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Abstract: In this paper, a class of linear quadratic differential game guidance scheme is presented
to study the pursuit and evasion conflict scenario that an evader establishes a static obstacle and
performs the evasion maneuver to avoid a pursuer. First of all, the engagement kinematic model
among the obstacle, the pursuer, and the evader is linearized according to the assumption. The issue
of the pursuit and evasion game is transformed into a linear quadratic differential game through the
dead zone and the cost functions. Furthermore, the linear quadratic differential game approach is
utilized to obtain the guidance strategy with obstacle avoidance. Numerical simulation results are
employed to validate the performance of the guidance policy.
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1. Introduction

The pursuit and evasion game engagement has received more attention in recent years. An aircraft
(evader) performs the evasion maneuver to avoid the interception of the incoming vehicle (pursuer),
which is a two-player zero-sum game. Linear quadratic differential game theory!!! was founded to
study the combat issue of pursuit and evasion. Attack active defense aircraft guidance strategy was
presented in [2] to address the game problem from the perspective of the pursuer. Based on the
above research, combined and cooperative guidance algorithms were derived and considered
minimum-effort constraints for active aircraft defense scenarios. A combined linear-quadratic/norm-
bounded differential game guidance scheme was devised by Turetsky et al.l3] for a one-on-one game
confrontation scenario. Yan et al.l*! investigated an evasion guidance law under the condition of
unknown pursuer dynamics. It is significant to note that the pursuit and evasion game problem with
obstacle avoidance isn’t taken into account in the abovementioned literature.

The optimal guidance method™! is introduced to derive the game policy for one-on-one intercept,
which avoids the spatial region with minimum effort. Linear-quadratic-based optimal guidance law
was presented in [6] to avoid the obstacle and intercept the evader for the rendezvous. A combat
environment with several static obstacles was considered by Kumar et al.[”! to design a novel
intercept angle guidance scheme by the optimal control theory. Based on the pursuit and evasion
game framework, [8] studied a new engagement scenario of multiple pursuers versus multiple
evaders. An innovative performance index with obstacle avoidance was proposed in [9] for the issue
of multi-agent cooperation. Energy optimal constraint was satisfied in [10] for spacecraft using
proximity approach with obstacle avoidance. The guidance strategies designed in the above paper
must impose the assumption of maneuvering form for the evader, however, it is difficult to obtain
the guidance scheme of the evader through sensor measurement in actual combat.

In summary, the one-on-one pursuit and evasion game issue with obstacle avoidance is taken into

consideration to ensure that the pursuer avoids the static obstacle and attacks the evader. Based on
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linear quadratic differential game theory, a novel guidance scheme is designed for the pursuit and
evasion game scenario with obstacle avoidance. Proposing the minimum-effort cost function
through the dead-zone function obtains the Hamiltonian equation. The avoidance distance is
introduced into the guidance strategy as a design parameter to evade the static obstacle with different
radii.

Y

Fig. 1. Kinematic geometry
2.1 Nonlinear kinematics
The engagement relationship of the adversaries is shown in Fig. 1, which is composed of a pursuer

(P), an evader (E), and a static obstacle (O). R,, ie{PE, PO} are the relative distance between
the pursuer and the evader; the relative distance between the pursuer and the obstacle. V),
ie{P,E} represent the velocities of each adversary, respectively. y, and 4, ie{PE,PO} are

the heading angles and line-of-sight (LOS) angles of the pursuer and the evader. R is a minimum
avoidance distance of the pursuer evading the obstacle.
The nonlinear model kinematics are

Ros =V, coS(¥p = Apg ) + ¥V, c08(7g + Apg ) )
ZPE — VE Sin(yE + /,{’PE )R_ VP Sin(yp — J“PE) (2)
PE
RPO =V, cos(yp = 4po) (3)
: v, sin(y, —
ﬂ'po —__P IZ/P ﬂ'PO) (4)
PO
The arbitrary-order dynamics of the adversaries is expressed as
X, =Ax +bu, ie {P, E} (5)
a,=Cx,+du/, ie{P,E} ©6)

where x, is the state vector of each adversary; u/ is control input of each adversary; 4., b,, C,

and d, are dynamics model matrices of the players.

The flight path angle is represented as



, ie{P, E} @)

2.2 Linear kinematics
The assumption that the engagement scene is located near the collision triangles and the speeds
of the pursuer and the evader are constant is given to linearize the system model. The relative

separation between PE and initial line-of-sight LOS,, is represented as y,.; the relative

separation between PO and initial line-of-sight LOS,, is defined as y,,. u, and u, are the

acceleration commands normal to initial LOS, respectively. The parameters given in (5) and (6)

are chosen as 4,=0, b =0, C, =0, d =1, ie{PE, PO} under the assumption of the

adversaries with the idea system dynamic. Subscript 0 represents the initial state of the players.
The following equations are acquired based on the linearized framework.

