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Abstract: In this paper, a class of linear quadratic differential game guidance scheme is presented 
to study the pursuit and evasion conflict scenario that an evader establishes a static obstacle and 
performs the evasion maneuver to avoid a pursuer. First of all, the engagement kinematic model 
among the obstacle, the pursuer, and the evader is linearized according to the assumption. The issue 
of the pursuit and evasion game is transformed into a linear quadratic differential game through the 
dead zone and the cost functions. Furthermore, the linear quadratic differential game approach is 
utilized to obtain the guidance strategy with obstacle avoidance. Numerical simulation results are 
employed to validate the performance of the guidance policy. 
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1. Introduction 
The pursuit and evasion game engagement has received more attention in recent years. An aircraft 

(evader) performs the evasion maneuver to avoid the interception of the incoming vehicle (pursuer), 
which is a two-player zero-sum game. Linear quadratic differential game theory[1] was founded to 
study the combat issue of pursuit and evasion. Attack active defense aircraft guidance strategy was 
presented in [2] to address the game problem from the perspective of the pursuer. Based on the 
above research, combined and cooperative guidance algorithms were derived and considered 
minimum-effort constraints for active aircraft defense scenarios. A combined linear-quadratic/norm-
bounded differential game guidance scheme was devised by Turetsky et al.[3] for a one-on-one game 
confrontation scenario. Yan et al.[4] investigated an evasion guidance law under the condition of 
unknown pursuer dynamics. It is significant to note that the pursuit and evasion game problem with 
obstacle avoidance isn’t taken into account in the abovementioned literature. 

The optimal guidance method[5] is introduced to derive the game policy for one-on-one intercept, 
which avoids the spatial region with minimum effort. Linear-quadratic-based optimal guidance law 
was presented in [6] to avoid the obstacle and intercept the evader for the rendezvous. A combat 
environment with several static obstacles was considered by Kumar et al.[ 7 ] to design a novel 
intercept angle guidance scheme by the optimal control theory. Based on the pursuit and evasion 
game framework, [8 ] studied a new engagement scenario of multiple pursuers versus multiple 
evaders. An innovative performance index with obstacle avoidance was proposed in [9] for the issue 
of multi-agent cooperation. Energy optimal constraint was satisfied in [10] for spacecraft using 
proximity approach with obstacle avoidance. The guidance strategies designed in the above paper 
must impose the assumption of maneuvering form for the evader, however, it is difficult to obtain 
the guidance scheme of the evader through sensor measurement in actual combat.  

In summary, the one-on-one pursuit and evasion game issue with obstacle avoidance is taken into 
consideration to ensure that the pursuer avoids the static obstacle and attacks the evader. Based on 
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linear quadratic differential game theory, a novel guidance scheme is designed for the pursuit and 
evasion game scenario with obstacle avoidance. Proposing the minimum-effort cost function 
through the dead-zone function obtains the Hamiltonian equation. The avoidance distance is 
introduced into the guidance strategy as a design parameter to evade the static obstacle with different 
radii.  
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Fig. 1. Kinematic geometry 

2.1 Nonlinear kinematics 
The engagement relationship of the adversaries is shown in Fig. 1, which is composed of a pursuer 

(P), an evader (E), and a static obstacle (O). iR , { }PE, POi∈  are the relative distance between 

the pursuer and the evader; the relative distance between the pursuer and the obstacle. iV  , 

{ }P, Ei∈  represent the velocities of each adversary, respectively. iγ  and iλ , { }PE, POi∈  are 

the heading angles and line-of-sight (LOS) angles of the pursuer and the evader. R  is a minimum 
avoidance distance of the pursuer evading the obstacle.  

The nonlinear model kinematics are 

PE P P PE E E PEcos( ) cos( )R V Vγ λ γ λ= − + +                         (1) 

E E PE P P PE
PE

PE

sin( ) sin( )V V
R

γ λ γ λ
λ

+ − −
=                          (2) 

PO P P POcos( )R V γ λ= −                                       (3) 

P P PO
PO

PO

sin( )V
R
γ λ

λ
−

= −                                      (4) 

The arbitrary-order dynamics of the adversaries is expressed as 

{ },  P, Ei i i i iu i′= + ∈x A x b                              (5) 

{ },  P, Ei i i i ia d u i′= + ∈C x                              (6) 

where ix  is the state vector of each adversary; iu′  is control input of each adversary; iA , ib , iC  
and id  are dynamics model matrices of the players. 

