
APPLICATION OF CLUSTERING TECHNIQUES IN
OPTIMISATION-BASED FLIGHT CONTROL SYSTEM CLEARANCE

Patrick Piprek1, Pedro Miguel Dias2, Jacopo Tonti1 & David Schwalb1

1Airbus Defence and Space GmbH, Flight Dynamics, Rechliner Straße, 85077 Manching
2Airbus Defence and Space GmbH, Airline Sciences Live Streams, Willy-Messerschmitt-Straße 1, 82024 Taufkirchen

Abstract

Before an aircraft is released to service, flight mechanics clearance assessments over the entire flight regime
including potential failure cases, pilot inputs, measurement errors, configurations and further scenarios, such
as bird strikes, are conducted to ensure its safe operation. These assessments need to be conducted in
a manner that all operationally relevant scenarios are considered and no critical ones are overlooked. For
this purpose, global and local optimisation strategies have proven viable as they allow to find a multitude
of problematic cases and areas within the vast input parameter space. One drawback of such approaches
is that the optimisation algorithm tends to converge to an optimum by design. While this is an important
result for a clearance, this tendency to go towards the optimal regions may cover up further critical areas that
are also operationally relevant. To mitigate this issue, a connection of optimisation methods and clustering
techniques is proposed in this study. The goal of this approach is to use clustering to avoid already identified
critical parameter combinations in following algorithm evaluations and rather explore other scenarios, which
may also be operationally relevant. This approach increases the confidence in finding all critical regions and
thus, improves the safety of the aircraft. The proposed framework is shown in an aircraft clearance scenario to
highlight its benefits.

Keywords: envelope clustering, optimisation, clearance, genetic algorithm, flight control system

1. Introduction
The assessment of a Flight Control System (FCS) in flight mechanics clearance assessments is one
of the most important tasks before a new or upgraded FCS software can be deployed on the hard-
ware for further testing and integration on the Aircraft (A/C) [1]. For these clearance assessments,
normal as well as failure case operation is to be considered before an A/C can be deemed safe for
operation with this FCS standard. Particularly for fighter A/C, which are often naturally unstable and
only artificially stabilised by the FCS, these flight mechanics assessments require significant com-
putational and analysis resources due to the huge amount of flight conditions, manoeuvres, store
configurations, and failure cases that have to be considered.
To tackle these issues, studies [2, 3] introduced an optimisation-based flight mechanics clearance
philosophy: The approach is based on different types of multi-objective genetic algorithms that were
combined in an island model approach. By this, a parallelization using the Open Message Passing
Interface (MPI) [4] is facilitated and consequently deployment on a High Performance Computing
(HPC) cluster is supported. With this setup, it is possible to evaluate millions of scenarios in a fast
manner, consequently improving the confidence in the results, particularly in terms of finding the
worst cases. Thus, the safety of the A/C and the FCS is improved.
One drawback of purely optimisation-based techniques is however that they tend to find regions of
interest, i.e. with critical behaviour based on the selected criteria, in the initial steps and then continue
to converge in those regions to find the optimum. While this is an important, desired feature, it also
has drawbacks in the context of clearance assessments because it is not only desired to find the worst



