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Abstract

A data-driven methodology based on Koopman operator theory is proposed for the design of a missile autopilot.
The proposed approach uses artificial neural networks to approximate the Koopman embedding function, which
constructs an approximate linear time-varying model of missile dynamics including nonlinear characteristics.
The approximate dynamic equations are trained using collected trajectory data without any prior knowledge of
the missile dynamics. The data-driven model makes it possible to apply the Robust Servomechanism Linear
Quadratic Regulator (RSLQR) to determine the gains of the feedback controller for a given flight condition.
This feature allows designers to generate a continuous gain table for various operating points by selecting the
weighting matrices of the cost function. Numerical simulation results show that the proposed method captures
a larger portion of the missile’s state space compared to conventional linear models. The extended state
space coverage allows the designed controller to outperform traditional controllers based on linearized models.
Additionally, a comparative evaluation of the designed controller against a classical three-loop controller, which
demonstrates its effective full-envelope coverage.

Keywords: Missile Autopilot Design, Koopman Operator Theory, Linear Optimal Control, Artificial Neural Net-
work

1. Introduction
Modern tactical missiles are required to operate in a variety of operating conditions to obtain high
maneuverability. Achieving a rapid response and ensuring robustness are critical aspects of autopi-
lot design especially in the environment that uncertainties and disturbances exist. For the complex
dynamic operational environments including threats, missile autopilot techniques have been continu-
ously developed.
Traditionally, autopilot designs have relied on conventional model-based approaches, often includ-
ing linearization of missile dynamics around nominal operating points. To extend the applicability of
these controllers across a broad range of operating points, researchers have proposed various gain-
scheduling techniques within the three-loop structure leveraging the advanced theories, such as the
eigenstructure assignment [1], constrained optimization [2], and mixed H2/H∞ with linear parameter-
varying model [3]. Recent advancements have observed a shift towards nonlinear control method-
ologies, capitalizing on their inherent ability to handle strong nonlinear characteristics. Penchal et al.
used the feedback linearization approach and the extended state observer to track acceleration com-
mand [4, 5, 6]. Despite these improvements in control theory, gain scheduling remains a prevalent
and practical approach for missile autopilot design, owing to its simplicity and interpretability. How-
ever, gain scheduling technique has certain drawbacks. The performance of the designed controller
is significantly influenced by the granularity of the gain table, and the widely used linear interpola-
tion technique may introduce unexpected instability. Moreover, the process of creating the gain table
is accompanied by lots of tedious, time-consuming, and error-prone tasks. Consequently, there is
a growing tendency to develope alternative methodologies that overcome the limitations inherent in
conventional model-based approaches.
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Figure 1 – The proposed Koopman-based controller vs traditional three-loop controller. The
proposed method utilizes an NN-based Koopman embedding to find a high-dimensional linear

system by unfolding nonlinearity. In the high-dimensional space, a Robust Servomechanism Linear
Quadratic Regulator (RSLQR) controller can be designed with a single controller gain. The resulting

control performance is consistent, while the existing method is not due to the tedious gain
scheduling.

