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Abstract 

The wings of transport jets are becoming high aspect ratio to reduce induced drag. Because of the high aspect 

ratio configuration with lightweight, the wings may undergo nonlinear large deformations induced by 

aerodynamic forces. To alleviate excessive large deformation under gust conditions, flared hinged wings have 

been developed. This study develops a new multibody simulation framework for the flared hinged wings based 

on absolute nodal coordinate formulation (ANCF). In this framework, the constraint equation to describe the 

flared hinge joint can be written in a simple linear equation. We show that the simulation results of ANCF 

simulation framework is in good agreement with those of a second simulation framework, namely SHARPy, 

based on a conventional geometrically-exact beam formulation (GEBF). 
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1. Introduction 
The wings of transport jets are becoming high aspect ratio to reduce induced drag. Because of the 

high aspect ratio configuration with lightweight, the wings may undergo nonlinear large deformations 

induced by aerodynamic forces. To alleviate excessive large deformation under gust conditions, 

flared hinged wings have been developed. The flared hinged wing has a folding wingtip with a slanted 

hinge line, as shown in Fig. 1. Multibody simulation considering geometrical nonlinearity is necessary 

for an accurate description of the kinematics of the flared hinged wings. However, most simulation 

studies of the flared hinges wings [1, 2] have used the floating frame of reference formulation (FFRF) 

that assumes small deformation of bodies. A geometrically nonlinear simulation framework is required 

for modelling high-aspect-ratio flared hinged wings. 

Palacios and Cesnik [3] reviewed three major geometrically nonlinear beam formulations.  

The first one is the displacement-based geometrically exact beam formulation (GEBF). This 
formulation uses position and rotation parameters (e.g., Euler angle, Euler parameter, or Cartesian 
rotation vector) as variables. Although the nonlinearity appears on both the inertia and elastic forces 
in 3D simulation, GEBF has been widely used in multibody simulation. Cheng et al. [4] has recently 
developed a multibody solver in their high-aspect-ratio-wing simulation tool, namely Simulation of 
High-Aspect-Ratio aeroplanes in Python (SHARPy) based on the displacement-based formulation. 

The second one is the strain-based beam formulation, developed by Cesnik and Brown [5]. This 
formulation uses extensional strain and curvatures as variables. The nonlinearity only appears on the 
inertia force in this formulation. Sanghi et al. [6] extended this formulation to conduct multibody 
simulation and implemented in their simulation tool, namely University of Michigan/Nonlinear 
Aeroelastic Simulation Toolbox (UM/NAST). 

The third one is the intrinsic beam formulation developed by Hodges [7]. This formulation uses 
internal force or moment as variables. The final form of the intrinsic formulation is a 1st-order time-
differential equation. Only quadratic nonlinearity appears on the equation. Although multibody 



ABSOLUTE NODAL COORDINATE FORMULATION FOR FLARED HINGED WINGS 

2 
 

constraint equations cannot be described by the internal variables directly, Wang and Otsuka [8] 
succeeded in developing a multibody simulation framework based on the intrinsic formulation. 

   In recent years, Otsuka et al. [9, 10] have developed a hinged wing simulation framework based on 
absolute nodal coordinate formulation (ANCF). ANCF was devised by Shabana [11], and then 
reviewed by Gerstmayr et al. [12] and Otsuka et al. [13]. ANCF uses position and gradient vectors as 
variables. Because these vectors are defined in the global (or absolute) coordinate system and  
rotation parameters (e.g., Euler angle, Euler parameter, and Cartesian rotation vector) are not used, 
the nonlinearity appears only on the elastic force. The linear inertia force (i.e., constant mass matrix) 
even in 3D simulation is an advantage of ANCF. Instead of the simple inertia force expression, ANCF 
is often inferior to GEBF from the viewpoint of the convergence performance with respect to number 
of nodal variables [14]. Otsuka et al. [15] coupled ANCF with the unsteady vortex lattice method 
(UVLM) [16] to analyze aeroelastic responses of high aspect ratio wings. UVLM is suitable for very 
flexible wings because it can calculate unsteady aerodynamic forces on lifting surfaces undergoing 
large motion [17]. Large aeroelastic vibrations damped by aerodynamic force were simulated by ANCF 
with UVLM. The simulation results were in good agreement with wind tunnel test results [18]. In 
addition, when the hinge line is not slanted against the free stream velocity, the accuracy of the ANCF 
with UVLM was experimentally validated by wind tunnel tests [9]. However, the simulation framework 
did not consider the slanted hinge. 