CLUSTERING IN OPTIMISATION-BASED FCS CLEARANCE

case but, at best, find all critical regions with all critical scenario topologies [1]. This is necessary
to ensure that the A/C is safe within the whole operational range, which is most pronounced by
considering the assessed flight envelope conditions.
For this purpose, study [3] already introduced a methodology to slice the envelope in different parts to
foster exploration at early stages of the optimisation algorithm execution. This method proved viable
in the context of exploring more than just the most critical regions. Still, it has drawbacks in terms of
properly setting up the envelope splitting, e.g. the number of splits, and specifically when and how to
switch back to a common envelope again.
To mitigate these issues of purely optimisation-based approaches, the combination of clustering and
optimisation has long been a research subject: In study [5], clustering techniques were used to avoid
finding the same local minimum multiple times in local searches of the global optimisation algorithm,
with the clusters being used in stopping criteria. This procedure also directly increases the chance
of finding the global optimum as more effort can be concentrated in exploration. Studies [6, 7] then
proposed different clustering methodologies in the context of stochastic optimisation. The authors
defined different methods that use a minimal number of local searches in clusters and a multi-level
approach to find all local optima with high reliability.
The proposed methods in [6,7] were revisited in [8]: The authors used global optimisation techniques
to create the overall results and applied clustering to decide on whether or not to start a local search.
They also considered dimensionality reduction strategies to mitigate computational issues in high
dimensional space improving the applicability of the algorithms in practice.
Further connections of clustering and optimisation were done in [9, 10], where both transfer learn-
ing [9] and graph-based clustering [10] were used to enhance a global optimisation algorithm. It
was specifically shown that the time to convergence and number of samples could be significantly
reduced by applying clustering techniques.
One common denominator of all previously mentioned studies is that they use clustering to improve
the probability of converging to and finding all local optima and specifically the global optimum. While
this is valuable in clearance assessments, it is not the most important result as it is rather desired to
find “all” critical points and specifically the associated critical regions. An approach in this direction
was published in [11]: The study used a bisection approach and truncated Uniform distributions for
uncertainties to assist in global exploration by means of finding critical regions and then applying
local gradient-based optimisation techniques to find the worst cases.
Still, the combination of clustering and optimisation to explore more than just critical regions has
not yet been studied deeply. This study addresses this topic by using clustering techniques on the
optimisation results directly within the generations. These techniques are used to carve out e.g. the
already identified critical envelope areas by means of finding similar patterns that lead to criteria
violations. With this information, further, different scenario combinations can be explored to find other
potentially critical cases, while the carved out areas can either be optimized in a separate manner or
be analysed stochastically. The calculated clusters are, however, penalised such that the optimiser
does not evolve inside them. Initially, this approach is applied in the context of envelope clustering.
Overall, the paper details the implementation and connection of clustering to and within optimisation
algorithms in Section 2. Specifically, the handling of the clustering results by means of constraints
is explained. Additionally, the definition of a stationary condition to trigger the clustering algorithm
is detailed. Furthermore, a representative example for an A/C clearance assessment in Section 3
is used to show the benefits of the proposed algorithm in a large-scale application. An outlook and
conclusive remarks are given in Section 4.

2. Theory
This section summarises the theory of the used algorithms connected within the proposed FCS
flight mechanics clearance framework. It specifically introduces the considered optimisation problem
formulation, details the introduction of clustering results as constraints, and introduces the algorithmic
procedure of the optimisation with clustering.

2



CLUSTERING IN OPTIMISATION-BASED FCS CLEARANCE

2.1. Optimisation Problem
In general, the following multi-objective minimisation problem, including constraints, is solved in an
FCS clearance assessment [2]:

minimise
z

J(x;z) , J : Rm×Rn→ Ro

subject to zlb ≤ z≤ zub , z ∈ Rn ,

ẋ = f(x;z) , f : Rm×Rn→ Rm ,

clb ≤ c(x;z)≤ cub , c : Rm×Rn→ Rp ,

ψeb = ψ (x;z) , ψ : Rm×Rn→ Rq .

(1)

In (1), z is the vector of optimisation parameters, while the objective functions, equality, and inequality
constraints are given by J(·), ψ(·), and c(·), respectively. The state dynamics are defined by the
functions f(·) for the states x ∈ Rm, which are solved by a single shooting discretisation [2, 12]. The
indices “lb”, “ub”, and “eb” denote the lower, upper, and equality bound vectors, respectively.
The main practical caveat of the problem specification in (1) is the multi-objective definition. Such
problems are generally difficult to solve, because they require Pareto optimality [13], which may be
difficult to achieve. However, they are of high relevance in practical FCS clearance assessments
because there is not only one objective, but multiple ones, based on the different requirements [1].
For the solution of such problems, specifically considering the large amount of available parameter
combinations, studies [2, 3] introduced a framework, which is used in this study and discussed in
Section 2.2.