Up, = dp 005(71)(, - A’PEU ) =cos(yp — ﬂ'PEu ity )
Ug, =ag COS(?/E0 + /11)150) = COS(7E0 + A'PE” g
(9) is derived according to above definitions.
Up = 005(71:‘, - /’LPE” Yy )
uy =cos(yy, + /,LPEU Jutg
Choose the following state variables of linearized model.
. . T
x:[yPE Yee Vreo ypo] (10)
Differentiating the state variable yields the following formulas.
Vpe =X,
= j.}PE =Ug, —Up, (11)
Yro =Xy
Vpo = —Up,
The state equation is
X = Ax+ Bu; +Cu, (12)
where
01 00
0000
A= , B=[0 1 0 0], c=[0 -1 0 —1]'
0 0 01
0000
The terminal time among the pursuer, the obstacle and the evader are defined as follows.
R
t/ =% i € {PE, PO} (13)
and satisfy #}, <t/ .
According to above definition, the time-to-go of the adversaries are given as
t =t/ —t, ie{PE, PO} (14)
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The interval of the terminal time is defined as
A=th—dl 15)

3. Problem Formulation
Zero-effort miss (ZEM) is introduced to reduce the system order, which is the miss distance if

none of the adversaries in engagement apply any control from the current time onward. The ZEMs
between the pursuer-obstacle and the pursuer-evader are expressed as Z,, and Z,;.

3.1 Order Reduction
Z,, and Z, are represented as the following forms by virtue of terminal projection

transformation.
{ZPO = 77P0¢(tpfo’t)x (16)
Ly = ﬂPE¢(t]{E’t)x
where 7,, and 7,; are
{qpo =[0 0 1 0]
e =[1 0 0 0]
and the state-transition matrices @(t),,t) and @(¢};,¢) are
1 ¢# 0 0
0 1 0 O
/)= , ie{PE,PO 17
¢( i ) 0 0 l tfu { } ( )
0 0 0 1
Formula (16) is rewritten as
{ZPO = JYro +),>P0t§08 (18)
Zpg = Yo + Veslog
Take the derivative of (18) to obtain the following formulas.
{Z:PO = _uPtl"g((; ) (19)
Zpg = (ug —up )t5g

Remark 1. The order of x ischanged from 4 to 1, which reduces the complexity of the game
problem.

The following cost function is obtained according to the above analysis.

I =|D[ Zuo o) [+ W+t [ 01—t [ 2 (21 (20)

where @, and «; are the weight parameters, D[+] is the dead-zone function to avoid the static

obstacle and the specific form is
0, |Zoo (th)| = R
D[ Zyo (1) ] =4[ Zo (th0) = R ], 0< Zyo (1) < R
[ Zoo (to) + R, =R < Zyo(t10) <0
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4. Guidance Scheme

According to (20), the Hamiltonian function is given as follow.
H = 20D [ Z, ()] + Ao Zpe (£) + i () — ] (2) (21)
The adjoint equation and transversality conditions are

oH oJ

jvl’o - =0 o(ts0) = =2D| Zy, (1)
OD[Zy,(1)] & OD[ Zyo (t1,) ] : ] )
= co =22,
E 8ZPE(t) E UpE aZpE(tiJfE) PE \"PE
Bringing D[Z,,(#)] and equation (22) into (21) obtains
H =2D| Zy (t}) | Zyo (6) + 224 (15 ) Zy () + ety (1) = et (1) (23)

Substitute (19) into (23) to yield the following formula.

H ==2D] Zy (00 |ttty (6) + 22 (835 )05 [t (6) = (6)] +atyta (6) — exgae ()

= 27, the iz ()= 2 D[ Zyo (60) 185 + Zpe (the i Jup () + i} (0 - il () (24)

The open-loop optimal guidance schemes are acquired by minimizing the Hamiltonian function
(24).