There are three objectives in this study. The first objective is to develop the ANCF simulation 
framework that can consider the slanted hinge. The second objective is to validate the developed 
simulation framework by the comparison with SHARPy. The third objective is to provide benchmark 
simulation results that can be used for validating other geometrically nonlinear beam formulations 
coupled with a slanted hinge joint and/or UVLM. To achieve the third objective, we apply the ANCF 
simulation framework and SHARPy to a double pendulum and a high-aspect-ratio wing with relatively 
simple geometries.  

 

 
Figure 1 – Conceptual diagram of flared hinged wing. 
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2. Absolute Nodal Coordinate Formulation (ANCF) 
The 3D ANCF beam element [19] with nodes 1 and 2 is employed in the simulation framework, as 

shown in Fig. 2. The position vector r on the element is expressed as 
( , , ) .x y z=r S e  (1)  

S is a shape function defined in the element coordinate system x, y, and z. e is a generalized nodal 

coordinate defined as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T

T T T T T T T T
1 1 1 1 2 2 2 2 .x y z x y z

 
  

e r r r r r r r r  (2)  

The superscripts 1 and 2 represent node numbers. The subscripts represent the position vector 

derivative with respect to x, y, and z. The final equation of ANCF is written in a differential algebraic 

equation (DAE) as 
T

elastic.  and 0,
 

+ + = = 
 

Φ
Mq F λ F Φ

q
 (3)  

where 

( ) ( ) ( )
T

T T T
1 1 .j i m n 

  
q e e e  (4)  

The superscripts i and j represent the ith node of the jth body. M is a constant mass matrix. Felastic is 

a nonlinear elastic force vector. λ is a Lagrange multiplier. Φ is a constraint equation vector. F is an 

external force vector.  

Figure 3 shows a top view of a slanted hinge joint that connects bodies 1 and 2. β represents a 

flared angle. Owing to this slanted hinge joint, the vector a on the 1rx-1ry plane is equal to the vector 

b on the 2rx-2ry plane. The constraint equation of the slanted hinge joint is written as 

( ) ( ) ( ) ( )1 1 2 2

.

sin cos sin cos .x y x y   

= − =

 = + − − =

Φ a b 0

Φ r r r r 0
 (5)  

This constraint equation is linear with respect to the nodal variables in q. Therefore, ∂Φ/∂q in Eq. (3) 

becomes a constant matrix. This simple constraint expression is another advantage of ANCF. The 

linear constraint equation generates a constant velocity transformation matrix B: 

in in

in

.


= =


q
q q Bq

q
 (6)  

qin is an independent generalized coordinate vector. If this velocity transformation matrix is used, the 

equation of motion can be written in an ordinary differential equation (ODE) as 
T T T

in elastic. .+ =B MBq B F B F  (7)  

In this paper, DAE in Eq. (3) rather than ODE in Eq. (7) is used. 

 

 

Figure 2 – ANCF beam element. Figure 3 – Top view of slanted hinge joint. 
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3. Geometrically Exact Beam Formulation (GEBF) in SHARPy 
In this section, the formulation of the multibody constraints for the hinged wing tip in SHARPy is 

described. The SHARPy multibody formulation make use of as many individual geometrically-exact 

beams as needed, coupled with Lagrange multipliers for the multibody constraints. [4, 20, 21]. 