2.2. Island Model and Genetic Algorithm
To solve the problem specified in (1), genetic algorithms are proposed in [2], which are also used in
this study. The following paragraphs will thus only give a general overview on some details of the
algorithms required to understand the behaviour of the optimisation algorithm with clustering.
The basic algorithmic workflow of a genetic algorithm (e.g. used in NSGA2 [14], NSGA3 [15], or omni-
optimisation [16]) is visualised in Figure 1: The idea is to define an initial population of the optimisation
parameters, based on e.g. random sampling, and then evaluate the dynamics and constraints to
get the initial results. Then, the non-dominated and crowding distance sorting step in Figure 1 is
executed. Here, the individuals are sorted into different fronts and chosen for the next generation
from best to worst performing. Afterward, the genetic algorithm operators of “selection”, “crossover”,
and “mutation” are applied to generate a new offspring population (“new generation”) that should
improve on the current solution. This procedure is iterated until a user-defined stopping criterion is
met. In general, the balance between exploitation and exploration of the search-space is essential
to the performance of these algorithms. Such balance is achieved mainly via a trade-off between
crossover and mutation [14–16].
One important aspect of the proposed genetic algorithms is the capability to identify converged states
by means of a stopping criterion. This is necessary to trigger the clustering, as introduced in Sec-
tion 2.3, because it should only be executed once a sufficient amount of critical cases has been
found. The natural choice for a convergence criterion is the maximum number of generations, but in
the context of clustering other criteria need to be assessed as the maximum number of generations
is only terminal: These can e.g. be the number of solutions in the first Pareto front or the current cost
function values. Additionally, the set of critical parameters may be assessed for changes. If those
did not change for a certain amount of generations (“backtracking” steps), it is assumed that the al-
gorithm has reached a “converged” state. Then, the clustering algorithm is used to exclude already
identified critical regions.
Note that the genetic algorithm used in this study therefore has two different, individual stopping
criteria associated to it: One for the actual termination of the optimisation (e.g. the maximum number
of generations) and one for triggering the clustering algorithm (e.g. tracking the evolution of the
number of solutions in the first Pareto front). This is visualised in Figure 1 by the two decision blocks
with the penalty application as introduced in Section 2.3.

3



CLUSTERING IN OPTIMISATION-BASED FCS CLEARANCE

Randomly initialised
population

Evaluate objec-
tive and constraint
functions

Non-dominated sort-
ing and crowding dis-
tance calculation

Select fittest individu-
als

Selection

Crossover

Mutation
Evaluate objec-
tive and constraint
functions

Combine population
of parents and off-
spring

Stopping criteria
met?

Clustering crite-
ria met?

Execute cluster-
ing and penalty
evalution

End

E
lit

is
m

O
ffspring

creation

yes no yes

no

Figure 1 – Flowchart of a generic genetic algorithm with clustering applicable in the islands of the
generalised island model (graphic extended from [2]).

With the genetic algorithm and the cluster triggering defined, Figure 2 gives an overview on the island
model that was introduced in [2] and is used in this study together with the envelope clustering (see
Section 2.3). The framework is implemented in JavaTM, but also provides interfaces to SQLiteTM

databases and the possibility to execute sub-modules written in other programming and scripting
languages such as Fortran, PythonTM, or Matlab R© code.
The algorithm has a two-stage parallelisation scheme in which not only each island is running in par-
allel its individual algorithm, but also the evaluation of the objective/constraint functions is performed
in parallel: The outermost parallelisation is done by Open MPI (cyan box) [4], a message passing
interface which handles the communication between the processes on a HPC. The distribution of
the processes and allocation of the cores on the HPC nodes is handled by the Simple Linux Utility
for Resource Management (Workload Manager) (SLURM) [17]. In general, different genetic algo-
rithms (see Figure 1) may be executed in each individual island, while clustering is also conducted
for each island individually. Thus, the original framework proposed in [2] is independent of the appli-
cation of clustering and remains generically applicable. Furthermore, this consequently means that
only dedicated islands may apply clustering constraints and thus, constrained and unconstrained
optimisation approaches can be combined.