In recent years, one methodology has gained attention, which is rooted in the concepts of the Koop-
man operator theory. Originating in the field of dynamic systems and data-driven modeling, the
Koopman operator theory offers an alternative perspective on system analysis. One of the primary
challenges lies in identifying the suitable observable functions capable of lifting the original nonlinear
systems to a higher-dimensional linear system. Williams et al. introduced the extended dynamic
mode decomposition [7], which is a data-driven approximation of dynamical systems. Furthermore,
leveraging artificial neural networks to approximate the Koopman embedding function reduces the
need for selecting effective a priori basis functions. Champion et al. [8] and Lucsh et al. [9] demon-
strated the applicability of using deep neural networks by designing custom deep auto-encoders for
the sparse identification of nonlinear dynamics, while still retaining the physical interpretability of
Koopman embeddings. Numerous studies have also been conducted to extend the Koopman oper-
ator theory so that it could express controlled systems. It has been demonstrated that the general
nonlinear control systems of interest can be effectively represented as bilinear systems [10]. This
idea has led researchers to design control laws using the data-driven bilinear system, incorporating
techniques such as optimal quadratic regulator [11] and model predictive control [12].
This paper focuses on integrating the Koopman operator theory into missile autopilot design. The
proposed approach is summarized in Figure 1. Employing a data-driven approach, a linear high-
dimensional dynamical system, distinct from locally linearized ones, is obtained. Subsequently, the
Robust Servomechanism Linear Quadratic Regulator (RSLQR) controller is designed based on the
identified model to achieve tracking ability and incorporate integral terms for expected robustness.
Note that it is possible to schedule gains continuously over the operating region because the em-
bedding state vector includes variables such as angle of attack, Mach number, and altitude, which
represents essential parameters throughout the air-to-air missile’s operational envelope. The perfor-
mance of the designed controller is examined at various operating points, comparing with a traditional
three-loop controller.
The remainder of this paper is structured as follows: In Section 2, the background of the Koopman
operator theory is introduced, and the equations of motion for missile longitudinal model are provided.
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Section 3 offers an overview of the proposed method, presenting sequential summaries of data col-
lection methods, Koopman embedding training techniques, and controller design procedures. Section
4 presents the results of training, model excitation, and controller testing. Section 5 concludes this
study with remarks and a discussion on future research.

2. Problem Formulation
This section presents the basic theoretical background and the missile dynamic equations to be con-
trolled. First, the fundamental principles of Koopman operator theory and the Koopman Observer
Form (KOF) are briefly summarized. Second, the governing equations of nonlinear longitudinal mis-
sile dynamics, along with the associated measurement models, are described in detail.

2.1 Koopman operator theory
Consider a general nonlinear autonomous system,

ẋ(t) = f (x(t)), (1)

where x(t) ∈ X is the state of the autonomous system, defined in the state space X ⊂ Rn, at time
t ∈ R+, and f : X → Rn is a continuously differentiable vector field. Let Φ(t,x) be the solution of (1) at
the initial condition x0 ∈ X . The continuous-time Koopman operator K t : F → F associated with the
flow map Φ(t,x) is defined by

(K t
φ)(x) := φ ◦Φ(t,x), (2)

where F is the space of all complex-valued observable functions φ : X → C, and ◦ represents func-
tion composition. An eigenfunction ψ ∈ F of the Koopman operator is an observable function that
satisfies:

(K t
ψ)(x) = eλ t

ψ(x), (3)

where λ ∈ C denotes the corresponding eigenvalue [13].
In Koopman operator theory, a transformation z = T (x) may show a new representation of the nonlin-
ear dynamics in (1) such that the new dynamics impose linearity as follows [14],

ż = Kz, (4)

which implies that finding such eigenfunctions (so called Koopman embedding) would result in high-
dimensional linear dynamics by unfolding the nonlinearity of the original dynamic system (1) [14].

2.2 Transformation into the Koopman Observer Form
Consider a control-affine system represented as

ẋ = f (x)+g(x)u

y =c(x),
(5)

where u ∈U ⊂Rm and y ∈Y ⊂Ro are the control input and output of the system, respectively. The f :
X →Rn and g : X →Rn×m are the continuously differentiable drift and control effective vector fields, and
c : X →Ro is the output function. Let us define a transformation function T (x) := [φ̂1(x), · · · , φ̂N(x)]⊺ ∈RN

such that the following two statements hold:

1. φ̂i is equal to the φi if φi is a real-valued function.

2. φ̂i = 2Re(φi) and φ̂i+1 =−2Im(φi) if φi and φi+1 are complex conjugate pairs.

where i = 1, ...,N and φi(x) ∈ F are the N eigenfunctions of the drift vector field f (x). Note that
z = T (x) can be represented as the linear combination of finite subsets of Koopman eigenfunctions.
There exists a matrix Λ that satisfies the following relationship:

L f T (x) = ΛT (x) = Λz, (6)

where L f is Lie derivative with respect to f and Λ is a real-valued block-diagonal matrix such that:
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1. Λi,i = λi if i-th eigenvalue is real.

