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Abstract

The wings of transport jets are becoming high aspect ratio to reduce induced drag. Because of the high aspect
ratio configuration with lightweight, the wings may undergo nonlinear large deformations induced by
aerodynamic forces. To alleviate excessive large deformation under gust conditions, flared hinged wings have
been developed. This study develops a new multibody simulation framework for the flared hinged wings based
on absolute nodal coordinate formulation (ANCF). In this framework, the constraint equation to describe the
flared hinge joint can be written in a simple linear equation. We show that the simulation results of ANCF
simulation framework is in good agreement with those of a second simulation framework, namely SHARPYy,
based on a conventional geometrically-exact beam formulation (GEBF).
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1. Introduction

The wings of transport jets are becoming high aspect ratio to reduce induced drag. Because of the
high aspect ratio configuration with lightweight, the wings may undergo nonlinear large deformations
induced by aerodynamic forces. To alleviate excessive large deformation under gust conditions,
flared hinged wings have been developed. The flared hinged wing has a folding wingtip with a slanted
hinge line, as shown in Fig. 1. Multibody simulation considering geometrical nonlinearity is necessary
for an accurate description of the kinematics of the flared hinged wings. However, most simulation
studies of the flared hinges wings [1, 2] have used the floating frame of reference formulation (FFRF)
that assumes small deformation of bodies. A geometrically nonlinear simulation framework is required
for modelling high-aspect-ratio flared hinged wings.

Palacios and Cesnik [3] reviewed three major geometrically nonlinear beam formulations.

The first one is the displacement-based geometrically exact beam formulation (GEBF). This
formulation uses position and rotation parameters (e.g., Euler angle, Euler parameter, or Cartesian
rotation vector) as variables. Although the nonlinearity appears on both the inertia and elastic forces
in 3D simulation, GEBF has been widely used in multibody simulation. Cheng et al. [4] has recently
developed a multibody solver in their high-aspect-ratio-wing simulation tool, namely Simulation of
High-Aspect-Ratio aeroplanes in Python (SHARPY) based on the displacement-based formulation.

The second one is the strain-based beam formulation, developed by Cesnik and Brown [5]. This
formulation uses extensional strain and curvatures as variables. The nonlinearity only appears on the
inertia force in this formulation. Sanghi et al. [6] extended this formulation to conduct multibody
simulation and implemented in their simulation tool, namely University of Michigan/Nonlinear
Aeroelastic Simulation Toolbox (UM/NAST).

The third one is the intrinsic beam formulation developed by Hodges [7]. This formulation uses
internal force or moment as variables. The final form of the intrinsic formulation is a 1st-order time-
differential equation. Only quadratic nonlinearity appears on the equation. Although multibody
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constraint equations cannot be described by the internal variables directly, Wang and Otsuka [8]
succeeded in developing a multibody simulation framework based on the intrinsic formulation.

In recent years, Otsuka et al. [9, 10] have developed a hinged wing simulation framework based on
absolute nodal coordinate formulation (ANCF). ANCF was devised by Shabana [11], and then
reviewed by Gerstmayr et al. [12] and Otsuka et al. [13]. ANCF uses position and gradient vectors as
variables. Because these vectors are defined in the global (or absolute) coordinate system and
rotation parameters (e.g., Euler angle, Euler parameter, and Cartesian rotation vector) are not used,
the nonlinearity appears only on the elastic force. The linear inertia force (i.e., constant mass matrix)
even in 3D simulation is an advantage of ANCF. Instead of the simple inertia force expression, ANCF
is often inferior to GEBF from the viewpoint of the convergence performance with respect to number
of nodal variables [14]. Otsuka et al. [15] coupled ANCF with the unsteady vortex lattice method
(UVLM) [16] to analyze aeroelastic responses of high aspect ratio wings. UVLM is suitable for very
flexible wings because it can calculate unsteady aerodynamic forces on lifting surfaces undergoing
large motion [17]. Large aeroelastic vibrations damped by aerodynamic force were simulated by ANCF
with UVLM. The simulation results were in good agreement with wind tunnel test results [18]. In
addition, when the hinge line is not slanted against the free stream velocity, the accuracy of the ANCF
with UVLM was experimentally validated by wind tunnel tests [9]. However, the simulation framework
did not consider the slanted hinge.