2.3. Envelope Clustering Constraint
The envelope clusters, currently used as constraints in the optimisation algorithm (see Section 2.1),
are the result of a Density-based spatial clustering of applications with noise (DBSCAN) algorithm [18]
applied to the envelope coordinates (Mach-altitude) identifying each simulation run with violating
criteria [2]. Here, DBSCAN is a density-based, non-parametric clustering algorithm relying on the
concept of connectedness to find arbitrarily-shaped clusters. It is one of the most popular clustering
algorithms [19], by virtue of its robustness to noise and because it does not require prior knowledge
or estimation on the number of expected clusters.
For the evaluation, the dataset of envelope points, i.e. Mach-altitude coordinates, is normalised ap-
plying user-defined scaling factors to each coordinate individually. These scaling factors correspond
to the connectedness margins, i.e. the maximum distance in Mach or altitude, respectively, that
two points may exhibit to still be considered connected. Here, the DBSCAN algorithm paired with a
Chebyshev distance metric is applied to the normalised dataset with a neighbourhood radius, ε = 1,
and a single-linkage condition.
This approach achieves to group envelope points within the specified margins in either Mach or
altitude, by virtue of the fact that the scaling factors correspond to these margins. Here, the con-
nectedness concept at the base of DBSCAN is exploited to expand the connected area as long as
neighbours are found. With the connected areas defined, a hulling algorithm is executed to resolve

4



CLUSTERING IN OPTIMISATION-BASED FCS CLEARANCE

Island 1 Island 2

Island 3 Island 4

Algorithm 1 Algorithm 2

Algorithm 3 Algorithm 4

Node 1

Node 2

OpenMPI

Master
process

Island
master

Support
process

Migration
path

Communication
path

Figure 2 – High-level illustration of the island model implementation including different parallelisation
layers (graphic taken from [2]).

the envelope patches that bound the clusters and provide the definition of them by a combination of
Mach, altitude, and Displayed Air Speed (DAS).
For the purpose of optimisation, the clustering results are generally described by the convex hull
surrounding the critical points in the envelope. The identified clusters are introduced as constraints
within the optimisation as specified in [2]. The pseudocode in Algorithm 1 details the definition of a
single envelope clustering constraint for the purpose of optimisation.

Algorithm 1 Modelling of single envelope clustering constraint in optimisation.

Require: Data file with envelope points from clustering defining the convex hull; current population.
1: Read the envelope points from the clustering data file.
2: Calculate polygon shape of current convex hull. . Linear interpolation between points.
3: for 1≤ k ≤ npop do . npop: Population size.
4: Get current individual k from the population.
5: Get current envelope point (Mach number and altitude) from individual k.
6: if Envelope point in current polygon then
7: Increment constraint violation value by 1 in individual k.
8: else
9: Increment constraint violation value by 0 in individual k.

10: end if
11: Add the constraint violation value to each objective of the individual k.
12: Re-assign individual k to population.
13: end for
14: return Population with information on constraint violation and penalised objectives.

It should be noted that, although the clustering constraint was introduced here for envelope clustering
and a single constraint only for the sake of simplicity, the procedure in Algorithm 1 can be extended
to other types of clusters and multiple constraints in a straightforward manner.

5



CLUSTERING IN OPTIMISATION-BASED FCS CLEARANCE

Figure 3 – Basic idea of clustering criteria violations in the envelope (indicated by red points) and
exclusion of clusters (indicated by blue areas) by means of penalities during optimisation.