As given in the reference, the general structural system of equations is described, for each 

generalised degree of freedom 𝒙, as 

 {

𝐌(𝒙)𝒙̈ + 𝐁ℎ
⊤(𝒙, 𝑡)𝝀𝒉 + 𝐁𝑛

⊤(𝒙̇, 𝑡)𝝀̇𝒏 = 𝔣(𝒙, 𝒙̇, 𝑡) = 𝔣𝑒𝑥𝑡 − 𝔣𝑔𝑦𝑟 − 𝔣𝑠𝑡𝑖𝑓 ,

                                                     𝒈ℎ(𝒙, 𝑡) = 0,

                                                 𝒈𝑛(𝒙, 𝒙̇, 𝑡) = 𝐁𝑛(𝒙, 𝑡) ⋅ 𝒙̇ + 𝒈𝑛0 = 0,

 

 

(8)  

in which 𝐌 is the mass matrix and 𝔣 includes the external, gyroscopic, and stiffness forces, 𝒈ℎ and 

𝒈𝑛  for holonomic and non-holonomic constraints, 𝐁ℎ =
𝜕𝒈ℎ

𝜕𝒙
 or 𝐁𝑛 =

𝜕𝒈𝑛

𝜕𝒙̇
 is the Jacobian of the 

constraints, and their respective Lagrange multipliers 𝝀𝒉 and 𝝀̇𝒏. In incremental form this becomes 

[
𝐌 0 0
0 0 0
0 0 0

](

Δ𝒙̈
Δ𝝀̈𝒉
Δ𝝀̈𝒏

) + [
𝐂 0 𝐁𝐧

⊤

0 0 0
𝐁𝑛 0 0

] (

Δ𝒙̇
0
Δ𝝀̇𝒏

) + [
𝐊 𝐁𝐡

⊤ 0
𝐁ℎ 0 0
0 0 0

] (
Δ𝒙
Δ𝝀𝒉
0

) = (

𝔯∘

−𝒈𝒉
∘

−𝒈𝒏
∘
) + 𝐻.𝑂. 𝑇., (9)  

where the tangent damping and stiffness matrices 𝐂 and 𝐊, as well as the residual vector 𝔯∘ are given 

as 

{
  
 

  
 𝐂 =

𝜕𝐁𝐧
⊤𝝀̇𝒏
𝜕𝒙̇⏟    
𝐂

−
𝜕𝔣

𝜕𝒙̇
,

𝐊 =
𝜕(𝐌𝒙̈)

𝜕𝒙
+
𝜕𝐁𝐡

⊤𝝀𝒉
𝜕𝒙

−
𝜕𝔣

𝜕𝒙
,

𝔯∘ = 𝔣 − 𝐌𝒙̈ − 𝐁ℎ
⊤𝝀𝒉 − 𝐁𝑛

⊤𝝀̇𝒏,

 (10)  

evaluated at the reference point. 𝔣 includes the external (in this case aerodynamic as generated by 

the UVLM), gyroscopic, and stiffness forces. We determine 𝐁 for the common lower pair joints that 

we are interested in; this formulation has been applied previously on other multibody systems such 

as wind turbines [21]. For a hinge connection between 2 beams, we require three and two equations 

for the linear and angular velocities respectively to allow only for one degree of freedom, which is the 

rotation about the hinge axis. They are derived next, consistent in nomenclature with [3]. 

 

3.1 Definition of Reference Frames and Kinematics 

Figure 4 defines the notation, used to describe the kinematics of the flexible wing with hinged wing 

tips. We begin from the Earth frame 𝐸 in Fig. 4a, from which we define 𝔭(𝑡) as the time-varying vector 

to the body-attached frame 𝐵 used to track the vehicle. The rotation matrix from 𝐸 to 𝐵 frame 𝐑𝐵𝐸 is 

defined with a choice of parametrisation, in this case the quaternion 𝜒𝐵. In the 𝐵 frame we define 𝒓𝐵
𝐺 

as the vector to the material frame at the tip of the main wing, frame 𝐺. The rotation matrix from 𝐵 to 

𝐺 frame 𝐑𝐺𝐵 is defined, again with a choice of parametrisation, in this case the Cartesian Rotation 

Vector (CRV) 𝝍𝐵
𝐺. 