The flight path angle is represented as 
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{ },  P, Ei
i

i

a
i

V
γ = ∈                                 (7) 

2.2 Linear kinematics 
The assumption that the engagement scene is located near the collision triangles and the speeds 

of the pursuer and the evader are constant is given to linearize the system model. The relative 

separation between PE and initial line-of-sight 
0PELOS   is represented as PEy  ; the relative 

separation between PO and initial line-of-sight 
0POLOS  is defined as POy . PLu  and ELu  are the 

acceleration commands normal to initial LOS, respectively. The parameters given in (5) and (6) 

are chosen as 0i =A  , 0i =b  , 0i =C  , 1id =  , { }PE, POi∈   under the assumption of the 

adversaries with the idea system dynamic. Subscript 0 represents the initial state of the players.  
The following equations are acquired based on the linearized framework. 

0 0 0 0

0 0 0 0

PL P P PE P PE P

EL E E PE E PE E

cos( ) cos( )

cos( ) cos( )

u a u

u a u

γ λ γ λ

γ λ γ λ

′= − = −

′= + = +





                         (8) 

(9) is derived according to above definitions. 

0 0

0 0

P P PE P

E E PE E

cos( )

cos( )

u u

u u

γ λ

γ λ

′= −
 ′= +

                                     (9) 

Choose the following state variables of linearized model. 

[ ]TPE PE PO POy y y y=  x                              (10) 

Differentiating the state variable yields the following formulas. 

2

EL PL

PO 4

PO PL

PE

PE

y x
y u u
y x
y u

=
 = −=  =
 = −









x                                  (11) 

The state equation is  
E Pu u= + +x Ax B C                               (12) 

where  
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 
 
 
 
 
 

A = , [ ]T0 1 0 0=B , [ ]T0 1 0 1= − −C   

The terminal time among the pursuer, the obstacle and the evader are defined as follows. 
f i

i
i

R
t

R
=


, { }PE, POi∈                                  (13) 

and satisfy PO PE
f ft t< . 

According to above definition, the time-to-go of the adversaries are given as  

,go f
i it t t= −  { }PE, POi∈                                 (14) 
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The interval of the terminal time is defined as 

PE POΔ f ft t= −                                  (15) 

3. Problem Formulation 
Zero-effort miss (ZEM) is introduced to reduce the system order, which is the miss distance if 

none of the adversaries in engagement apply any control from the current time onward. The ZEMs 
between the pursuer-obstacle and the pursuer-evader are expressed as POZ  and PEZ . 
3.1 Order Reduction 

POZ   and PEZ   are represented as the following forms by virtue of terminal projection 
transformation. 

PO PO PO

PE PE PE

( , )

( , )

f

f

Z t t

Z t t

 =


=

x

x

η φ

η φ
                             (16) 

where POη  and PEη  are 

[ ]
[ ]

PO

PE

0 0 1 0

1 0 0 0

 =


=

η

η
 

and the state-transition matrices PO( , )ft tφ  and PE( , )ft tφ  are  

1 0 0
0 1 0 0

( , )
0 0 1
0 0 0 1

go
i

f
i go

i

t

t t
t

 
 
 =
 
 
  

φ , { }PE, POi∈                       (17) 

Formula (16) is rewritten as  

PO PO PO PO

PE PE PE PE

go

go

Z y y t

Z y y t

 = +


= +





                                (18) 

Take the derivative of (18) to obtain the following formulas. 

PO P PO

PE E P PE( )

go

go

Z u t

Z u u t

 = −


= −





                                (19) 

Remark 1. The order of x  is changed from 4  to 1, which reduces the complexity of the game 
problem. 

The following cost function is obtained according to the above analysis. 

PE PE2 2 2 2
PO PO PE PE P P E ED ( ) ( ) ( )d ( )d

f ft tf f

t t
J Z t Z t u uα ε ε α ε ε = + + −  ∫ ∫             (20) 

where Pα  and Eα  are the weight parameters, [ ]D   is the dead-zone function to avoid the static 

obstacle and the specific form is 

PO PO

PO PO PO PO PO PO

PO PO PO PO

            0,                 ( )

D ( ) ( ) ,  0 ( )

( ) ,  ( ) 0

f

f f f

f f

Z t R

Z t Z t R Z t R

Z t R R Z t

 ≥
   = − ≤ <   

 + − < < 
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4. Guidance Scheme 
According to (20), the Hamiltonian function is given as follow. 