2.4. Connection of Clustering and Optimisation
As stated in Section 2.3, the results of the clustering step are provided to the optimiser as a constraint.
In a genetic algorithm, this is achieved by penalising the resulting objectives such that it is no longer
attractive for the algorithm to choose individuals in those conditions. Additionally, it may be sensible,
but not mandatory, to re-initialize the population affected by the clustering constraint (i.e. the Mach
number and altitude in the case of envelope clustering) such that the newly introduced constraints
are already fulfilled properly within the first generation after introducing them.
Consequently, the optimiser is therefore forced to explore other parameter combination that may not
have been a part of previous exploration. This normal optimisation operation mode, including the
introduced constraints, is continued until the next convergence situation is reached. Then, clustering
is again applied and the results are once more interpreted by the optimiser as constraints. It is
important to note here that clustering is not only applied to the results obtained after enforcing the
previous clustering result as a constraint, but for all available data points. This is done due to the
fact that the further exploration might have resulted in e.g. connection of clusters or a different
assembly of the clustered areas, which is only covered by considering all available results. The
previously described algorithmic procedure, which is applied to each island individually (see Figure 2),
is visualised in Figure 3. Here, it is shown that envelope clusters identified in the initial generations
of the execution are penalised in future ones to be able to also explore different parts of the envelope
more efficiently.
The general workflow of the algorithm, related to an application with envelope clustering, is sum-
marized by the pseudocode in Algorithm 2 and detailed in the following: Overall, the optimisation,
which is based on e.g. a genetic algorithm (see Section 2.2), is executed and tries to find the worst
case response of the A/C with respect to the defined criteria. Once a potentially stationary/converged
condition has been reached (see Section 2.2), which may be the case once the number of solutions
in the Pareto front are no longer changing or when the worst results obtained by the algorithm are
not changing for a specified number of generations, a clustering algorithm is triggered (in this study,
envelope clustering as detailed in Section 2.3). This step analyses all results obtained up until this
point and clusters the cases violating the specified criteria by a measure of the connectedness of
their e.g. envelope coordinates, i.e. Mach number and altitude.
As already stated in Section 2.3, even though Algorithm 2 has been specified for envelope clustering
only in this study, an extension to other clustering methodologies is straightforward.

6



CLUSTERING IN OPTIMISATION-BASED FCS CLEARANCE

Algorithm 2 Connection of envelope clustering and optimisation algorithm.

Require: Problem definition and formulation; A/C simulation environment; maximum number of clus-
ters and input parameters required for Algorithm 1

1: Initialise generation counter k← 1 and maximum number of generations kmax.
2: while k ≤ kmax do
3: Create realisations of optimisation parameters.
4: Evaluate the A/C response at those parameter realisations.
5: Evaluate the criteria and non-clustering constraints.
6: if Clustering constraint exists then
7: Penalise individuals within clusters. . Algorithm 1
8: end if
9: Sort violations according to criticality.

10: if Genetic algorithm ’stationary’ then . Section 2.2
11: Initialise clustering of envelope points for all available results. . Section 2.3
12: Create constraints in problem, which exclude clustered areas.
13: Penalise individuals with violation. . Algorithm 1
14: end if
15: Increase counter: k← k+1
16: end while
17: return Worst case parameter combinations for A/C response.