There are three objectives in this study. The first objective is to develop the ANCF simulation
framework that can consider the slanted hinge. The second objective is to validate the developed
simulation framework by the comparison with SHARPY. The third objective is to provide benchmark
simulation results that can be used for validating other geometrically nonlinear beam formulations
coupled with a slanted hinge joint and/or UVLM. To achieve the third objective, we apply the ANCF
simulation framework and SHARPY to a double pendulum and a high-aspect-ratio wing with relatively
simple geometries.

Flared angle 3

Figure 1 — Conceptual diagram of flared hinged wing.
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2. Absolute Nodal Coordinate Formulation (ANCF)
The 3D ANCF beam element [19] with nodes 1 and 2 is employed in the simulation framework, as
shown in Fig. 2. The position vector r on the element is expressed as

r=S(x,Y,z)e. (1)
S is a shape function defined in the element coordinate system x, y, and z. e is a generalized nodal
coordinate defined as

e= |:(r1 )T (rxl)T (ryl )T (rzl)T (r2 )T (I’Xz )T (ry2 )T (rzz )T :|T . (2)
The superscripts 1 and 2 represent node numbers. The subscripts represent the position vector

derivative with respect to x, y, and z. The final equation of ANCF is written in a differential algebraic
equation (DAE) as

;
MG +F, + (%‘D] A=Fand ®=0, 3)
q

where

.

a=[(#) -~ () - ()] @
The superscripts i and j represent the ith node of the jth body. M is a constant mass matrix. Fepastic IS
a nonlinear elastic force vector. A is a Lagrange multiplier. ® is a constraint equation vector. F is an
external force vector.

Figure 3 shows a top view of a slanted hinge joint that connects bodies 1 and 2. j represents a
flared angle. Owing to this slanted hinge joint, the vector a on the !r,-r, plane is equal to the vector
b on the 2r«-?ry plane. The constraint equation of the slanted hinge joint is written as

®=a-b=0.

el 1 1 : 2 2 _
:><I>_S|n,8( rx)+cos,8( ry)—sm,B( rx)—cosﬂ( ry)—().
This constraint equation is linear with respect to the nodal variables in q. Therefore, 0®/0q in EqQ. (3)
becomes a constant matrix. This simple constraint expression is another advantage of ANCF. The
linear constraint equation generates a constant velocity transformation matrix B:
.0 . .
q = qin = qun' (6)
Ea(1in

Qin is an independent generalized coordinate vector. If this velocity transformation matrix is used, the
eguation of motion can be written in an ordinary differential equation (ODE) as

TR T T
B'MBg, +B'F,... =B'F. (7
In this paper, DAE in Eq. (3) rather than ODE in Eg. (7) is used.

()

r. 1

Figure 2 — ANCF beam element. Figure 3 — Top view of slanted hinge joint.
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3. Geometrically Exact Beam Formulation (GEBF) in SHARPy
In this section, the formulation of the multibody constraints for the hinged wing tip in SHARPYy is
described. The SHARPy multibody formulation make use of as many individual geometrically-exact
beams as needed, coupled with Lagrange multipliers for the multibody constraints. [4, 20, 21].

As given in the reference, the general structural system of equations is described, for each
generalised degree of freedom x, as

M(x)x + BhT(x: t)An + BnT(x' t)ln =f(x,%,t) = fexe — Tgyr — fstirs
{ gn(x,t) =0, (8)
g.(x,x,t) =B,(xt) - x+ Gn, =0,

in which M is the mass matrix and f includes the external, gyroscopic, and stiffness forces, g, and
=2 o g =9

ox n x
constraints, and their respective Lagrange multipliers 4, and 4,,. In incremental form this becomes

M 0 o0]/Ax Ax K B,  0]/Ax r
[0 0 0] Adp | + (0' >+ B, 0 ol<A2h>=<—gz>+H.0.T., 9)
0 o0 ol\ai, A4,

o o ol\o —9n
where the tangent damping and stiffness matrices C and K, as well as the residual vector t° are given
as

g» for holonomic and non-holonomic constraints, By, is the Jacobian of the

cC 0 B,
0 00
B, 0 0

_0B,"A, Of
- 0x ox’

C
_ o) OB,"A, Of
T ox ox Qx'

v =f—Mi—BJ1,— B,

(10)

evaluated at the reference point. f includes the external (in this case aerodynamic as generated by
the UVLM), gyroscopic, and stiffness forces. We determine B for the common lower pair joints that
we are interested in; this formulation has been applied previously on other multibody systems such
as wind turbines [21]. For a hinge connection between 2 beams, we require three and two equations
for the linear and angular velocities respectively to allow only for one degree of freedom, which is the
rotation about the hinge axis. They are derived next, consistent in nomenclature with [3].