2. Λ has a block diagonal entry Qi if i-th and (i+1)-th eigenvalues are complex conjugate pairs.

3. All the rest entries are zeros.

Here,

Qi = |λi|
[

cos∠λi sin∠λi

−sin∠λi cos∠λi

]
, (7)

where |λi| and ∠λi are the modulus and argument of the i-th complex eigenvalue λi.

Assumption 1 ([15]). There exist matrices H ∈ Rn×N and C ∈ Ro×N such that H and C reconstruct
the original state x and output y, respectively, from the transformation z = T (x),

x = Hz,

y =Cz.
(8)

From (5), (6), and (8), the coordinate transformation from x to z is developed as

ż =
∂T (x)

∂x
( f (x)+g(x)u) (9)

= L f T (x)+
m

∑
i=1

(LgiT (x))ui (10)

= Λz+
l

∑
i=1

g̃i(z)ui (11)

where g̃i(z) = LgiT (x)|x=Hz, which is called Koopman Canonical Transform (KCT) [15]. Thus, the
system (5) can be transformed into the following equivalent form called the Koopman observer form:

ż = Λz+
m

∑
i=1

g̃i(z)ui,

x = Hz,

y =Cz.

(12)

Note that (12) is a structure of the approximate model, and its parameters can be determined by
learning with given trajectory data.

2.3 Missile longitudinal dynamics
The dynamic equations of a missile to be controlled are given in this subsection. In this study, the
missile longitudinal dynamics model is considered on the flat Earth assumption [16]. The equations
of motion for the missile longitudinal dynamics can be written as

u̇ =−qw+∑FBX/m, (13)
ẇ =qu+∑FBZ/m, (14)
q̇ =∑MY/IY , (15)
θ̇ =q, (16)
ḣ =usinθ −wcosθ , (17)

where u ∈R and w ∈R are velocity with respect to x- and z- axes of the body-fixed frame, respectively,
θ ∈ [−π/2,π/2] is the pitch angle, and q ∈R is the pitch rate, and h ∈R denotes the altitude. Figure 2
shows the longitudinal missile model considered in this study. The forces and moments applied to

4



INSERT RUNNING TITLE HERE

𝑂𝐼
𝑋𝐼

𝑍𝐼
𝐶𝑀 𝐼𝑁𝑆

𝐶𝐿

𝐶𝐴

𝐶𝑍

Figure 2 – Missile longitudinal dynamics

the center of gravity are expressed as

∑FBX =−FA −mgsinθ , (18)

∑FBZ =FZ +mgcosθ , (19)

∑MY =M, (20)

where the axial force FA, body z- axis force FZ, and pitching moment M are defined as follows,

FA =
1
2

ρV 2SCA, (21)

FZ =
1
2

ρV 2SCZ, (22)

M =
1
2

ρV 2SCM. (23)

The aerodynamic coefficients CA, CN , and CM are modelled as nonlinear functions of the angle of
attack α and control surface deflection δ as follows,

CA =aa, (24)

CZ =azα
3 +bzα|α|+ cz

(
2− Ma

3

)
α +dzδ , (25)

CM =amα
3 +bmα|α|+ cm

(
−7+

8Ma

3

)
α +dmδ + emq. (26)

where Ma ∈R and δ ∈R denote the Mach number and tail-fin deflection angle, respectively. The aero-
dynamic coefficients are summarized in Table 1. The second-order actuator dynamics is considered
for the missile system as follows,

δ̈ +2ζ ωnδ̇ +ω
2
n δ = ω

2
n δc, (27)
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Symbols Values Symbols Values
az 19.373 am 40.44
bz -31.023 bm -64.015
cz -9.717 cm 2.922
dz -1.948 dm -11.803
aa -0.3 em -1.719