3. Application Example
This section shows an application example of the proposed framework from Section 2 for an exem-
plary A/C flight mechanics clearance task: The task is the assessment of reduced Air Data System
(ADS) accuracy within an otherwise failure-free A/C. This A/C configuration should ideally be care-
free, i.e. the pilot shall be able to input any (for the flight condition reasonable) command input without
destabilizing the A/C [1]. These pilot inputs are modelled using a breakpoint-based manoeuvre gen-
erator as introduced in [3] for both pitch and roll stick commands. Further optimisation parameters are
the envelope point, the air brake position, the configuration (i.e. external stores), throttle positions,
and the mass direction estimation error (i.e. higher or lower estimated mass properties compared to
actual values). For the dynamics, a full, non-linear rigid-body simulation of a A/C is used.
Within the framework of Figure 3, three islands and a total of 100 processes are used. This means that
each island has 33 processes associated to it as one process is reserved for the “master” (Figure 2).
In this example, all islands run using an omni-optimisation algorithm [16] with an initial population size
for each island of 1000 and subsequent populations having the size of 500. The number of generations
per island is limited to 150 and the migration size is 25 individuals every 25 generations [2]. The
backtracking of the number of solutions in the first Pareto front over 25 generations is used as a trigger
for the clustering. Here, the number of solutions has to change by at least 50% over 25 generations to
initiate a clustering. This setup results in a total of 226,500 non-linear simulations, which completed
after roughly 8 hours on an HPC cluster including clustering and time history analysis.
A two-objective optimisation problem is looked at with one objective being the normalized overshoot
above the design FCS Angle of Attack (AoA) limit for the corresponding flight condition, JAoA, and the
second one being the normalized maximum absolute Angle of Sideslip (AoS), JAoS. Both of these
variables are common initial assessment quantities to find critical situations in an FCS clearance [1].
According to [2], a value of 0 indicates an exceedance of the specified normalisation limits, while the
objective value is limited to a maximum value of 1 indicating no exceedance.
Flight envelope plots (“altitude over Mach number”) for different generations (indicated by the condi-
tion with the variable “GEN”) of the algorithms are discussed in the following. These plots display the
two considered criteria individually for all individuals calculated until the specified generation. The
clusters are indicated by their polygon representation of the convex hull in solid blue. It should be
taken into account that the clusters are calculated for the combination of both criteria (i.e. if at least
one is violating, the envelope point is considered within the clustering algorithm). Still, the clusters

7



CLUSTERING IN OPTIMISATION-BASED FCS CLEARANCE

Figure 4 – Initial objective values (actual) for AoA (top row) and AoS (bottom row) objective plotted
inside flight envelope for the three islands based on random sampling in zero-th generation.

are depicted in the figures for each criterion individually, which may therefore yield displays where the
cluster only covers “green” regions (i.e. non-violating points) for one criterion, because the cluster is
driven by the “red” regions (i.e. violating points) of the other criterion. It should also be noted that
the terminology “actual objective value” indicates the non-penalised value, while “penalised objective
value” describes the one with penalty from the constraint (see Algorithm 1).
First of, Figure 4 shows the flight envelopes for the three islands and two objectives for the initial,
i.e. the randomly-sampled, population. Here, the different starting conditions that later on affect
the convergence and triggering of the clustering algorithm are displayed. It can specifically be seen
that “Island 2” already found a critical case solely based on the random sampling initialisation, which is
a desired property of the island model to start with different setups supporting exploration of multiple
critical cases.
Figures 5 and 6 display an intermediate generation, which is the first generation where all islands
executed the clustering algorithm at least once. It can be seen in Figure 5 that the current cluster
shapes (solid blue lines) are different for all islands and “Island 2” seems to evolve best as it found both
the lower and higher problematic Mach areas. On the other hand, Figure 6 displays the effect that the
clustering constraint had on the islands from the generation it was first introduced (i.e. generation 26
for “Island 1” and “Island 3” and generation 45 for “Island 2”). Both the initial as well as the current
cluster shape is displayed. The criteria are containing their penalty according to Algorithm 1 and
only the values starting from the first generation with at least one cluster are shown. For “Island 1”
and “Island 3”, the clusters did not yet have significant impact on the critical cases and have not
evolved over the number of generations they were active. However, it can already be observed,
specifically for “Island 3”, that some additional critical cases can be seen just outside the clustered
area, e.g. for the AoA criterion, which are seeds for further evolvement towards more critical areas in
future generations.
The final objective function values as well as the detected clusters are displayed in Figures 7 and 8:
Here, Figure 7 shows that “Island 2” found most of the problematic points and areas in the envelope
for both the AoA and AoS objective. It is also imminent that outliers outside the clusters still exist,
which may result in further worst cases when one would continue the evaluation. The evolution of the
effect of the clustering constraint can be observed in Figure 8, which shows both the initial as well
as final cluster shapes. It is depicted that the clusters evolved towards a larger shape and therefore
covered more parts of the envelope. While “Island 2” only contains one cluster, the other two islands

8



CLUSTERING IN OPTIMISATION-BASED FCS CLEARANCE

Figure 5 – Objective values (actual) for AoA (top row) and AoS (bottom row) objective including
current cluster shape (solid blue) until specified generation plotted inside flight envelope for the three

islands based on omni-optimisation algorithm evolution.