On the wing tip itself in Fig. 4b, separated by the hinge, we define the body-attached frame 𝐻 at its 

root where the rotation matrix from the global frame 𝐑𝐻𝐸 is a function of the quaternion 𝜒𝐻. Velocities 

of body-fixed frames, i.e., 𝐵 and 𝐻, are given in their own FoRs respectively by 𝒗𝐵
𝐵, 𝝎𝐵

𝐵 and 𝒗𝐻
𝐻, 𝝎𝐻

𝐻, 

where those at material frames, i.e. 𝐺, require a more involved formulation described further along 

the Section. 

As the aeroelastic wing with the hinged wing tips undergoes displacements and rotations, the hinge 

line vector as visualised, is a function of rigid body translational and rotational movements, and 

flexible deformations, and almost always a function of time. Defining instead the projections of the 
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hinge line vector in the two local frames of reference gives 𝑒𝐻 = 𝐑𝐻𝐵𝑒𝐵, such that these vectors are 

now constant in time, from Euler’s rotation theorem as detailed in Chapter 4.3.2 of [3]. 

 

  

(a) Frames and notations of the wing 
(b) Inset showing frames and notations of the 

wing tip 

Figure 4 – Labelled quantities and frames of the flexible multibody wing assembly. 

 

3.2 Linear Velocity Constraint 
We begin by placing the condition of same linear velocity at frames 𝐺 and 𝐻. Equating the velocities 
across the connection, in 𝐻 frame gives 

𝒗𝐻
𝐻 = 𝐑𝐻𝐵 ⋅ (𝒓̇𝐵

𝐺 + 𝒗𝐵
𝐵 + 𝝎̃𝐵

𝐵𝒓𝐵
𝐺), (11)  

which when written as a non-holonomic constraint in matrix form in the inertial frame 𝐸, and following 
the notation in Eq. (8), is 

𝒈𝑛1 = [−𝐑𝐸𝐵(𝜒
𝐵) −𝐑𝐸𝐵(𝜒

𝐵) 𝐑𝐸𝐵(𝜒
𝐵)𝒓̃𝐵

𝐺 𝐑𝐸𝐻(𝜒
𝐻)]

[
 
 
 
 
𝒓̇𝐵
𝐺

𝒗𝐵
𝐵

𝝎𝐵
𝐵

𝒗𝐻
𝐻 ]
 
 
 
 

= 𝐁𝑛1(𝒙̇, 𝒙, 𝑡)𝒙̇ = 0. (12)  

Apart from introducing the constraint as an extra equation in the system, we would also have to update 

the residual 𝔯∘, and evaluate 𝐂 in Eq. (10). 
 

3.3 Angular Linear Velocity Constraint 
To apply the angular velocity constraint, in practice we restrict any two pairs of corresponding points on 
the vectors to always have the same linear velocity. Choosing the origins of the vectors in Fig. 4b as 
the first pair gives Eq. (11), and additionally choosing two points along the vectors give their common 
linear velocity 𝒗𝑒 in the 𝐻 frame as 

𝒗𝐻
𝐻 + 𝝎̃𝐻

𝐻𝑒𝐻 = 𝒗𝑒 = 𝐑𝐻𝐵 ⋅ (𝒓̇𝐵
𝐺 + 𝒗𝐵

𝐵 + 𝝎̃𝐵
𝐵𝒓𝐵

𝐺) + 𝐑𝐻𝐺(𝑠𝑘𝑒𝑤(𝐓
𝐺𝐵𝝍̇𝐵

𝐺 + 𝐑𝐺𝐵𝝎𝐵
𝐵) ⋅ 𝑒𝐵), (13)  

where 𝐓 is the tangential rotational operator described in Appendix C of [3], from which we eliminate 
Eq. (11) to give 

 𝝎̃𝐻
𝐻𝑒𝐻 = 𝐑𝐻𝐺(𝑠𝑘𝑒𝑤(𝐓

𝐺𝐵𝝍̇𝐵
𝐺 + 𝐑𝐺𝐵𝝎𝐵

𝐵) ⋅ 𝑒𝐵), (14)  

which is transformed to 𝐺 frame and recast in the form of 𝒈𝑛2 = 0 in matrix form, 