[ ] 2 2
PO PO PE PE P P E ED ( ) ( ) ( ) ( )H Z t Z t u t u tλ λ α α= + + −                  (21) 

The adjoint equation and transversality conditions are 

[ ]PO
PO

PE
PE

0
D ( )

0
( )

H
Z t

H
Z t

λ

λ

∂ = − = ∂


∂ = − =
 ∂





, 
PO PO PO PO

PO PO

PE PE PE PE
PE PE

( ) 2D ( )
D ( )

( ) 2 ( )
( )

f f
f

f f
f

Jt Z t
Z t

Jt Z t
Z t

λ

λ

∂  = =   ∂  
∂ = = ∂

        (22) 

Bringing [ ]POD ( )Z t  and equation (22) into (21) obtains  

2 2
PO PO PO PE PE PE P P E E2D ( ) ( ) 2 ( ) ( ) ( ) ( )f fH Z t Z t Z t Z t u t u tα α = + + − 

                 (23) 

Substitute (19) into (23) to yield the following formula. 

[ ]PO PO PO P PE PE PE E P2D ( ) ( ) 2 ( ) ( ) ( )f go f goH Z t t u t Z t t u t u t = − + − 
2 2

P P E E( ) ( )u t u tα α+ −  

2 2
PE PE PE E PO PO PO PE PE PE P P P E E2 ( ) ( ) 2 D ( ) ( ) ( ) ( ) ( )f go f go f goZ t t u t Z t t Z t t u t u t u tα α  = − + + −      (24) 

The open-loop optimal guidance schemes are acquired by minimizing the Hamiltonian function 
(24). 

PO PO PO PE PE PE
P

P

D ( ) ( )f go f goZ t t Z t t
u

α
∗

  + = , PE PE PE
E

E

( )f goZ t tu
α

∗ =                       (25) 

Substituting (25) into (19) and integrating from t  to PO
ft , we get 

PO PO2
PO PO PO PE PE PO PE

PO PO PO
P P

D ( ) ( )d ( ) ( ) ( )d
( ) ( )

f ft tf go f go go
f t t

Z t t Z t t t
Z t Z t

ε ε ε ε ε

α α

  − = − −∫ ∫  

3 2
PO PO PO PE PE PO PO

P P

D ( ) ( ) (3Δ 2 )
3 6

f go f go goZ t t Z t t t
α α

  + = − −                 (26) 

(26) can be rewritten as  

3 2
PO PO PO PE PE PO PO

PO PO PO
P P

D ( ) ( ) (3Δ 2 )
( ) ( )

3 6

f go f go go
f

Z t t Z t t t
Z t Z t

α α

  + + = −  

According to the [ ]D  , the following equation is derived. 

2
PO PO

PO PE PE PO PO3
P PO

3 2
P PO PO PO PO

PO PO PE PE PO PO3 3
P PO P PO

3 2
P PO PO PO

3
P PO

(3Δ 2 )
         ( ) ( ),        ( )

2(3 )

3 ( ) (3Δ 2 )
( ) ( ),  0 ( )

3 2(3 )

3 ( )
3

go go
f f

go

go go go
f f f

go go

go go

go

t t
Z t Z t Z t R

t

Z t t R t t
Z t Z t Z t R

t t

Z t t R t
t

α

α
α α

α
α

+
− ≥

+

+ +
= − ≤ <

+ +

−
−

+
PO

PE PE PO PO3
P PO

(3Δ 2 )
( ), ( ) 0

2(3 )

go
f f

go

t
Z t R Z t

tα







 + − < <

+

            (27) 
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Bringing (27) into the dead-zone function [ ]D  , we get 

[ ]

[ ]

2
PO PO

PE PE PO3
P PO

2
P PO PO PO PE PE

PO PO PO3
P PO

2
P PO PO PO PE PE

P

(3Δ 2 )
                 ( ),           ( )

2(3 )

6 ( ) (3Δ 2 ) ( )
D ( ) ,   0 ( )

2(3 )

6 ( ) (3Δ 2 ) ( )
2(3

go go
f

go

go go f
f

go

go go f

t t
Z t Z t R

t

Z t R t t Z t
Z t Z t R

t

Z t R t t Z t
t

α

α
α

α
α

+
− ≥

+

− − +
  = ≤ <  +

+ − +

+ PO3
PO

,  ( ) 0
)go R Z t








 − < <


 