3.1 Definition of Reference Frames and Kinematics

Figure 4 defines the notation, used to describe the kinematics of the flexible wing with hinged wing
tips. We begin from the Earth frame E in Fig. 4a, from which we define p(t) as the time-varying vector
to the body-attached frame B used to track the vehicle. The rotation matrix from E to B frame Ry is
defined with a choice of parametrisation, in this case the quaternion yZ. In the B frame we define r§
as the vector to the material frame at the tip of the main wing, frame G. The rotation matrix from B to
G frame Rp is defined, again with a choice of parametrisation, in this case the Cartesian Rotation
Vector (CRV) 9§,

On the wing tip itself in Fig. 4b, separated by the hinge, we define the body-attached frame H at its
root where the rotation matrix from the global frame R is a function of the quaternion y*. Velocities
of body-fixed frames, i.e., B and H, are given in their own FoRs respectively by v2, w8 and v, w,
where those at material frames, i.e. G, require a more involved formulation described further along
the Section.

As the aeroelastic wing with the hinged wing tips undergoes displacements and rotations, the hinge
line vector as visualised, is a function of rigid body translational and rotational movements, and
flexible deformations, and almost always a function of time. Defining instead the projections of the
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hinge line vector in the two local frames of reference gives ey = Rygep, such that these vectors are
now constant in time, from Euler’s rotation theorem as detailed in Chapter 4.3.2 of [3].

(b) Inset showing frames and notations of the
wing tip
Figure 4 — Labelled quantities and frames of the flexible multibody wing assembly.

(a) Frames and notations of the wing

3.2 Linear Velocity Constraint
We begin by placing the condition of same linear velocity at frames G and H. Equating the velocities
across the connection, in H frame gives
vl =Ryp - (78 + v5 + @8719), (12)
which when written as a non-holonomic constraint in matrix form in the inertial frame E, and following
the notation in Eq. (8), is
i
- vh . .
n1 = [FRez(X®)  —Rpe(X®) Repg(XDFG  Rpy(x™)] aﬁg = Bn (%, x,0)x = 0. (12)
B
vii
Apart from introducing the constraint as an extra equation in the system, we would also have to update
the residual ¢°, and evaluate C in Eq. (10).

3.3 Angular Linear Velocity Constraint
To apply the angular velocity constraint, in practice we restrict any two pairs of corresponding points on
the vectors to always have the same linear velocity. Choosing the origins of the vectors in Fig. 4b as
the first pair gives Eqg. (11), and additionally choosing two points along the vectors give their common
linear velocity v, in the H frame as

VZ + (F;)ZBH = ve = RHB . (i‘g + vg + fbgrg) + RHG(SkeW(TGBII}g + RGng) . eB), (13)

where T is the tangential rotational operator described in Appendix C of [3], from which we eliminate
Eqg. (11) to give

@jey = Ry (skew (TPPg + Ropw}) - ep), (14)
which is transformed to G frame and recast in the form of g,,, = 0 in matrix form,
wj
In2 = [EsRes (W) ETPWE) —RepWHRer (XP)Rey (x™)én] [Pf | = Bra(, x, )% = 0 (15)
wji
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4. UVLM Aerodynamic Panel for Slanted Hinge Joint
The structural models are coupled with the UVLM aerodynamic model. UVLM discretizes the wing
surface and wake in vortex panels with circulation T as an aerodynamic variable. The circulation is
calculated by the non-penetration flow condition on wing surface and the Biot-Savart law. Then, the
aerodynamic force on each panel is calculated by using the circulation as

F = Fsteady + I:unsteady

4 or

=) (pI'U,xdl, )+ p,;, — An.
> (pry;xsl,) a,,atA
i=1

Here, the aerodynamic force can be divided into steady and unsteady contributions. The summation
from i =1 to i = 4 means the contributions of the four edges of the square panel. pair is an air density.
U is airflow on the edge. A is panel area. n is a panel-normal vector.