 𝒈𝑛2 = [𝑒̃𝐵𝐑𝐺𝐵(𝝍𝐵
𝐺) 𝑒̃𝐵𝐓

𝐺𝐵(𝝍𝐵
𝐺) −𝐑𝐺𝐵(𝝍𝐵

𝐺)𝐑𝐵𝐸(𝜒
𝐵)𝐑𝐸𝐻(𝜒

𝐻)𝑒̃𝐻] [

𝝎𝐵
𝐵

𝝍̇𝐵
𝐺

𝝎𝐻
𝐻

] = 𝐁𝑛2(𝒙̇, 𝒙, 𝑡)𝒙̇ = 0 (15)  
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4. UVLM Aerodynamic Panel for Slanted Hinge Joint  

The structural models are coupled with the UVLM aerodynamic model. UVLM discretizes the wing 

surface and wake in vortex panels with circulation Γ as an aerodynamic variable. The circulation is 

calculated by the non-penetration flow condition on wing surface and the Biot-Savart law. Then, the 

aerodynamic force on each panel is calculated by using the circulation as 

( )

steady unsteady

4

air

1

Γ
Γ .i i

i

A
t

  
=

 +


  +




F F F

U l n
 (16)  

Here, the aerodynamic force can be divided into steady and unsteady contributions. The summation 

from i = 1 to i = 4 means the contributions of the four edges of the square panel. ρair is an air density. 

U is airflow on the edge. A is panel area. n is a panel-normal vector.  

Figure 5a shows the UVLM panels at the slanted hinge joint. One edge of the panels adjacent to 

the joint is parallel to the slanted hinge line. It should be noted that the slanted edges of the panels 

on both sides of the hinge line must be the same. If there is a tiny gap between the edges, numerical 

divergence may occur. This is because the Biot-Savart law used in UVLM causes a singularity 

problem when vortex edges are too close. Also, the careful choice of span-wise discretization is 

crucial to avoid a self-intersecting UVLM grid, as shown in Fig. 5b. 

 

 

(a) Without self-intersecting 

 

(b) Self-intersecting, not valid 

Figure 5 – UVLM panels with beam nodes near the hinge. 
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5. Multibody Simulation Results of Free-Falling Pendulum with Slanted Hinge Joint 

The double pendulum problem considered by Cheng et al. [4] is simulated by the developed 

framework with the slanted hinge joint. Figure 6 shows the double pendulum cited from [4]. The one 

end of the blue body is connected to the origin of the global coordinate system with a hinge joint. The 

hinge line is parallel to the Y-axis. The two bodies are connected by a slanted hinge joint. Table 1 

shows the parameters of each body. The two bodies have the same parameters. Table 2 shows the 

simulation parameters. In this section, parametric simulations with respect to the stiffness coefficient 

c and the flared angle β are conducted. Initially, the double pendulum is placed on the X-axis. The 

gravity in the Z-direction causes free-falling motion. The developed framework based on ANCF is 

compared with SHARPy. It should be noted that a fair calculation time comparison is difficult between 

the frameworks. This is because ANCF framework is based on MATLAB while the structural solver 

of SHARPy is based on Fortran. Therefore, only calculation time of the ANCF simulation framework 

is presented for reference. The calculation time of all ANCF simulations in this section was around 

20s. The ANCF simulation was conducted by using MATLAB 2024a, CPU Ryzen Threadripper 3970X 

(single core), and RAM256GB. 

 

Figure 6 – Top view of double pendulum at t = 0. 