[ ] 3
p PO PO PO PE PE

3 3
P PO P PO

3 D ( ) (3Δ 2 ) ( )
3 2(3 )

go go f

go go

Z t t t Z t
t t

α
α α

+
= −

+ +
                       (28) 

Similarly, substituting (25) into (19), and integrating from t  to PE
ft  yield 

PE
2

PE PE PE
PE PE PE

E

( ) ( )( ) ( )
f f gotf

t

Z t tZ t Z t ε
α

− = ∫                                            

2
PO PO PO PE PE PE PE

P

D ( ) ( ) ( ) ( ) ( )
d

f go go f goZ t t t Z t tε ε ε
ε

α

  + −                        

PE PE2
PE PE P E PE PO PO PO PE

P E P

( )( ) ( )d D ( ) ( ) ( )d
f ft tf go f go go

t t
Z t t Z t t tα α ε ε ε ε ε

α α α

 −  = −∫ ∫         

23
PE PE PO POPE P E PE PE

P E P

(2 3Δ)D ( )( ) ( )
3 6

go go fgo f t t Z tt Z tα α
α α α

 −−  = −               (29) 

Equation (29) becomes 

2
E PE PE PO POP E PE

PE PE 3 3
P E P E PE P E P E PE

(2 3Δ)D ( )3 ( )( )
3 ( ) 6 2( )

go go f
f

go go

t t Z tZ tZ t
t t

αα α
α α α α α α α α

 −  = −
− − − −

           (30) 

Combining (28) and (30), we obtain the following formulas. 

[ ]3 3
P E P PO PE P E PE PE PO

PE PE 2 2 3 3 2 2 2
P E P E PE PO PE PO P PE PO E PO PE

12 (3 ) ( ) 6 (2 3Δ)D ( )
( )

6 12 ( )(Δ ) 4 (3 ) 3 Δ

go go go
f

go go go go go go go go

t Z t t t Z t
Z t

t t t t t t t t
α α α α α

α α α α α α
+ − −

=
+ + + − + +

     (31) 

[ ]2 3 2
P E P PE P E PO P E PO PO PE

PO PO 2 2 3 3 2 2 2
P E P E PE PO PE PO P PE PO E PO PE

36 12 ( ) D ( ) 6 (3Δ 2 ) ( )
D ( )

6 12 ( )(Δ ) 4 (3 ) 3 Δ

go go go
f

go go go go go go go go

t Z t t t Z t
Z t

t t t t t t t t

α α α α α α α

α α α α α α

 − − − +   =  + + + − + +
 (32) 

The closed-loop optimal guidance strategies of the adversaries are derived by substituting (31) 
and (32) into (25). 

[ ]3 3 3
E P PE PO E PE P PO PO E PO E PE

P 2 2 3 3 2 2 2
P E P E PE PO PE PO P PE PO E PO PE

(4 ) ( Δ 6 ) D ( ) 6 ( Δ 6 ) ( )

6 12 ( )(Δ ) 4 (3 ) 3 Δ

go go go go go

go go go go go go go go

t t t t Z t t Z t
u

t t t t t t t t

α α α α α α

α α α α α α
∗

 − − + + − =
+ + + − + +

        (33) 

[ ]3 3
P PE P PO PE P PE PE PO

E 2 2 3 3 2 2 2
P E P E PE PO PE PO P PE PO E PO PE

12 (3 ) ( ) 6 (2 3Δ)D ( )
6 12 ( )(Δ ) 4 (3 ) 3 Δ

go go go go

go go go go go go go go

t t Z t t t Z t
u

t t t t t t t t
α α α

α α α α α α
∗ + − −
=

+ + + − + +
           (34) 
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Remark 2: The following constraints must be satisfied for the sake of the effectiveness of 
guidance strategies (33) and (34). 

PO PO

PO PO P
PO PO3

PO P PO

P
PO PO3

P PO

      1,        ( )

( ) 3 ,  0 ( )
( ) 3

3 ,  ( ) 0
3

f

f
f

go

f
go

Z t R

Z t
Z t R

Z t t

R Z t
t

α
α

α
α


 ≥
∂ = ≤ <

∂ +


− < <
+

                      (35) 

Since 

P
3

P PO

3 0
3 got

α
α

>
+

                                    (36) 

Then, for PO PO( )fZ t R≥  , PO ( )Z t R≥  ; for PO PO0 ( )fZ t R≤ <  , PO0 ( )Z t R≤ <  ; for 

PO PO( ) 0fR Z t− < < . 
5. Simulations 

The effectiveness of the guidance scheme proposed in this paper is validated by nonlinear 
numerical simulations. The engagement that the pursuer evades the static obstacle and hits the 
evader is supposed in this section. The assumption of the information required in the guidance 
strategy being measured is given. Three minimum avoidance values: 0m (no avoidance), 200m, and 
400m are chosen in Cases 1 and 2 to verify the guidance scheme with obstacle avoidance. 