D ZPO(tl{O too + Zpe (8 E)tgo . Z (tf I
|: :| ul = PE \'PE )'PE (25)

ap ag

U, =

Substituting (25) into (19) and integrating from ¢ to t, , we get

D[ Zyo (1 INCRG | Zy(tf) [ 5 @15 (e)de

ap ap

Ly, (t )= Zpo () =

D[ Zi @)1 Zy (s> GA+ 265

26
3a, 60, (26)
(26) can be rewritten as
vo (t ) |te? Zoe ()57 BA + 262
ZPO (tPfo |: :I - ZPO (t) =
6a,
According to the D[.], the following equation is derived.
52 (3A + 2t ),
Zpo (1) = 2(3—+tg03) o (675 |ZP0 (fpfo)| Z R
: 3, Zpo (1) + 150 R 10" (BA+2155
f P~PO PO
Zpo (tpo 3o, +120 2Gar, ngg) Zys (t), 0< Zyo (155) < R (27)
3 1) —15°R tg”z 3A+2t5
ApZpo (1) 3po ( 3) PE(tE) R<Zpo(t )<0
3a, + 150 2QBa, +157)
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Bringing (27) into the dead-zone function D[], we get

- 182 (3A +2t5
2(3a, + t§g3)
6aP [ZPO (t) - R] - 1582 (3A + 2t§g )ZPE (ti’fé
23, +1537)
60ty [Zyo (1) + R]— 1557 (30 + 280) Zy, (1)
2Ba, +157)

Zo (8, |Zoo ()] = R

D[ Zpo (th) | = . 0<Z,()<R

, —R<Z,,(1)<0

_3a,D[Z (O] 155 BA+2158) 2, (81

28
3a, +15° 23a, +157) (28)
Similarly, substituting (25) into (19), and integrating from ¢ to #}, yield
f e Zpg (ti’fE )tlfgz (¢)
Zpp (tpp) = Zpp (1) = J.t -
aE
3 D |:ZPO (t5o :'tpgg (&)t (&) + Zyp (K )57 (£) de
aP
tPfE 0 t‘:E 0 0
_ ZPE(tPfE)(aP _aE)L tlez(g)dg D[ZPO(IP/O j“.[ tho (&)t (£)de
- aPaE aP
(@ = @) 2y (1)t (15 30D Zyo (1) ] )
a0, 6a,
Equation (29) becomes
7 (l‘f )= a0, 2, () 3 aEt§g2 (25 - 3A)D|:ZPO (tl{O):' (30)
e 3aPaE _(ap _aE)t§E3 6aPaE _2(aP —Og )t§g3
Combining (28) and (30), we obtain the following formulas.
Z, (1) = 1200, Bty + 155 ) Zp (1) = 6ty (215 =30)D[Z, (1)] 31)
) i, + 12000 (65 + 55D +15005) — Ao 0 B+ 155)) + 3 A 1
36a,a;, —12a,15° (a, —ay) |D[Zyo (1) — 60,1507 (BA +2150) Zy (£)
D|:Zpo(tl{o :| |: PYE P*PE P E :| PO P*E"PO PO PE (32)

bayar, + 120,01, (157 + 150 )A” + 15150 ) = Aty 3+ 1507) + 30 At 15

The closed-loop optimal guidance strategies of the adversaries are derived by substituting (31)
and (32) into (25).

" |:(4a1~: —Qp )t§g3t§8 — Qg (tPgE3A + 60‘Pt§8 )] D [ZPO (t)] + 6aE (t}§(0)3A - 60‘1-: )ZPE (t)
u, =

baryar, + 120,00, (157 + 150 )(A” +15150) = Aoty B+ 150)) + 3ag At 15

(33)

. 120,15 Bty + 156" Zg (1) — 60t (257 =3M)D[ Z, (1)]

E 2 0 0 2 0 , g0 03 03 2,802 ,g02

(34)
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Remark 2: The following constraints must be satisfied for the sake of the effectiveness of
guidance strategies (33) and (34).

1, |ZPO (tpfo)| 2R

7z (& .
Olwolleo) _) 3% o 7 1) <R (35)
Zo(t) | 3ay, +15
3
D R<Z,(tl)<0

3a, +1557
Since
3a
T
Then, for |ZPO (th )| >R, |Z®|2R ; for 0<Z,(tj,)<R , 0<Z,({)<R ; for
—R < Z,,(t}s) <0.

5. Simulations

(36)

The effectiveness of the guidance scheme proposed in this paper is validated by nonlinear
numerical simulations. The engagement that the pursuer evades the static obstacle and hits the
evader is supposed in this section. The assumption of the information required in the guidance
strategy being measured is given. Three minimum avoidance values: Om (no avoidance), 200m, and
400m are chosen in Cases 1 and 2 to verify the guidance scheme with obstacle avoidance.

The objective of the nonlinear form of ZEM given in [11] is to improve the accuracy of the
simulations.

Z,()=Rt**4,, j € {PE, PO} (37

Case 1. The simulation parameters are obtained as follows.

Table 1. Simulation parameters.

Parameters Pursuer Evader
Initial Position/km (10,200) (110,200)
Initial course/(°) 21 72
Velocity/(km/s) 33 1.5

The position of the static obstacle is selected as x, = 67.8920km, y, =222.0800km . The weight
parameters are @, =0.1 and «, =0.01. The final time are calculated as ¢}, =20.1115s and
1, =28.2140s .