Figure 5a shows the UVLM panels at the slanted hinge joint. One edge of the panels adjacent to
the joint is parallel to the slanted hinge line. It should be noted that the slanted edges of the panels
on both sides of the hinge line must be the same. If there is a tiny gap between the edges, numerical
divergence may occur. This is because the Biot-Savart law used in UVLM causes a singularity
problem when vortex edges are too close. Also, the careful choice of span-wise discretization is
crucial to avoid a self-intersecting UVLM grid, as shown in Fig. 5b.

(16)

Slanted hinge line

UVLM panels

(a) Without self-intersecting
Slanted hinge line

Intersecting UVLM panels

(b) Self-intersecting, not valid
Figure 5 — UVLM panels with beam nodes near the hinge.
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5. Multibody Simulation Results of Free-Falling Pendulum with Slanted Hinge Joint
The double pendulum problem considered by Cheng et al. [4] is simulated by the developed
framework with the slanted hinge joint. Figure 6 shows the double pendulum cited from [4]. The one
end of the blue body is connected to the origin of the global coordinate system with a hinge joint. The
hinge line is parallel to the Y-axis. The two bodies are connected by a slanted hinge joint. Table 1
shows the parameters of each body. The two bodies have the same parameters. Table 2 shows the
simulation parameters. In this section, parametric simulations with respect to the stiffness coefficient
¢ and the flared angle g are conducted. Initially, the double pendulum is placed on the X-axis. The
gravity in the Z-direction causes free-falling motion. The developed framework based on ANCF is
compared with SHARPY. It should be noted that a fair calculation time comparison is difficult between
the frameworks. This is because ANCF framework is based on MATLAB while the structural solver
of SHARPY is based on Fortran. Therefore, only calculation time of the ANCF simulation framework
is presented for reference. The calculation time of all ANCF simulations in this section was around
20s. The ANCF simulation was conducted by using MATLAB 2024a, CPU Ryzen Threadripper 3970X
(single core), and RAM256GB.

Hinge line

Figure 6 — Top view of double pendulum at t = 0.

Table 1 Parameters of each pendulum body

Parameters Symbols Values Units
Length L 0.50 m
Linear density PA 1.08 kg/m
Rotational inertia around x axis Plxx 7.20 x 10° kg xm
Rotational inertia around y axis Plyy 3.60 x 10 kg xm
Rotational inertia around z axis plz 3.60 x 10 kg xm
Extensional stiffness EA € x 2.80 x 10° N
Torsional stiffness GJ € x 6.91 x 10° N x m?
Bending stiffness around y axis Elyy € x 9.33 x 100 N x m2
Bending stiffness around z axis Elz, € x 9.33 x 10° N x m?
Stiffness coefficient o 1 or0.10r0.01 -

Table 2 Parameters of simulation

Parameters Symbols Values Units
Simulation time tend 2 S
Time step dt 0.002 S
Gravity constant g 9.8 m/s?
Flared angle B Oor45o0r90 degree
Time integration method Implicit generalized-a method
Number of elements per body 5
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51 c=1and =0

Figure 7 shows the X, Y, and Z coordinates at the free end when ¢ =1 and 3 = 0. ANCF and SHARPy
are in good agreement. Because of the stiffness is relatively high and zero 3, the double pendulum
can be considered as a rigid multibody system with two degrees of freedom. Therefore, two
frequencies are mixed in this motion. Figure 8 shows the time history of energies calculated by ANCF.
This double pendulum is a conservative system. The total energy that is a sum of the kinetic, elastic,
and gravity potential energies is conserved, which shows that the developed ANCF framework
satisfies energy conservation law correctly. As shown in this figure, the elastic energy is very small,
this simulation result can be used for validating not only flexible but also rigid multibody simulation

framework.

1 ANCF x

o SHARPyx
ANCF y
SHARPy y 1
ANCF z

=]
()}
T

o SHARPyz

-0.5

Free-end coordinates [m]
o

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time [s]
Figure 7 — Time histories of free-end coordinates of double pendulum (c =1,  =0).

