport-equation-based predictions of skin friction along the bottom wall for boundary-
layer flow over a BFS with a slope of 75 degrees for U∞ = 34 m/s and h = 0–1 mm [104]. Inflow 
conditions for both models are tuned to match the baseline results (h = 0 mm) with the measured 
transition location. Reproduced from Ref. [84].  

 
The findings presented in this overview highlight the current limitations of stability-based 

transition modeling and emphasize the need for continued research to develop more robust transition 
prediction methods that are applicable to a broad range of flows with different transition mechanisms 
and the significant parameter dependencies of those mechanisms.  In general, the need to calibrate 
the dual N-factor criterion on a case-by-case basis is a notable limitation of the transition models 
based on linear stability characteristics. After Menter introduced the LCTM concept to facilitate 
transition modeling using distributed computations with potentially unstructured-grid CFD solvers, 
significant efforts have been made by a number of researchers to further develop this class of 
transition models. However, the case studies presented in this paper have underscored the fact that, 
due to the inherent empiricism in these models and the diverse transition mechanisms encountered 
in aerospace applications, along with several modifiers for each of those mechanisms, a number of 
significant shortcomings still need to be addressed. This makes it essential to have the dual as well 
as diverse capability for transition modeling, at least until the physical basis of the transport-equations-
based models can be improved to address the range of key transition scenarios.  

We note that both classes of models may encounter challenges in cases where two or more 
physical mechanisms are simultaneously active and jointly contribute to the transition process, such 
as TS waves and stationary crossflow instabilities, or TS and traveling crossflow, or second mode 
and crossflow in high Mach number boundary layers. While empirical fixes exist to deal with mixed 
transition mechanisms, they need significant calibration based on the flow as well as facility 
disturbance environment. Data-driven models, such as those based on deep learning approaches, 
have the potential to tackle these shortcomings. However, past transition measurements do not 
provide the essential data to validate and improve the transition models. The intrinsic variety of 
transition mechanisms requires experimental measurements that span the relevant transition 
mechanisms and are sufficiently detailed, both in terms of characterizing the input forcing and the flow 
response.  Some of the largest gaping holes in the existing data pertain to flows where multiple 
transition mechanisms can be active either side by side or in concert with each other, and to high-
speed boundary layers. In the context of subsonic transports, it is crucial to obtain measurements on 
configurations with various transition mechanisms, such as swept-wing configurations where both 
Tollmien-Schlichting (TS) and crossflow instability mechanisms can play a crucial role in transition. 
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These measurements should identify the primary transition mechanism, provide adequate 
characterization of the freestream and surface disturbance environment, and explore how variations 
in both disturbances influence the transition behavior.  

Ideally, these experiments should provide a comprehensive dataset covering a range of 
freestream disturbance environments and surface roughness characteristics. Validation of transition 
models will also require carefully designed experiments that provide detailed measurements of the 
transition process, including the onset location, intermittency, and the spatial evolution of turbulent 
spots. Preferably, these measurements should span a range of flow conditions and geometries 
relevant to aerospace applications. Of course, with continued increases in compute power, there is 
also an opportunity to reduce this data gap by supplementing the experimental data with high-fidelity 
simulations based on a realistic disturbance environment. Advanced data assimilation techniques to 
combine experimental measurements with CFD simulations [86], accounting for the uncertainties in 
both, would also play an important role in the validation of transition models. Realizing the vision of 
robust, reliable, and physics-based transition modeling in 2030 will require a coordinated effort 
combining advanced HPC capabilities, targeted experiments, and data-driven model development. 
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