Figure 6 – Objective values (penalised) for AoA (top row) and AoS (bottom row) objective including
current cluster shape at generation 45 (solid blue) and initial cluster shape (dashed blue; only visible

in right cluster of Island 1 as the clusters in the other parts did not yet evolve) starting from
generation where first cluster was applied to individual island (generation 26 for Island 1 and 3 and

generation 45 for Island 2) until generation when all islands had a cluster plotted inside flight
envelope for the three islands based on omni-optimisation algorithm evolution.

9



CLUSTERING IN OPTIMISATION-BASED FCS CLEARANCE

Figure 7 – Final objective values (actual) for AoA (top row) and AoS (bottom row) objective including
final cluster shape (solid blue) after reaching maximum number of generations plotted inside flight

envelope for the three islands based on omni-optimisation algorithm evolution.

contain two, highlighting the different evolution of the algorithms. It is furthermore visible, specifically
for “Island 2” in the AoS criterion, that the critical points found after the initial clusters were introduced
started to evolve from the edges of the constraint as desired. Additionally, it can be seen that critical
cases even further away from the original critical regions were found (lower altitude domain; compare
to Figures 5 and 6 for reference) by the algorithm, which can be attributed to the reduced local
convergence tendency due to the clustering constraints in already critical regions.
Summarising, this section has shown that the proposed island model framework with clustering is
suitable for the application in highly-complex optimisation tasks, which was shown here for a typical
A/C clearance assessment. Specifically, the effect of the clustering to avoid already identified critical
regions is depicted in the results, displaying the benefits of the approach.

10



CLUSTERING IN OPTIMISATION-BASED FCS CLEARANCE

Figure 8 – Final objective values (penalised) for AoA (top row) and AoS (bottom row) objective
including final cluster shape at generation 150 (solid blue) and initial cluster shape (dashed blue)

starting from generation where first cluster was applied to individual island (generation 26 for
Island 1 and 3 and generation 45 for Island 2) until maximum number of generations plotted inside

flight envelope for the three islands based on omni-optimisation algorithm evolution.

4. Outlook
This paper presented a framework for clearance of FCSs using multi-objective optimisation algorithms
within an island model approach, which is connected to clustering algorithms. The method is tailored
to not only explore the critical regions and finding the global and local optima, but rather to find all
critical scenario topologies. By this, the proposed scheme specifically thrives in A/C clearances as
it is very important to find all operationally relevant critical scenarios and not only a subset of worst
cases. The framework gives great flexibility in terms of the problems it can be applied to and how the
clusters are calculated.
Future developments may deal with an automatic stochastic analysis of the identified clusters to
directly assess their relative criticality. Additionally, further optimisation and clustering algorithms
should be explored to find the best possible and suited combinations as well as algorithm parameters
for certain application scenarios.

5. Contact Author Email Address
patrick.piprek@airbus.com

6. Copyright Statement
The authors confirm that they, and/or their company or organization, hold copyright on all of the original material
included in this paper. The authors also confirm that they have obtained permission, from the copyright holder
of any third party material included in this paper, to publish it as part of their paper. The authors confirm that
they give permission, or have obtained permission from the copyright holder of this paper, for the publication
and distribution of this paper as part of the ICAS proceedings or as individual off-prints from the proceedings.

References

[1] R. Stich, Clearance of Flight Control Laws for Carefree Handling of Advanced Fighter Aircraft, pp. 421–
442. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

11

mailto:patrick.piprek@airbus.com


CLUSTERING IN OPTIMISATION-BASED FCS CLEARANCE

[2] P. Piprek, P. M. Dias, and D. Schwalb, “A Generalised Multi-objective Island Model for Flight Control Sys-
tem Clearances,” in 33rd Congress of the International Council of the Aeronautical Sciences, (Stockholm),
International Council of the Aeronautical Sciences, 09 2022.