Kinetic
- = :Elastic
Potential

-6 ' . '
0 0.5 1 1.5 2

Time [s]
Figure 8 — Time histories of energies of double pendulum calculated by ANCF (c = 1, B =0).
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52 c=1land =90
Figure 9 shows the X, Y, and Z coordinates at the free end when ¢ =1 and = 90. ANCF and SHARPy
are in good agreement. Because B = 90, the connection of the two bodies can be considered as a
rigid joint. Therefore, this double pendulum can be considered as a single pendulum with one degree
of freedom. Therefore, only one frequency motion can be seen in this figure. Figure 10 shows the
time histories of the energies calculated by ANCF. The total is conserved correctly.

1 ANCFx |,

_ o SHARPyx

k= ANCFy

2 0.5 SHARPy y _
= ANCF 7

i o SHARPy z

=

S 0¢

S

o

e

5

& -0.5

2

=~

—_
o

Time [s]
Figure 9 — Time histories of free-end coordinates (c = 1, B = 90).

6 . —— Kinetic .
= = +Elastic
Potential
4/ N\ | Total ]
2 L i

-6 '
0 0.5 1 1.5 2
Time [s]
Figure 10 — Time histories of energies of double pendulum calculated by ANCF (c = 1, B = 90).
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53 c=1land B=45

Figure 11 shows the X, Y, and Z coordinates at the free end when ¢ = 1 and § = 45. Because 3 = 45,
the Y coordinate is not zero. Even if such 3D motion is caused by the slanted hinge joint, ANCF and
SHARPYy are in good agreement in the simulation. Owing to this 3D motion, the X and Z coordinates
in Fig. 11 are not smooth compared with those in Fig. 9. Figure 12 shows the time histories of the
energies calculated by ANCF. The total energy is conserved correctly even when 3D motion is caused
by the slanted hinge joint.

1 ANCEF x

o SHARPy x
ANCFy
SHARPy y
ANCEF z

e
W
T

|

o SHARPyz

S
O

1
e
(%

Free-end coordinates [m

1
—

1.8 2

[e)

Time [s]
Figure 11 — Time histories of free-end coordinates (c = 1, B = 45).

——Kinetic
6 ' = = +Elastic '
Potential
4+  /  \| Total

-6 ' ' '
0 0.5 1 1.5 2

Time [s]
Figure 12 — Time histories of energies of double pendulum calculated by ANCF (c = 1, B = 45).
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54 c=0.1and B=45

Figure 13 shows the X, Y, and Z coordinates at the free end when ¢ = 0.1 and S = 45. Because the
stiffness decreases, the motion includes higher frequencies attributed to the elastic deformation.
ANCF and SHARPy are in good agreement in the simulation when the elastic deformation and
slanted hinge joint need to be considered simultaneously. Figure 14 shows the time histories of the
energies calculated by ANCF. The total energy is conserved correctly even when the elastic
deformation and the slanted hinge joint need to be considered. The elastic energy in this figure is not
small compared with those in the simulations with a higher stiffness ¢ = 1.

1 ANCEF x
o SHARPy x
ANCF y
SHARPy y
051 ANCF z
= o SHARPyz
g o
Z
~
-0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Figure 13 — Time histories of free-end coordinates (c = 0.1, B = 45).

Kinetic

= = :FElastic
Potential

Energy [J]

_6 L 1 L
0 0.5 1 1.5 2

Time [s]
Figure 14 — Time histories of energies of double pendulum calculated by ANCF (c = 0.1, B = 45).
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55 ¢c=0.01and B=45

Figure 15 shows the X, Y, and Z coordinates at the free end when ¢ = 0.01 and S = 45. Because the
stiffness decreases furthermore, larger elastic deformation occurs. This larger elastic deformation
increases the amplitude of the Y coordinate. ANCF and SHARPy are in good agreement in the
simulation when the larger elastic deformation occurs. Figure 16 shows the time histories of the
energies calculated by ANCF. The total energy is conserved correctly even when the larger elastic
deformation occurs. The maximum elastic energy in this figure is larger than those in Figs. 12 and
14.