2.35% 10° Trajectories Zero-Effort Miss Z,,
—R=0m x 10° 7000
53| R=200m 2-23‘
[/~ R=400m |, 55 6000
« Obstacle ‘ &\
2.25- 22 Ll — & \ 5000
4 ) 3
22 s 4000
E B
T2.15- N
) Pursuer N
2000+~
2.1}
1000
2.05¢ 0
20 2 4 6 8 10 12 -1000, 5 10 15 20 25 30
x/m x 10* t(s)

Fig. 1. Engagement trajectories of the guidance scheme Fig. 2. ZEM with respect to the obstacle radius for time
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Fig. 1 shows the flight trajectories of the adversaries for the different obstacle radius. It can be
seen from Fig. 1 that the pursuer is able to evade the static obstacle with the specific ZEM and

intercept the evader.

Zero-Effort Miss ZPO Acceleration of Pursuer
500
—R=0m
R=200m
400 ——R=400m
300!
E
o 200+
a
N
100
Of—_
\;\\—;
100, 5 10 15 20 25 30 R 5 10 15 20 25 30
t(s) t(s)

Fig. 3. Engagement trajectories of the guidance scheme Fig. 4. ZEM with respect to the obstacle radius for time

The time evolutions of Z,, and Z, for the different obstacle avoidance distance are
illustrated by Figs. 3 and 4. From Fig. 3 it can be known that the pursuer evades the static obstacle
with the specific ZEM for the different obstacle radius at the final time. As shown in Fig. 4, the
ZEM between the pursuer and the evader decreases to Om for the different value of the obstacle
radius at the terminal time ¢/, , which demonstrates that the pursuer is able to hit the evader and
complete the attack mission.

The variation tendency of the acceleration command with respect to time for the different obstacle
radius is shown in Fig. 4. The initial value of the pursuer’s acceleration gradually increases as the

obstacle radius increases, and u, converges to Om/s’ at the terminal time in order to guarantee
that the pursuer accomplishes the attacking task.
Case 2. The simulation parameters are obtained as follows.

Table 2. Simulation parameters.

Parameters Pursuer Evader
Initial Position/km (5,200) (100,200)
Initial course/(°) 26 62
Velocity/(km/s) 2.8 1.5

We suppose that the static obstacle is located in x, =45.2397km, y,=219.6287km The
parameters are «, =1.1 and «, =0.01. The terminal time are calculated as ¢}, =17.7911s and
tl. =29.4955s .

Zero-Effort Miss ZPE

5 Trajectories
235X 10 ! 3000 —_—
—R=0m x10° —R=0m
R=200m | 2.108 R=200m
2.3/ R=400m | 2105 2500- ——R=400m
* Obstacle| 5 194
. 22 E 1500 400
= [
215 N 1000 14.5 M5 155
2.1 500
2.05- 0
% 2 4 6 8 10 500 5 10 15 20 25 30
x/m x10° t(s)

Fig. 5. Engagement trajectories of the guidance scheme Fig. 6. ZEM with respect to the obstacle radius for time



The flight trajectories of the guidance strategy for the adversaries are shown in Fig. 5, which
demonstrates that the pursuer evades the static obstacle with different avoidance value and intercepts
the evaders.

Zero-Effort Miss Z, Acceleration of Attacker
PO 05
—R=0m
R=200m
——R=400m
—
®
£
o
=
% 5 10 15 20 25 30 “o 5 10 15 20 25 30
t(s) i(s)

Fig. 7. Engagement trajectories of the guidance scheme Fig. 8. ZEM with respect to the obstacle radius for time
Figs. 6 and 7 illustrate the variation tendency of ZEMs among the pursuer, the obstacle and the
evader with respect to time. For the different minimum avoidance distance, Z,, decreases and

converges to Om at the final time, which validates the simulation result in Fig. 5. As shown in Fig.

6, Z,, increases and maintains the avoidance value at the terminal time ¢}, , which is consistent

with the line in Fig. 6.
The time evolution of the acceleration u, for the different avoidance distance is shown in Fig.

8. The initial value of the acceleration command increases according to the obstacle radius and u,
converges to 0m/s’, which guarantees the success of the attack mission.

6. Conclusion

A framework of one-on-one pursuit and evasion game with the static obstacle is considered by
virtue of linear quadratic differential game theory. The differential game guidance scheme is
proposed to guarantee that the pursuer avoids the static obstacle and attacks the evader The
parameter of the static obstacle radius is taken into consideration in the guidance strategy, which
ensures that the pursuer evades the obstacle with the different avoidance value and accomplishes
the engagement mission. The performance of the guidance strategy is verified by numerical

simulations.
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