The objective of the nonlinear form of ZEM given in [11] is to improve the accuracy of the 
simulations. 

{ }2( ) ,  PE,  POgo
j j j jZ t R t jλ= ∈                              (37) 

Case 1. The simulation parameters are obtained as follows. 
Table 1. Simulation parameters. 

Parameters Pursuer Evader 

Initial Position/km (10,200) (110,200) 

Initial course/(°) 21 72 

Velocity/(km/s) 3.3 1.5 

The position of the static obstacle is selected as O 67.8920kmx = , O 222.0800kmy = . The weight 
parameters are P 0.1α =   and E 0.01α =  . The final time are calculated as PO 20.1115sft =   and 

PE 28.2140sft = .  

 
Fig. 1. Engagement trajectories of the guidance scheme Fig. 2. ZEM with respect to the obstacle radius for time 
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Fig. 1 shows the flight trajectories of the adversaries for the different obstacle radius. It can be 
seen from Fig. 1 that the pursuer is able to evade the static obstacle with the specific ZEM and 
intercept the evader.  

 
Fig. 3. Engagement trajectories of the guidance scheme Fig. 4. ZEM with respect to the obstacle radius for time 
The time evolutions of POZ   and PEZ   for the different obstacle avoidance distance are 

illustrated by Figs. 3 and 4. From Fig. 3 it can be known that the pursuer evades the static obstacle 
with the specific ZEM for the different obstacle radius at the final time. As shown in Fig. 4, the 
ZEM between the pursuer and the evader decreases to 0m for the different value of the obstacle 
radius at the terminal time PE

ft , which demonstrates that the pursuer is able to hit the evader and 
complete the attack mission.  

The variation tendency of the acceleration command with respect to time for the different obstacle 
radius is shown in Fig. 4. The initial value of the pursuer’s acceleration gradually increases as the 
obstacle radius increases, and Pu  converges to 20m/s  at the terminal time in order to guarantee 
that the pursuer accomplishes the attacking task.  

Case 2. The simulation parameters are obtained as follows. 
Table 2. Simulation parameters. 

Parameters Pursuer Evader 

Initial Position/km (5,200) (100,200) 

Initial course/(°) 26 62 

Velocity/(km/s) 2.8 1.5 

We suppose that the static obstacle is located in O 45.2397kmx =  , O 219.6287kmy =   The 
parameters are P 1.1α =  and E 0.01α = . The terminal time are calculated as PO 17.7 11s9ft =  and 

PE 29.4 55s9ft = .  

 

Fig. 5. Engagement trajectories of the guidance scheme Fig. 6. ZEM with respect to the obstacle radius for time 



9 
 

The flight trajectories of the guidance strategy for the adversaries are shown in Fig. 5, which 
demonstrates that the pursuer evades the static obstacle with different avoidance value and intercepts 
the evaders. 

 

Fig. 7. Engagement trajectories of the guidance scheme Fig. 8. ZEM with respect to the obstacle radius for time 
Figs. 6 and 7 illustrate the variation tendency of ZEMs among the pursuer, the obstacle and the 

evader with respect to time. For the different minimum avoidance distance, PEZ  decreases and 
converges to 0m at the final time, which validates the simulation result in Fig. 5. As shown in Fig. 

6, POZ  increases and maintains the avoidance value at the terminal time PO
ft , which is consistent 

with the line in Fig. 6. 
The time evolution of the acceleration Pu  for the different avoidance distance is shown in Fig. 

8. The initial value of the acceleration command increases according to the obstacle radius and Pu  
converges to 20m/s , which guarantees the success of the attack mission.  

6. Conclusion 
A framework of one-on-one pursuit and evasion game with the static obstacle is considered by 

virtue of linear quadratic differential game theory. The differential game guidance scheme is 
proposed to guarantee that the pursuer avoids the static obstacle and attacks the evader The 
parameter of the static obstacle radius is taken into consideration in the guidance strategy, which 
ensures that the pursuer evades the obstacle with the different avoidance value and accomplishes 
the engagement mission. The performance of the guidance strategy is verified by numerical 
simulations. 
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