Table 1 – Aerodynamic coefficients [16]

where δc ∈ R is the actuator command. The damping ratio ζ is 0.7, and the natural frequency ωn is
150 rad/s. For more details on the missile dynamics, the readers are referred to [16].
The overall missile longitudinal dynamics can be written as

ṡ = fs(s,u) = f (s)+g(s)u, (28)

y =c(s), (29)

where s = [u,w,q,θ ,h,δ , δ̇ ]⊺ ∈ Rn, u = δc ∈ Rm, and ys = [az,q,δ ]⊺ ∈ Ro are the state, control input, and
output, respectively, at time t. The f (s), g(s), and c(s) are represented as

f (s) =



−qw− ρV 2S
2m CA −gsinθ

qu+ ρV 2S
2m CZ +gcosθ

ρV 2Sd
2IY

CM

q
usinθ −wcosθ

δ̇

−2ζ ωnδ̇ −ω2
n δ


, g(s) =



0
0
0
0
0
0

ω2
n


, c(s) =

[
ρV 2SCZ

2m q δ

]⊺
, (30)

Note that the accelerometer cannot measure acceleration excited by gravity, and therefore the grav-
itational acceleration does not appear in the output function c(s) in (30). The missile longitudinal
system (28) is constructed to simulate the behavior of actual missile motion as closely as possible, a
flight simulator for collecting data and testing the designed controllers.

3. Autopilot Design
In this section, the design procedure for a normal acceleration tracking controller is proposed based
on Koopman operator theory. The primary objective is to achieve precise tracking control based only
on the sequence of states and measurements. The proposed approach seeks to establish a high-
dimensional linear dynamic model capable of encompassing a broader range of state regions than
the conventional linearization-based models.
To address this, artificial neural networks are utilized to approximate the Koopman embedding func-
tion, effectively yielding a reconstructed linear model, thereby, optimal linear control theory can be
readily applied to the reconstructed model. Section 3.1 provides the details on dataset generation for
training. Section 3.2 investigates the training specifics including model structure, the loss function,
and the training algorithm. Section 3.3 outlines the procedure for designing the controller using the
identified model. Figure 3 shows the illustration of the proposed procedure.

3.1 Data collection for Koopman identification
Obtaining the analytical solution for the embedding dynamical model is not an easy problem. In
this study, to address this problem, a data-driven approach is adopted, which involves the collection
of a sequence of input and output data for training a neural network that approximates the model.
To construct the training data for Koopman identification, the longitudinal dynamic equations (30),
are utilized. Considering the operating regions of a conventional air-to-air missile, state and control
input are uniformly randomly sampled from the intervals: α ∈ [−20,20] deg, q ∈ [−2,2] rad/s, θ ∈

6
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Figure 3 – Flow chart of the proposed method

[−40,40] deg, Ma ∈ [2.5,4.5], h ∈ [8,11] km, and δcmd ∈ [−30,30] deg. Here, u = V cosα, w = V sinα

where V = VsMa, and Vs denotes the speed of sound at a given altitude. The δ and δ̇ are set to be
zero. Hence, the corresponding state s = [u,w,q,θ ,h,δ , δ̇ ]⊺ follows from the sampled point. Detailed
formulas can be found in [16]. The next state snext can be obtained by the following equation over a
fixed time interval Ts > 0,

snext = s+
Ts

6
(k1 +2k2 +2k3 + k4) =: fRK4(s,u| f ), (31)

where coefficients are given as
k1 = fs(s,u),

k2 = fs(s+
Ts

2
k1,u),

k3 = fs(s+
Ts

2
k2,u),

k4 = fs(s+Tsk3,u).

(32)

In this context, the fRK4(·, ·| f ) represents the Runge-Kutta 4th order (RK4) prediction at each state
s and control input u for a given dynamical system f . Note that the control input remains constant
throughout the RK4 prediction.
In this study, the state of interest x = [az,q,δ ,α,θ ,Ma,h]⊺ is used for the Koopman embedding rep-
resentation, while the state s is only utilized for modeling actual missile maneuvers and collecting
dataset. This distinction is made because the variables crucial for the controller are found in the
elements of x, not those of s. Therefore, the unknown dynamic equations of x are the functions to be
approximated, not those of s.
More specifically, the dynamic equations of the state s are propagated and all of the elements of x
can be obtained from the state s. The normal acceleration az can be calculated using (29). The angle
of attack and the Mach number are derived from the equations: α = tan−1(w/u), Ma =

√
u2 +w2/Vs.