[3] P. M. Dias, P. Piprek, and D. Schwalb, “Optimization-based Flight Control System Clearance Philosophy
for Fighter Aircraft,” in AIAA SCITECH 2023 Forum, American Institute of Aeronautics and Astronautics,
Jan. 2023.

[4] R. L. Graham, T. S. Woodall, and J. M. Squyres, “Open MPI: A Flexible High Performance MPI,” in Parallel
Processing and Applied Mathematics, pp. 228–239, Springer Berlin Heidelberg, 2006.

[5] A. Törn, “Clustering Methods in Global Optimization,” IFAC Proceedings Volumes, vol. 19, p. 247–252,
May 1986.

[6] A. H. G. Rinnooy Kan and G. T. Timmer, “Stochastic global optimization methods part I: Clustering meth-
ods,” Mathematical Programming, vol. 39, p. 27–56, Sept. 1987.

[7] A. H. G. Rinnooy Kan and G. T. Timmer, “Stochastic global optimization methods part II: Multi level
methods,” Mathematical Programming, vol. 39, p. 57–78, Sept. 1987.

[8] F. Schoen and L. Tigli, “Efficient large scale global optimization through clustering-based population meth-
ods,” Computers & Operations Research, vol. 127, p. 105165, Mar. 2021.

[9] Q. Yang, G.-D. Jiang, and S.-G. He, “Enhancing the Performance of Global Optimization of Platinum
Cluster Structures by Transfer Learning in a Deep Neural Network,” Journal of Chemical Theory and
Computation, vol. 19, p. 1922–1930, Mar. 2023.

[10] D. Ikami, T. Yamasaki, and K. Aizawa, “Local and Global Optimization Techniques in Graph-Based Clus-
tering,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, June 2018.

[11] J. Diepolder, P. Piprek, B. Grüter, T. Akman, and F. Holzapfel, Aircraft Safety Analysis Using Generalized
Polynomial Chaos, p. 67–81. Springer Singapore, 2019.

[12] J. T. Betts, Practical methods for optimal control and estimation using nonlinear programming. Advances
in design and control, Philadelphia, Pa.: Society for Industrial and Applied Mathematics (SIAM 3600
Market Street Floor 6 Philadelphia PA 19104), 2nd ed. ed., 2010.

[13] J. D. Knowles, Local-search and hybrid evolutionary algorithms for Pareto optimization. Doctoral thesis,
University of Reading, Reading, 2002.

[14] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm:
Nsga-ii,” IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 577–601, 2013.

[15] K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using reference-point based
non-dominated sorting approach, part i: Solving problems with box constraints,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[16] K. Deb and S. Tiwari, “Omni-optimizer: A procedure for single and multi-objective optimization,” in Evo-
lutionary Multi-Criterion Optimization (C. A. Coello Coello, A. Hernández Aguirre, and E. Zitzler, eds.),
(Berlin, Heidelberg), pp. 47–61, Springer Berlin Heidelberg, 2005.

[17] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility for resource management,” in Job
Scheduling Strategies for Parallel Processing (D. Feitelson, L. Rudolph, and U. Schwiegelshohn, eds.),
(Berlin, Heidelberg), pp. 44–60, Springer Berlin Heidelberg, 2003.

[18] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise,” in Proceedings of the Second International Conference on Knowl-
edge Discovery and Data Mining, KDD’96, p. 226–231, AAAI Press, 1996.

[19] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “DBSCAN Revisited, Revisited: Why and How
You Should (Still) Use DBSCAN,” ACM Trans. Database Syst., vol. 42, jul 2017.

12


	Introduction
	Theory
	Optimisation Problem
	Island Model and Genetic Algorithm
	Envelope Clustering Constraint
	Connection of Clustering and Optimisation

	Application Example
	Outlook
	Contact Author Email Address
	Copyright Statement