 

Table 1 Parameters of each pendulum body 

Parameters Symbols Values Units 

Length  L 0.50 m 

Linear density ρA 1.08 kg/m 

Rotational inertia around x axis ρIxx 7.20 × 10-5 kg × m 

Rotational inertia around y axis ρIyy 3.60 × 10-5 kg × m 

Rotational inertia around z axis ρIzz 3.60 × 10-5 kg × m 

Extensional stiffness  EA c × 2.80 × 105 N 

Torsional stiffness GJ c × 6.91 × 100 N × m2 

Bending stiffness around y axis EIyy c × 9.33 × 100 N × m2 

Bending stiffness around z axis EIzz c × 9.33 × 100 N × m2 

Stiffness coefficient c 1 or 0.1 or 0.01 - 

 

Table 2 Parameters of simulation 

Parameters Symbols Values Units 

Simulation time  tend 2 s 

Time step dt 0.002 s 

Gravity constant g 9.8 m/s2 

Flared angle β 0 or 45 or 90 degree 

Time integration method Implicit generalized-α method 

Number of elements per body 5 
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5.1 c = 1 and β = 0 

Figure 7 shows the X, Y, and Z coordinates at the free end when c = 1 and β = 0. ANCF and SHARPy 

are in good agreement. Because of the stiffness is relatively high and zero β, the double pendulum 

can be considered as a rigid multibody system with two degrees of freedom. Therefore, two 

frequencies are mixed in this motion. Figure 8 shows the time history of energies calculated by ANCF. 

This double pendulum is a conservative system. The total energy that is a sum of the kinetic, elastic, 

and gravity potential energies is conserved, which shows that the developed ANCF framework 

satisfies energy conservation law correctly. As shown in this figure, the elastic energy is very small, 

this simulation result can be used for validating not only flexible but also rigid multibody simulation 

framework. 

 

 

Figure 7 – Time histories of free-end coordinates of double pendulum (c = 1, β = 0). 

 

 

Figure 8 – Time histories of energies of double pendulum calculated by ANCF (c = 1, β = 0). 
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5.2 c = 1 and β = 90 

Figure 9 shows the X, Y, and Z coordinates at the free end when c = 1 and β = 90. ANCF and SHARPy 

are in good agreement. Because β = 90, the connection of the two bodies can be considered as a 

rigid joint. Therefore, this double pendulum can be considered as a single pendulum with one degree 

of freedom. Therefore, only one frequency motion can be seen in this figure. Figure 10 shows the 

time histories of the energies calculated by ANCF. The total is conserved correctly. 

 

 

Figure 9 – Time histories of free-end coordinates (c = 1, β = 90). 

 

 

Figure 10 – Time histories of energies of double pendulum calculated by ANCF (c = 1, β = 90). 
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5.3 c = 1 and β = 45 

Figure 11 shows the X, Y, and Z coordinates at the free end when c = 1 and β = 45. Because β = 45, 

the Y coordinate is not zero. Even if such 3D motion is caused by the slanted hinge joint, ANCF and 

SHARPy are in good agreement in the simulation. Owing to this 3D motion, the X and Z coordinates 

in Fig. 11 are not smooth compared with those in Fig. 9. Figure 12 shows the time histories of the 

energies calculated by ANCF. The total energy is conserved correctly even when 3D motion is caused 

by the slanted hinge joint. 

 

 

Figure 11 – Time histories of free-end coordinates (c = 1, β = 45). 

 

 

Figure 12 – Time histories of energies of double pendulum calculated by ANCF (c = 1, β = 45). 
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5.4 c = 0.1 and β = 45 

Figure 13 shows the X, Y, and Z coordinates at the free end when c = 0.1 and β = 45. Because the 

stiffness decreases, the motion includes higher frequencies attributed to the elastic deformation. 

ANCF and SHARPy are in good agreement in the simulation when the elastic deformation and 

slanted hinge joint need to be considered simultaneously. Figure 14 shows the time histories of the 

energies calculated by ANCF. The total energy is conserved correctly even when the elastic 

deformation and the slanted hinge joint need to be considered. The elastic energy in this figure is not 

small compared with those in the simulations with a higher stiffness c = 1.  

 

 

Figure 13 – Time histories of free-end coordinates (c = 0.1, β = 45). 

