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Abstract 

During the processing of high-performance thermoset polymer matrix composites, chemical reactions occur 
during elevated pressure and temperature cycles, causing the constituent monomers to crosslink and form a 
molecular network that gradually can sustain stress. As the crosslinking process progresses, the material 
naturally experiences a gradual shrinkage due to the increase in covalent bonds in the network, causing the 
formation of residual stresses. Similarly, the shrinkage of semi-crystalline thermoplastics during the crystalline 
growth phase of the processing cycle can cause shrinkage of the resin also resulting in residual stresses. The 
goal of this research is to use molecular dynamics, micromechanical modelling, and finite element analysis to 
predict the residual stresses in composite laminates and optimize processing parameters to minimize the 
residual stress. This paper will present some examples of our team’s multiscale process modelling for epoxy, 
polybenzoxazine, and PEEK polymer systems. 
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1. Introduction 
During the processing of high-performance thermoset polymer matrix composites, chemical reactions 
occur during elevated pressure and temperature cycles, causing the constituent monomers to 
crosslink and form a molecular network that gradually can sustain stress. As the crosslinking process 
progresses, the material naturally experiences a gradual shrinkage due to the increase in covalent 
bonds in the network, causing the formation of residual stresses. Similarly, the shrinkage of semi-
crystalline thermoplastics during the crystalline growth phase of the processing cycle can cause 
shrinkage of the resin also resulting in residual stresses. 
 
Once the fully cured (thermosets) or fully processed (thermoplastics) composite completes the 
processing cycle and is brought to room temperature, the thermal expansion mismatch of the fibers 
and matrix cause additional residual stresses to form. These compounded residual stresses can 
compromise the mechanical integrity of the composite material. Computational process modelling 
needs to be utilized to optimize processing parameters to reduce residual stresses and increase the 
composite material durability. 
 
Computational process modeling is greatly complicated by the multiscale nature of the composite 
material. At the molecular level, the degree of cure (crystallinity) controls the local shrinkage and 
thermal-mechanical properties of the thermoset (thermoplastic). At the microscopic level, the local 
fiber architecture and packing affect the magnitudes and locations of residual stress concentrations. 
At the macroscopic level, the layup sequence controls the nature of crack initiation and propagation 
due to residual stresses.  
 
The goal of this research is to use molecular dynamics (MD), micromechanical modelling, and finite 
element analysis (FEA) to predict the residual stresses in composite laminates and optimize 
processing parameters to minimize the residual stress [1-5]. MD is used to predict the polymer 
shrinkage and thermomechanical properties as a function of cure (for thermosets) or crystallization 
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(for thermoplastics). This information is used as input into FEA to predict the residual stresses on 
the microscopic level resulting from the complete cure process. FEA is subsequently used to predict 
residual deformations and performance of composite structures for aerospace applications. 
Experimental characterization is used to validate the computational modelling. This paper will 
present some examples of our team’s multiscale process modelling for epoxy, polybenzoxazine 
(PBZ), and PEEK polymer systems. 

 

2. Molecular modelling of epoxy 
Figure 1 shows the molecular structure of the DGEBF epoxy monomer and DETDA amine monomer 
used in the simulated epoxy system. Following the procedure described by Patil et al [4], the 
monomers were used to simulate a bulk epoxy resin in a MD simulation box, and the reactive groups 
were subjected to a simulated cure (Figure 1, upper right). During the simulated curing the largest 
and second-largest clusters were tracked as two different measures of gel point (Figure 1, lower right).  
 

 
Figure 1 – Epoxy monomers (left), evolution of cluster growth during the curing process (upper right 

and lower right). From Patil et al [4]. 
 

DGEBF (EPON 862)

DETDA (EPIKURE W)
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Figure 2 – Evolution of mass density during cure of epoxy. From Patil et al [4]. 

 

 
Figure 3 – Evolution of volume shrinkage and post-gelation volume shrinkage (inset) during cure of 

epoxy. From Patil et al [4]. 
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Figure 4 – Evolution of Young’s modulus during cure of epoxy. From Patil et al [4]. 

 

 
Figure 5 – Evolution of yield strength during cure of epoxy. From Patil et al [4]. 

 
The evolution of several properties were simulated as a function of cure. Figures 2, 3, 4, and 5 show 
the evolution of mass density, volumetric shrinkage, Young’s modulus, and yield strength, 
respectively. Also included on the figures is experimental data, if available [6-9]. The figures show 
good agreement with the experimental data (considering the strain rate discrepancy) for all of these 
metrics.  

3. Molecular modelling of PBZ 
Figure 6 shows the molecular modelling steps performed by Gaikwad et al [1] for PBZ. The 
benzoxazine monomer was simulated in a MD simulation box and subsequently crosslinked to form 
PBZ (Figure 6 - top). The MD simulation boxes were subjected to shear and bulk deformations (Figure 
6 - bottom) to predict the elastic and yield properties as a function of the degree of cure. Figure 7 
shows the corresponding volumetric shrinkage. Both the total volumetric shrinkage and the post-
gelation shrinkage are nearly zero for the full range of cure, which is experimentally observed with 
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PBZ [10]. This agreement between experiment and simulations for a well-known zero-shrinkage resin 
validates the MD modelling methodology for the PBZ and other simulated resin systems. 
 

 
Figure 6 – Molecular modelling of PBZ resin. From Gaikwad et al [1]. 

 

 
Figure 7 – Volumetric shrinkage of PBZ resin. From Gaikwad et al [1]. 
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4. Molecular and micromechanical modelling of PEEK 
Figure 8 shows the multiscale modelling methodology for PEEK, as performed by Kashmari et al [2]. 
MD models of the amorphous and crystalline phases of PEEK were built and simulated to get the 
correspond elastic and thermal properties (Figure 8 - top left). Micromechanical simulation was 
performed to predict the corresponding thermo-elastic properties of the semi-crystalline material. 
Once the properties of the semi-crystalline form of PEEK were predicted as a function of crystallinity 
content, the crystallization kinetics were coupled with the properties to predict the evolution of the 
thermo-mechanical properties of semi-crystalline PEEK as a function of processing time and 
temperature (Figure 8, lower left and right).  
 
Figure 9 shows the detailed evolution of the volumetric shrinkage, Young’s modulus, and thermal 
expansion coefficient of PEEK (resulting from crystallization) as a function of processing time and 
temperature. The data shows that both processing time and temperature have a significant effect on 
the corresponding PEEK properties.  
 

 
Figure 8 – Multiscale modelling of PEEK. From Kashmari et al [2]. 
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Figure 9 – Evolution of PEEK properties as a function of processing time and temperature. From 

Kashmari et al [2]. 
 

5. Conclusions 
This research demonstrates that multiscale modelling can be used to accurately determine resin 
properties as a function of degree of cure (thermosets) or crystallization (thermoplastics). Coupled 
with cure and cystalization kinetics, respectively, the evolution of properties as a function of 
processing time and temperature can be established. This information can be used in higher-length 
scale micromechanics and FEA analysis to predict the evolution of residual stresses from cure 
shrinkage, crystallization shrinkage, and thermal shrinkage in composite laminates. This information 
can be carried forward into composite structures, such that the processing parameters and the 
component design can be optimized for minimized residual stresses and maximised product 
performance. These tools are ideal for ICME and MGI approaches for rapid material and structural 
development.  
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