Then, x and xnext are obtained from s and snext , respectively. Finally, the paired data {x,u,xnext},
collected from this process, constitutes the dataset for training Koopman approximate system.

3.2 Training for model identification
Let us define the structure of the embedding dynamical model as

dz
dt

= Az+θ(x)u = AT (x)+θ(x)u := A
[

Cpx
φ(x)

]
+θ(x)u, (33)

where z = [(Cpx)⊺,φ(x)⊺]⊺ ∈ Rne is the Koopman embedding, and Cp ∈ R3×n is the output matrix for
remaining some of the original states, i.e., Cpx = [az,q,δ ]⊺. The dimension of the embedding system
state is denoted by ne := N+3. The explicit embedding of some physically meaningful original states,
Cpx, helps to implement a tracking controller easily after training. However, note that the inclusion of
original states is possible only when the drift term of the original dynamical system has a single fixed
point [17]. The approximation method cannot be globally valid; instead, it is expected that the method
may extend the represented region near the equilibrium point of our interest beyond what is possible
with the linearization approach by unfolding nonlinear terms.

7
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The functions φ : X → RN and θ : X → Rne×m, and the matrix A ∈ Rne×ne are the two functions and
parameters to be determined through training. In this study, a matrix Â ≈ A and two artificial neural
networks φ̂ and θ̂ are trained to approximate the corresponding functions as follows,

φ(x)≈ φ̂(x) =W 1
2 σ(W 1

1 x+b1
1)+b1

2, (34)

θ(x)≈ θ̂(x) =W 2
2 σ(W 2

1 x+b2
1)+b2

2. (35)

The neural networks are two-layer structures with the state x as the input, and W j
i and b j

i , ∀i = 1,2 and
j = 1,2, are the network parameters, i.e., the weights and biases of each layer in the network. The
σ represents an activation function. The loss function, denoted as the mean-squared error between
prediction and next value, is given by

L(φ̂ , θ̂ , Â) =
1
|D |

|D |

∑
(x,u,xnext)∈D

∥∥T̂ (xnext)− fRK4
(
T̂ (x),u

∣∣ (z,u) 7→ Âz+ θ̂(x)u
)∥∥2

2 , (36)

where T̂ (x) := [(Cpx)⊺, φ̂(x)⊺]⊺, and D denotes the stacked dataset according to Section 3.1. The
training objective indicated by this loss function is to acquire a linearly embedded continuous dynamic
equation that accurately predicts the dynamic characteristics of the missile.

3.3 RSLQR with Koopman embedding
The model acquired through training can be used to design a controller based on a model-based
control theory. A primary advantage of learning Koopman embedding lies in its structural attributes.
The linear-quadratic optimal control problem is formulated to regulate the tracking error. Notably, time-
integrated acceleration tracking error is augmented for zero steady-state error. The time derivative
of the augmented state is denoted by ξ ∈ Rna , where na := ne + 1. For the controller design, in this
study, the state-dependent control effectiveness θ̂(x) is replaced by θ̂(x0). It should be noted that
x0 includes the angle of attack α, Mach number Ma, and altitude h, which are values denoting the
operating points typically used for gain-scheduling. Therefore, a suitable gain at each operating point
can be determined. Let us set the infinite-time quadratic cost to be minimized as

J =
1
2

∫
∞

0

(
ξ

T Qξ +µ
T Rµ

)
dt, (37)

subject to
ξ̇ = Aaξ +Baµ, (38)

where

Aa :=
[

0 Ca

0 Â

]
, Ba :=

[
0

θ̂(x0)

]
, Ca =

[
1 01×(N−1)

]
, (39)

ξ := [az−az,cmd , ż⊺]⊺, and µ = δ̇c. The symmetric positive semi-definite matrix Q∈Rna×na and symmetric
positive-definite matrix R ∈ Rm are the two weighting matrices to be tuned.
The feedback control law that minimizes the cost function (37) is:

u =
∫

µdt =−
∫

Kξ dt =−Kxa, (40)

where
K = R−1BT

a P. (41)

The P is the solution to the following continuous-time algebraic Riccati equation.