 

 

Figure 14 – Time histories of energies of double pendulum calculated by ANCF (c = 0.1, β = 45). 
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5.5 c = 0.01 and β = 45 

Figure 15 shows the X, Y, and Z coordinates at the free end when c = 0.01 and β = 45. Because the 

stiffness decreases furthermore, larger elastic deformation occurs. This larger elastic deformation 

increases the amplitude of the Y coordinate. ANCF and SHARPy are in good agreement in the 

simulation when the larger elastic deformation occurs. Figure 16 shows the time histories of the 

energies calculated by ANCF. The total energy is conserved correctly even when the larger elastic 

deformation occurs. The maximum elastic energy in this figure is larger than those in Figs. 12 and 

14. 

 

 

Figure 15 – Time histories of free-end coordinates (c = 0.01, β = 45). 

 

 

Figure 16 – Time histories of energies of double pendulum calculated by ANCF (c = 0.01, β = 45). 
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6. Aeroelastic Simulation Results of Flared Hinged Wing Assembly 

In this section, aeroelastic simulations are performed for a flared hinged wing. The flared hinged wing 
specifications are based on the high aspect ratio wing with a total wingspan of 16 m [23]. Figure 17 
shows the top view of the wing. One end of the wing is fixed to the origin of the global coordinate 
system. The hinge divides the wing into inner and outer wing bodies. Table 3 shows the specifications 
of the wing. Table 4 shows the simulation parameters. It should be note that one ANCF element has 
two nodes, while one GEBF element in SHARPy has three nodes. It should be also noted that finer 
UVLM panel discretization and smaller time step may result in more converged solutions. 

To provide relatively simple validation results, we simulated the transient response caused by the 

flow that starts to income in the negative Y direction and the gravity that starts to act at t = 0 suddenly. 

Figure 18 shows the time history of the Z coordinate at the wingtip and the folding angle when AoA 

is 5 deg and 10 deg. The results of the ANCF simulation framework are in good agreement of those 

of SHARPy. 

 

Figure 17 – Top view of flared hinge wing. 

 

Table 3 Parameters of flared hinge wing 

Parameters Symbols Values Units 

Total length (semispan) L 16 m 

Inner wing length L1 12 m 

Outer wing length L2 4 m 

Chord length C 1 m 

Linear density ρA 0.75 kg/m 

Rotational inertia around x axis ρIxx 0.1 kg × m 

Rotational inertia around y axis ρIyy 0.01 kg × m 

Rotational inertia around z axis ρIzz 0.09 kg × m 

Extensional stiffness  EA 1 × 107 N 

Torsional stiffness GJ 1 × 104 N × m2 

Bending stiffness around y axis EIyy 2 × 104 N × m2 

Bending stiffness around z axis EIzz 5 × 106 N × m2 

Shear stiffness GA 5 × 106 N × m2 
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Table 4 Parameters of simulation 

Parameters Symbols Values Units 

Simulation time  tend 20 s 

Time step dt 0.01 s 

Gravity constant g 9.8 m/s2 

Air density ρa 0.0889 kg/m3 

Air flow speed U 25 m/s 

Angle of attack AoA 0 or 5 or 10 deg 

Flared angle β 10 deg 

Time integration method Implicit generalized-α method 

Number of finite element nodes per body 13 for inner wing and 5 for outer wing 

Number of spanwise panels 24 for inner wing and 8 for outer wing 

Number of chordwise panels 4 for inner and outer wing 

Number of streamwise wake panels 40 

 

  
(a) Z coordinate at tip (b) Folding angle 

Figure 18 – Time histories of trasient response (AoA = 5 deg and 10 deg). 

7. Conclusions 

In this paper, the ANCF simulation framework that can consider the slanted hinge joint was developed. 

Although the past studies demonstrated that the convergence performance of ANCF tends to be 

inferior to that of GEBF, ANCF enables us to describe the constraint equation for the slanted hinge 

joint in a simple linear form. Therefore, ANCF can be considered as one of the options suitable for the 

high aspect ratio wings with slanted hinge joints. 

  In the free-falling simulations of the double pendulum with a slanted hinge joint, the results of the 

ANCF simulation framework ware in good agreement with those of SHARPy with GEBF. In the 

aeroelastic simulations of the high aspect ratio wing with a slanted hinge joint, they were in good 

agreement. These simulation results would be useful for validating other simulation frameworks for 

the wing with a slanted hinge joint. 
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