ANCF x
o SHARPyx
ANCF y
SHARPy y y
ANCF z

s

o SHARPyz

Position [m]
S

1
e
(9}

1
f—

0.8 1 1.2 1.4 1.6 1.8 2
Time [s]
Figure 15 — Time histories of free-end coordinates (c = 0.01, B = 45).
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Figure 16 — Time histories of energies of double pendulum calculated by ANCF (c = 0.01, B = 45).
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6. Aeroelastic Simulation Results of Flared Hinged Wing Assembly

In this section, aeroelastic simulations are performed for a flared hinged wing. The flared hinged wing
specifications are based on the high aspect ratio wing with a total wingspan of 16 m [23]. Figure 17
shows the top view of the wing. One end of the wing is fixed to the origin of the global coordinate
system. The hinge divides the wing into inner and outer wing bodies. Table 3 shows the specifications
of the wing. Table 4 shows the simulation parameters. It should be note that one ANCF element has
two nodes, while one GEBF element in SHARPY has three nodes. It should be also noted that finer
UVLM panel discretization and smaller time step may result in more converged solutions.

To provide relatively simple validation results, we simulated the transient response caused by the
flow that starts to income in the negative Y direction and the gravity that starts to act at t = 0 suddenly.
Figure 18 shows the time history of the Z coordinate at the wingtip and the folding angle when AoA
is 5 deg and 10 deg. The results of the ANCF simulation framework are in good agreement of those
of SHARPy.

8 . . .
Air flow
4t
Fixed 10 deg
=K Sim
12 m 4 m
-4 |« > <———>
-8 : : :
0 4 8 12 16
X [m]
Figure 17 — Top view of flared hinge wing.
Table 3 Parameters of flared hinge wing
Parameters Symbols Values Units
Total length (semispan) L 16 m
Inner wing length L1 12 m
Outer wing length L2 4 m
Chord length C 1 m
Linear density PA 0.75 kg/m
Rotational inertia around x axis Plxx 0.1 kg xm
Rotational inertia around y axis Plyy 0.01 kg xm
Rotational inertia around z axis Pz 0.09 kg x m
Extensional stiffness EA 1 x 107 N
Torsional stiffness GJ 1x10% N x m?
Bending stiffness around y axis Elyy 2 x10* N x m?
Bending stiffness around z axis El 5x 108 N x m?2
Shear stiffness GA 5x 108 N x m?

13
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Table 4 Parameters of simulation

Parameters Symbols Values Units
Simulation time tend 20 S
Time step dt 0.01 S
Gravity constant g 9.8 m/s?
Air density Pa 0.0889 kg/m3
Air flow speed U 25 m/s
Angle of attack AoOA Oor5o0r10 deg
Flared angle B 10 deg
Time integration method Implicit generalized-a method
Number of finite element nodes per body 13 for inner wing and 5 for outer wing
Number of spanwise panels 24 for inner wing and 8 for outer wing
Number of chordwise panels 4 for inner and outer wing
Number of streamwise wake panels 40
8 : 80 ;

—— ANCF ——ANCF
=60 - = 40F e B B eR
S S
g < 20
: P
S 4 § O
E %D-zo
: :
g2t : » B 40 -

N
-60 -
0 . : : -80 ; i ;
0 5 10 15 20 0 5 10 15 20
Time [s] Time [s]
(a) Z coordinate at tip (b) Folding angle

Figure 18 — Time histories of trasient response (AoA =5 deg and 10 deg).

7. Conclusions

In this paper, the ANCF simulation framewaork that can consider the slanted hinge joint was developed.
Although the past studies demonstrated that the convergence performance of ANCF tends to be
inferior to that of GEBF, ANCF enables us to describe the constraint equation for the slanted hinge
joint in a simple linear form. Therefore, ANCF can be considered as one of the options suitable for the
high aspect ratio wings with slanted hinge joints.

In the free-falling simulations of the double pendulum with a slanted hinge joint, the results of the
ANCF simulation framework ware in good agreement with those of SHARPy with GEBF. In the
aeroelastic simulations of the high aspect ratio wing with a slanted hinge joint, they were in good
agreement. These simulation results would be useful for validating other simulation frameworks for
the wing with a slanted hinge joint.
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