A⊺
aP+PAa −PBaR−1B⊺

aP+Q = 0. (42)

8
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Training parameters Values Network architecture Values
Number of data 1,000,000 Number of hidden layers 2

Number of epoch 100 Number of nodes 64
Batch size 32 Activations of hidden layers Leaky ReLU

Learning rate 0.001 Activation of the output layer Identity
Train/test data split ratio 85:15 Output dimensions φ :9, θ :12

Table 2 – Training parameters and network architectures

Figure 4 – Training loss

4. Numerical Simulation
This section shows the training and test results, offering a comprehensive examination of both the
training process and the performance of the designed controller through repeated testing and com-
parative analysis.

4.1 Training results
The training procedure was repeated with various initial network parameters, employing Xavier ini-
tialization [18] for the random assignment of each network’s parameters. Detailed information on all
training parameters and the architectures of the two networks is summarized in Table 2. In Figure 4,
losses are depicted from minimum to maximum values across different initializations. The reduction
in loss, as shown in Figure 4, consistently occurs across epochs, irrespective of the network’s ini-
tialization. The zero epoch indicates the loss value at the initialization. Therefore, the training loss
histories show that the current training settings can produce consistent results

4.2 Comparison of the proposed controller with the gain-scheduled three-loop controller
Figure 5 shows the tracking results and the recorded histories of dominant state variables tested
within the operational envelope of a conventional air-to-air missile. The objective is to assess the ca-
pability of the controller designed by the proposed methodology to effectively operate across a wide
range of operational conditions. To facilitate the assessment, the tracking results of a classical gain-

Q diag([10,0.1,1,01×10])
R 1

Table 3 – RSLQR design parameters

9
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Figure 5 – Comparative results between three-loop controller and the Koopman RSLQR controller
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scheduled three-loop controller are also shown. The scheduled gain table is provided by the MATLAB
Aerospace Blockset [19]. Note that the proposed methodology relies on the Koopman embedding to
derive the feedback control law obtained by solving the linear quadratic problem. Notably, the tracking
capability is enhanced by augmenting the acceleration tracking error. First of all, the Koopman-based
RSLQR controller consistently demonstrates precise tracking of step commands across all test case,
as illustrated in Figure 5b). Additionally, Figure 5c) and Figure 5d) show that the proposed controller
uses less energy while producing similar tracking performance with the three-loop controller. Further-
more, as shown in Figure 5g) and Figure 5h), the Koopman RSLQR controller performs well within
the Mach number range of [2.5, 4.5] and the altitude range of [8, 11] km, affirming its effectiveness
over a broad operational spectrum.

5. Conclusion
This study introduced a data-driven modeling method based on the Koopman operator theory for mis-
sile longitudinal autopilot design. Utilizing trajectory data, the nonlinear missile model was identified
without relying on prior knowledge of the underlying dynamics by leveraging the power of artificial
neural networks. Using the identified linear model with Koopman embedding, the model-based ro-
bust servomechanism linear quadratic regulator can readily be designed for acceleration tracking.
Numerical simulation results demonstrated versatility across a broad spectrum of operating points,
contributing to the favorable performance of the proposed controller in various operational scenarios.
A notable feature is the ability of the proposed controller to replace time-consuming gain-scheduled
controllers by adjusting only a small number of parameters. Future research will encompass various
directions, including the application of the proposed approach to model reference adaptive control
and extended state observer-based control. Additionally, the stability-guaranteed controller design
scheme and its robustness analysis remain to be further studied.
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